## Chapter 1 In class examples

August 25, 2009

# EGRE 426 Fall 09 <br> Chapter 1 Examples <br> \section*{Definitions} 

Multioperation computer - a computer capable of performing more than one operation at a time.
$\mathrm{T}_{\mathrm{p}}(\mathrm{n})$ - Time to compute n terms using p processors
The speedup of performing some computation on a multioperation computer (with p processors or p function units) compared to a uniprocessor is given by
$S_{p}=\frac{T_{1}}{T_{p}}$
where $T_{1}$ is the time to perform the computaion on the uniprocessor and $T \mathrm{p}$ is the time to perform the computation unsing p processors. Idealy p processors would be p times faster than a single processor. i.e. $T_{p}=T_{1} / p$. This is the besst possible case and in practice we would expect the speedup to be less than p .
Efficiency is the mesurament of how close we come to acheiving ideal speed up.
$E_{p}=\frac{T_{1} / p}{T_{p}}=\frac{S_{p}}{p} \leq 1$
Order: $f(x)=\mathbf{O}(g(x))$ if there is a constant $r>0$ such that $\lim _{x \rightarrow \infty}(f(x) / g(x))=r$.
Examples:

$$
\begin{aligned}
& \left(5 n^{2}+99 n-999\right)=\mathbf{O}\left(n^{2}\right) \text { since } \lim _{n \rightarrow \infty}\left(\frac{5 n^{2}+99 n-999}{n^{2}}\right)=5 \geq 0 \\
& \left(5 n^{2}+99 n-999\right) \neq \mathbf{O}\left(n^{3}\right) \text { since } \lim _{n \rightarrow \infty}\left(\frac{5 n^{2}+99 n-999}{n^{3}}\right) \rightarrow 0 \text { ie. } n^{3} \text { grows faster than } n^{2} . \\
& \left(5 n^{2}+99 n-999\right) \neq \mathbf{O}(n) \text { since } \lim _{n \rightarrow \infty}\left(\frac{5 n^{2}+99 n-999}{n}\right) \rightarrow \infty \\
& (n / \log (n)) \neq O(n) \text { since } \lim _{n \rightarrow \infty}\left(\frac{\mathrm{n} / \log (\mathrm{n})}{\mathrm{n}}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{\log (n)}\right)=0 \text { ie. n grows faster than } \\
& \mathrm{n} / \log (\mathrm{n}) .
\end{aligned}
$$

## EGRE 426 Fall 09

Chapter 1 Examples

## EXAMPLES

ASSUME: All operations take one unit of time. All instructions and data are available when needed. ie. We don't have to wait for memory or communication.


| Multiprocessor MIMD (unlimited processors) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | A1*B1 | A2*B2 | A3*B3 | A 4 * B4 | An *Bn |
|  | \ / | \ / | \/ | \ / | \/ |
| 1 | * | * | * | * | * |
| For n terms and at least n processors |  |  |  |  |  |
| $T_{n}=1$ of order 1. |  |  |  |  |  |
| Seed up of using n processors verses a single processor is: |  |  |  |  |  |
| $S=\frac{T_{1}}{T_{n}}=\frac{n}{1}=n=\mathbf{O}(n)$ |  |  |  |  |  |
| $E=\frac{S}{n}=\frac{n}{n}=1=100 \%$ |  |  |  |  |  |

[^0]Chapter 1 Examples


Now consider $P=\prod_{i=1}^{n} A_{i}=A_{1} A_{3} \ldots A_{n}$
Using a uniprocessor

1
2
3
4
5


In general $T_{1}=n-1$
Using an unlimited number of processors:


In general $T_{\infty}=\log _{2}(n)$
Why
Time n - number of terms
$1 \quad 2=2^{1}$
$2 \quad 4=2^{2}$
$3 \quad 8=2^{3}$
$\begin{array}{ll}\cdots & \cdots \\ \mathrm{k} & \mathrm{n}=2^{\mathrm{k}}\end{array}$
$2^{k}=n$
$k \log (2)=\log (n)$
$k=\frac{\log (n)}{\log (2)}=\log _{2}(n)$
But, when $n$ is not a power of 2 we must round up to the next highest integer.
Therefor,
$k=\left\lceil\log _{2}(n)\right\rceil$

## EGRE 426 Fall 09

## Chapter 1 Examples

Supose we build a two operation (three operand) computer capable of performing $\mathrm{A} * \mathrm{~B} * \mathrm{C}$ in a single operation. (IBM has a workstation that uses $A * B+C$ as its fundamental floating point operation.)
Q. How long would it take to perform $P=\prod_{i=1}^{n} A_{i}=A_{1} A_{3} \ldots A_{n}$

Ans. $\log 3(n)$

Suppose we build a 32 bit adder using 4 input gate. Best time we can hope for. $\log _{4}(64)$

# EGRE 426 Fall 09 <br> Chapter 1 Examples 

## EXAMPLE

Algorithm can effect speedup. (a). Only one processor can be used at a time. (b). Two processors can produce fastest result.

$T_{1}=T_{\infty}=4$
$T_{2}=3$
$S=\frac{T_{1}}{T_{2}}=\frac{4}{3}=11 / 3$
$E=\frac{T_{1} / n}{T_{2}}=\frac{4 / 2}{3}=\frac{2}{3}=67 \%$

## EGRE 426 Fall 09

## Chapter 1 Examples

POLY.
Consider the evaluation of the polynominal.
$F=\sum_{i=0}^{n} A_{i} X^{i}=A_{0}+A_{1} X+A_{2} X X+A_{3} X X X+\ldots$
For a single operation computer the polynoninal can be evaluated as shown below.
METHOD 1.


For $n=4, T_{1}=14$
In general
$\mathrm{T}_{1}=$ time for n adds + time for $(1+2+3+4+\ldots+\mathrm{n})$ multiplies
$=n+1+2+3+4+\ldots+n$
$=n+n(n+1) / 2$
$=n(n+3) / 2=\mathbf{O}\left(\mathrm{n}^{2}\right)$

## EGRE 426 Fall 09

## Chapter 1 Examples

METHOD 2.
This can be done faster by not recomputing known terms. ie. Using a better compiler.


For $n=4, T_{2}=11$
In general
$T=n$ times for $n$ adds $+n$ times for multiplying $A_{i}$ and $X^{n}$
$+(n-1)$ times for multiplying $X$ and $X^{i-1}$
$=n+n+n-1$
$=3 n-1$ of order $n$.

## EGRE 426 Fall 09 <br> Chapter 1 Examples

## METHOD 3.

A new algorithm makes the solution even faster.


For $n=4, T=8$.
In general, $\mathrm{T}=\mathrm{n}$ adds +n multiplications $=2 \mathrm{n}$ of order n .
This new algorithm produces a speed up over METHOD 1 of $S=\frac{T_{1}}{T_{3}}=\frac{n(n+3) / 2}{2 n}=\frac{n}{4}+\frac{3}{4} \rightarrow \frac{n}{4}$ for large $n$.
The speed up of METHOD 3 over METHOD 2 is:
$S=\frac{T_{2}}{T_{3}}=\frac{(3 n-1)}{2 n}=\frac{3}{2}-\frac{1}{n} \rightarrow \frac{3}{2}$ for large $n$.

## EGRE 426 Fall 09

## Chapter 1 Examples

Assume we have a parallel processor that can perform an unlimited number of additions and multiplications simultaneously.
Using the provious algorithm:


For $\mathrm{n}=4, \mathrm{~T}=7$.
In general, $\mathrm{T}=\mathrm{n}$ adds +n multiplications $=2 \mathrm{n}$ of order n .
No improvement over uniprocessor!
Returning to the original algorithm.
$F=A 0+A 1 * X+A 2 * X * X+A 3 * X * X * X+A 4 * X * X * X * X$


For $\mathrm{n}=4, \mathrm{~T}=5$
It is difficult to find a general solution for the time as a function of $n$. I have obtained a solution, but have not proved that it is correct. However, it is easy to obtain a good least uper bounds on the time. This can be done by first doing all adds then doing all multiplies. Then $\mathrm{T} \leq$ time to do all adds + time to do all multiplies or
$T(n) \leq\left\lceil\log _{2}(n+1)\right\rceil+\left\lceil\log _{2}(n+1)\right\rceil=2\left\lceil\log _{2}(n+1)\right\rceil$
For example when $n=9 T(9) \leq\left\lceil\log _{2}(10)\right\rceil=2 \times\lceil 3.3219\rceil=2 \times 4=8$
The exact answer is for $\mathrm{n}=9$ is $\mathrm{T}=7$. Example: Consider a multiply add unit capable of computing $\mathrm{a} * \mathrm{~b}+\mathrm{c}$ in one unit of time.

## EGRE 426 Fall 09

## Chapter 1 Examples

Show how to compute: $F(n)=\sum_{i=0}^{n} A_{i} X^{i}$ using the multiply add unit.
Consider the case when $n=4$.


It appears that in general the time to compute $F(n)=\sum_{i=0}^{n} A_{i} X^{i}$ is given by $\mathrm{T}(\mathrm{n})=\mathrm{n}$.
Proof: Assume $\mathrm{T}(\mathrm{n})=\mathrm{n}$ is the time to compute $F(n)=\sum_{i=0}^{n} A_{i} X^{i}$, and show that it follows that $\mathrm{T}(\mathrm{n}+1)=\mathrm{n}+1$.
$F(n+1)=\sum_{i=0}^{n+1} A_{i} X^{i}=A_{0}+X \sum_{i=0}^{n} A_{i+1} X^{i}$
Once $\sum_{i=0}^{n} A_{i+1} X^{i}$, has been computed the remainder can be computer in one unit of time.
Therefore, $\mathrm{T}(\mathrm{n}+1)=\mathrm{T}(\mathrm{n})+1=\mathrm{n}+1$.
Since we can easily show that $T(1)=1$, it follows that $T(1+1)$ or $T(2)=2$. Since $T(2)=2$, $T(3)=2+1$. etc. for all values of $n$.


[^0]:    Parallel processor SIMD (unlimited processors) Same as above

