Chapter 5 Version 3.2

The KIPS a simple MIPS containing the following:

A program counter register that contains the address of the instruction to be executed.

PC = PC(31..0)
32 general purpose 32 bit registers.

GPR = GPR(0..31) = GPR(0..31; 31..0)
A byte addressable memory with 32 bits of address.

MB = MB(0..0FFFFFFFFH
) = MB(0..0FFFFFFFFH; 0..7)
For convenience we will define the following registers and memory in terms of the above.

Ri = GPR(i), Note: R0 (0
Note: In place of Ri the MIPS assembler uses $i.

Thus, to add the contents of R8 to R9 and put the result in R10 the assembly language instruction is: add $10,$8,$9

MH(n0) = MH(n0; 15..0) = MB(n0)||MB(n0+1)

where 0 (n0 (0FFFFFFFEH and n0 is even.

M(n00) = M(n00; 31..0) = MB(n00)||MB(n00+1)||MB(n00+2)||MB(n00+3)

where 0 (n00 (0FFFFFFFCH and n00 is a multiple of 4

(i.e. n00 addresses a word boundary).

I - Type instruction

	31 6
	5
	5
	16 0

	Opcode
	rs

	rt
	n/offset

R - Type

	6
	5
	5
	5
	5
	6

	Opcode
	rs
	rt
	rd
	shamt
	func

J - Type

	6
	26

	Opcode
	raddr

DEFINITIONS

	op = op(5..0) = IR(31..26)
	rs = rs(4..0) = IR(25..21)
	rt = rt(4..0) = IR(20..16)

	rd = rd(4..0) = IR(15..11)
	n = n(15..0) = IR(15..0)
	ofst = ofst(15..0) = IR(15..0)

	shamt=shmat(4..0)=IR(10..6)
	func = func(5..0)=IR(5..0)
	addr = addr(25..0) = IR(25..0)

When referring to bits in the IR, rs, rt, and rd to represent the bits that address GPR'r. Otherwise rs, rt, and rd will be used to represent the contents of particular GPR's. Specifically: rs = GPR(IR(25..21)), rt = GPR(IR(20..26)), and rd = GPR(IR(15..11). The proper interpretation should be obvious form the context. When we need to make the distinction we will use RS, RT, and RD for the contents of the GPR.

The KIPS Instruction Set

	lw
	rt,ofst(rs)
	
	rt (M(rs + (ofst)

	100011
	rs
	rt
	ofst

	sw
	rt,ofst(rs)
	
	M(rs + (ofst) (rt

	101011
	rs
	rt
	ofst

	beq
	rs,rt,ofst
	
	if rs=rt then PC(PC +(ofst||00 else PC (PC+4

	000100
	rs
	rt
	ofst

	add
	rd,rs,rt
	
	rd (rs + rt

	000000
	rs
	rt
	rd
	00000
	000000

	sub
	rd,rs,rt
	
	rd (rs – rt

	000000
	rs
	rt
	rd
	00000
	010010

	and
	rd,rs,rt
	
	rd (rs & rt

	000000
	rs
	rt
	rd
	00000
	000100

	or
	rd,rs,rt
	
	rd (rs | rt

	000000
	rs
	rt
	rd
	00000
	010101

	slt
	rd,rs,rt
	
	If rs < rt
 then rd (1 else rd (0

	000000
	rs
	rt
	rd
	00000
	011010

	j
	addr
	
	PC (PC(31..28)||addr||00

	100000
	addr

A Register Transfer Notation for KIPS

Notation:

A = B means A and B are the same object.

A := B means that A is the output of a combinational circuit that assumed the value of B; therefore, A assumes the value of B immediately after B prorogates through the combinational logic. The assignment does not wait for a clock transition to occur.

A (B means that A is the output of a resister that assumes the value B after a transition of the system clock. The only exception is that for a memory write the data is "clocked" into memory by a memory write signal. We will make the reasonable assumption that the memory write signal is synchronized with the system clock. Therefore, the memory behaves as if the write occurred on the clock transition and we do not need to be concerned with the distinction.

	The 32 bit registers:
	Symbol

	Program counter
	PC

	Instruction register
	IR

	Memory data register
	MDR

	General purpose registers
	GPR(31..0)

	Register A
	A

	Register B
	B

	ALUOut register
	ALUout

	Memory
	M(0..0xFFFFFFFFFFFFFFFC)

Definitions:

	Op = IR(31..26)
	Rs = GPR(rs)

	rs = IR(25..21)
	RT = GPR(rt)

	rt = IR(20..16)
	RD = GRP(rd)

	rd = IR(15..11)
	

	n = ofst = IR(15..0)
	

	addr = IR(25..0)
	

[image: image1.png]PCSource

- PCWriteCond

lorD Cutputs

ALUSTrcB

Control

0
M
Jump 1y
address [31-0] X
o . 2
I I Read
rt Read
Read
[register 2 data 1 l
ALUOut

Instruction

Instruction

Address

Instruction

Memory

MemData _ Registers
Instruction Write Read
[15-0] register 4t 2

Instruction
register

Write

data
register

. l v
L

KIPS register transfer operations

Version 3.4

ALU related combinational logic

	SA := A
	ALU := SA + SB

	SA := PC
	ALU := SA - SB

	SA :=
[image: image2.wmf]A

	ALU := SA & SB

	SB := B
	ALU := SA | SB

	SB := 4
	ALU := 0

	SB := (n
	ALU := 1

	SB := (ofst||00
	ALU := SA

	SB :=
[image: image3.wmf]B

	ALU := SB

Register transfer operations Version 3.4

	PC (PC
	IR (IR
	RS (RS

	PC (0

	IR (M(PC)(
	RT (RT

	PC (PC + 4

	
	RD (RD

	PC (ALU
	ALUout (ALUout
	RT (MDR

	PC (ALUout
	ALUout (ALU
	RD (MDR

	PC (PC(31..28)||addr||00
	
	RT (ALUout

	MDR (MDR
	M(ALUout) (B(
	RD (ALUout

	MDR (M(ALUout)(
	
	B (B

	MDR (ALU(
	A (A
	B (RT

	MDR (ALUout(
	A (RS
	B (MDR

	MDR (M(PC)(
	A (MDR(
	$31 (MDR

	
	
	$31 (ALUout

The above defines are the lowest level register transfer operations. To describe the operations of the control unit using a state diagram, we will specify register operations at a slightly higher level. For example if no specification is entered for a certain register it is understood that the register retains its value. i.e. We will not enter IR (IR this is understood. As another example, suppose we want to put the contents of the B register into the MBR register, we will write MDR (B, instead of writing MDR (ALU, ALU := SB, and SB := B. There may be certain operations that cannot be performed during the same clock cycle. Identify which of the following cause hardware conflicts.
1. MDR (B, PC (PC(31..28)||addr||00

2. MDR (B, PC (PC + 4

3. MDR (B, PC (PC + (ofst||00

4. MDR (A, PC (PC + (ofst||00

5. MDR (A, A (MDR

6. MDR (A, A (MDR, IR (M(PC), PC (PC+4, B (RT, ALUout (A,

RT (ALUout.

[image: image4.png]PCSource

- PCWriteCond

lorD Cutputs

ALUSTrcB

Control

0
M
Jump 1y
address [31-0] X
o . 2
I I Read
rt Read
Read
[register 2 data 1 l
ALUOut

Instruction

Instruction

Address

Instruction

Memory

MemData _ Registers
Instruction Write Read
[15-0] register 4t 2

Instruction
register

Write

data
register

. l v
L

See Figure 5.38 on page 323

	Operation
	Memory addr Mux
	Memory

Read

Write
	write register Mux
	Write Data Mux
	SA

Mux
	SB

Mux
	ALU control operation
	PC

Mux
	

	ALUout (PC + (ofst||00
	x
	n
	x
	x
	0
	3
	+
	x
	

	PC (PC(31..28)||addr||00
	x
	n
	x
	x
	x
	x
	x
	2
	

	PC (ALUout
	x
	n
	x
	x
	x
	x
	x
	1
	

	PC (PC + 4
	
	
	
	
	
	
	
	
	

	IR (M(PC)
	
	
	
	
	
	
	
	
	

	ALUout (A + (ofst||00
	
	
	
	
	
	
	
	
	

	ALUout (A + (n
	
	
	
	
	
	
	
	
	

	MDR (M(ALUout)
	
	
	
	
	
	
	
	
	

	RT (MDR
	
	
	
	
	
	
	
	
	

	RD (ALUout
	
	
	
	
	
	
	
	
	

	M(ALUout) (B
	
	
	
	
	
	
	
	
	

	ALUout (PC
	
	
	
	
	
	
	
	
	

	ALUout (A - B
	
	
	
	
	
	
	
	
	

x – don’t care. R, W, n – Memory read, write, neither read nor write.

[image: image5.png]PCSource

- PCWriteCond

lorD Cutputs

ALUSTrcB

Control

0
M
Jump 1y
address [31-0] X
o . 2
I I Read
rt Read
Read
[register 2 data 1 l
ALUOut

Instruction

Instruction

Address

Instruction

Memory

MemData _ Registers
Instruction Write Read
[15-0] register 4t 2

Instruction
register

Write

data
register

. l v
L

Finite State Machine for Control Unit

[image: image6.png]

IR

MDRSB

� H is for hexadecimal, B for binary.

� These 5 bits specify which register is rs.

� rs and rt are treated as signed integers.

� Assume I have added the new capability to reset the PC.

� Assume I have added the new capability to increment the PC by 4 without using the ALU.

(This is a Memory write it cannot be done at the same time as a memory read.

(This is a Memory read it cannot be done at the same time as a memory write.

(Assume I have added this new capability to the design in the book

PAGE
7
7 of 7 9/28/09

_1189846527.unknown

_1189846572.unknown

