Chapter 1
In class examples

August 25, 2009

EGRE 426 Fall 09

Chapter 1 Examples
Definitions

Multioperation computer - a computer capable of performing more than one operation at
a time.

Tp(n) — Time to compute n terms using p processors

The speedup of performing some computation on a multioperation computer (with p
processors or p function units) compared to a uniprocessor is given by

where T; is the time to perform the computaion on the uniprocessor and Tp is the time to
perform the computation unsing p processors. Idealy p processors would be p times faster

than a single processor. i.e. T, =%. This is the besst possible case and in practice we

would expect the speedup to be less than p.
Efficiency is the mesurament of how close we come to acheiving ideal speed up.

V S
E, /P _> <1
T

p
p
Order: f(x)=0(g(x)) if there is a constant r > 0 such that Iim(f(x)

X—0

g(X)) -
Examples:

2 —
(5n° +99n-999) = O(n’) since Iim(5n +99n 999J:520

r]2

2 _—
(5n2 +99n—999) = 0(n?) since Iim(sn +993n 999
n—oo n

J — 0 ie. n® grows faster than n.

(5n° +99n-999) = O(n) since lim

n—oo

(5n2 +99n —999}
_ | >
n

(n/log(n)) = O(n) since Iim(mj— lim 1 =0 ie. n grows faster than
n—eo n log(n)

n—oo

n/log(n).

2 - 8/27/2009

EGRE 426 Fall 09
Chapter 1 Examples

EXAMPLES

ASSUME: All operations take one unit of time. All instructions and data are available
when needed. ie. We don't have to wait for memory or communication.

CONVENTIONAL UNIPROCESSOR

T Al*B1 A2*B2 A3*B3 A4*B4 ... An*Bn
\ / | | I |
1 * | I I |
\ 7/ | . !
2 * | I |
\ / | |
3 * | |
\ 7/

4 *

For4dtermsT, =4
Ingeneral forntermsT,(n) =n
Ty is of order n.

Multiprocessor MIMD (unlimited processors)

T A1*Bl A2*B2 A3*B3 A4*B4 ... An*Bn
\ / \/ \/ \/ \ /

1 * * * * *

For n terms and at least n processors

T, =1 of order 1.
Seed up of using n processors verses a single processor is:
=n=0(n)

=1=100%

Parallel processor SIMD (unlimited processors)
Same as above

3-8/27/2009

EGRE 426 Fall 09
Chapter 1 Examples

Multifunction Computer (2 *)

T A1*Bl A2*B2 A3*B3 A4*B4 ... An*Bn
\/ \/ | . |
1 * * | | |
N/ \/
2 * *
3
4

For 4 terms T2 =2
In general for n terms

/lfnlseven
T = n+1/lfnlsodd

Better form
T2=[n/2]
Ceiling n/2ie.[55] =6,[5.0] =5,
N { 2f0r neven

2—for n odd

._\

n Il

E:S_:’_ —I 2 ~100%
2 n

}—>2 forlargen, S = O(1).

4 - 8/27/2009

EGRE 426 Fall 09
Chapter 1 Examples

Now consider P = HA AA,... A

Using a unlprocessor

X

4

5
Ingeneral T, =n-1

Using an unlimited number of processors:

VARV
\

2
3
In general T, = log,(n)
Why
Time n - number of terms
1 2=2!
2 4=2°
3 g=2%
K n =2
2¥=n
k'log(2) = log(n)

Io n

90~ tog, (v
0g(2)

But, when n is not a power of 2 we must round up to the next highest integer.
Therefor,

k =[log,(n)]

5-8/27/2009

EGRE 426 Fall 09

Chapter 1 Examples

Supose we build a two operation (three operand) computer capable of performing A*B*C
in a single operation. (IBM has a workstation that uses A*B+C as its fundamental
floating point operation.)

Q. How long would it take to perform P = H A=AA. A

i=1

Ans. log3(n)

Suppose we build a 32 bit adder using 4 input gate. Best time we can hope for.
log, (64)

6 - 8/27/2009

EGRE 426 Fall 09
Chapter 1 Examples

EXAMPLE

Algorithm can effect speedup. (a). Only one processor can be used at a time.
(b). Two processors can produce fastest result.

A (BCD+ E) =ABCDG+AE
NN | \ /AN \ /
A A x X
NN \ / |
2* / * *
NN/ N
3 A +
\ SAME FOR SIMD
4 +
T,=T,=4
T, =

7 - 8/27/2009

EGRE 426 Fall 09

Chapter 1 Examples

POLY.
Consider the evaluation of the polynominal.

F=zn:Ax‘ = A+ A X+ A XX + AXXX +...

For a single operation computer the polynoninal can be evaluated
as shown below.
METHOD 1.

F = A0 + AL*X + A2*X*X + A3*X*X*X + A4*X*X*X*X
NN/ I I R

1 N I I
\/ I Lo
L I
N/ I
3 \ N I
Lo
I
I
I
\ /

|
|
|
|
|
|
|
|
|
|
6 \ I
\ /

I
|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
I
\ /

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 \ |
/

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

11 \

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 + |
|
|
|
|
|
12 \ |
\

13 \ *
14 +

Forn=4,T,=14

In general

Ty = time for n adds + time for (1+2+3+4+...+n) multiplies
=n+1+2+3+4+.+n
=n+n(n+1)/2
= n(n+3)/2 = O(n?)

8 - 8/27/2009

EGRE 426 Fall 09

Chapter 1 Examples

METHOD 2.
This can be done faster by not recomputing known terms. ie. Using a better compiler.

F = A0 + AL*X + A2*¥X*X + A3*X*X*X + A4*X*X*X*X
NN L | |

1 N L | |

\/ L | |

2 + o | |

\ N/

3 \ N

/______
~
~———

-
e —
S~

10 \ *

11 +

Forn=4,T,=11

In general

T =n times for n adds + n times for multiplying A and X"
+(n —1) times for multiplying X and X'
=n+n+n-1
=3n—1o0f order n.

9 - 8/27/2009

EGRE 426 Fall 09

Chapter 1 Examples
METHOD 3.

A new algorithm makes the solution even faster.
F = A0 + AL*X + A2*X*X + A3*X*X*X + A4*X*X*X*X
A0 + X * (Al + X * (A2 + X * (A3 + X * (A4 ...))))
| | | | | l | \ /
| N
! \ /
; +

| | | |

| | | |

| | | |

| | | | \ /
| | | \ *
| | | \ /
| | \ +

| | \ /

| o x

| \ /

\ +

\ /

*

\ /
8 +

|
|
|
|
|
|
|
|
|
|
6 |
|
\

7

Forn=4,T =8.
In general, T = n adds + n multiplications = 2n of order n.
This new algorithm produces a speed up over METHOD 1 of

5=L=M=E+§—>Ef0r large n.
T, 2n 4 4 4

The speed up of METHOD 3 over METHOD 2 is:

zizwzé—laéfmlargen.
T, 2n 2 n 2

10 - 8/27/2009

EGRE 426 Fall 09

Chapter 1 Examples

Assume we have a parallel processor that can perform an unlimited
number of additions and multiplications simultaneously.
Using the provious algorithm:

F = A0 + AL*X + A2*X*X + A3*X*X*X 4+ A4*X* *X*X*X
= A0 + X * (A1l + X * (A2 + X * (A3 + X * (A4 ...))))
L L L N/
| N
| \ /
| +

| | | |

| | | |

| | | |

| | | | \ /
| | | \ *
| | | \ /
| | \ +

| | \ /

| \ _*

| \ /

\ +

\ /

*

N/
8 +

|
|
|
|
|
|
|
|
|
|
6 |
|
\

7

Forn=4,T=T7.
In general, T = n adds + n multiplications = 2n of order n.
No improvement over uniprocessor!

Returning to the original algorithm.
F = A0 + AL*X + A2*X*X + A3*X*X*X + A4*X*X*X*X

= A0 + X * (Al + X * (A2 + X * (A3 + X * (A4 1))
\ \ / N/ N/ N/ N/ N/
1 \ * * | * * * ~k|
N/ \ / \ / \ 7/ |
2 + * * * |
\ / / N/
3 + / *
\ _/ /
4 + /
\ /
5 +
Forn=4,T=5

It is difficult to find a general solution for the time as a function of n. | have obtained a
solution, but have not proved that it is correct. However, it is easy to obtain a good least
uper bounds on the time. This can be done by first doing all adds then doing all
multiplies. Then T < time to do all adds + time to do all multiplies or

T(n) <[log,(n+1)]+[log,(n+1)]|=2[log,(n+1)]

For example when n=9 T(9) <[log, (10)|=2x[33219]=2x4 =38

The exact answer is for n=9 is T = 7. Example: Consider a multiply add unit capable of
computing a*b+c in one unit of time.

11 - 8/27/2009

EGRE 426 Fall 09
Chapter 1 Examples

Show how to compute: F(n) =Y A X" using the multiply add unit.
i=0
Consider the case when n = 4.

F = A0 + Al*X 4+ A2*X*X + A3Z*X*X*X + A4*X*X*X*X
= A0 + X * (Al + X * (A2 + X * (A3 + X * (A4 ...))))
| | \ \ \ \ NN/
1 | | \ | NN\ +*
A N |1/
2 \ \ + *
AN N /
3 \ O\ +*
\ N/
4 +*

It appears that in general the time to compute F(n) = z A X" is given by T(n) = n.
i=0

Proof: Assume T(n) = n is the time to compute F(n) = Z A X' and show that it follows

i=0

that T(n+1) = n+1.

n+l . n .
Fin+D) =) AX'=A+ XD A, X'
i=0 i=0
Once Z A X", has been computed the remainder can be computer in one unit of time.
i=0

Therefore, T(n+1) = T(n) + 1 = n+1.

Since we can easily show that T(1) = 1, it follows that T(1+1) or T(2) = 2. Since T(2) = 2,
T(3) = 2+1. etc. for all values of n.

12 - 8/27/2009

