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We show that the second order difference equation xnþ1 ¼ f nðxn; xn21Þ on a group G has an i-
semiconjugate factorization into a triangular system of first order equations if and only if each mapping f n
is homogeneous of degree 1.
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Let G be a given nontrivial group and consider the non-autonomous second order difference

equation

xnþ1 ¼ f nðxn; xn21Þ; n ¼ 0; 1; 2; . . . ð1Þ

where xn [ G and f n : G £ G! G for each n. This equation recursively generates a solution

or orbit {xn}
1
n¼21 in G.

The group structure provides a suitable framework for our main result (see the Remarks

below). However, in most applications of this result G is a substructure of a more complex

object such as a vector space or an algebra possessing a compatible or natural metric

topology relative to which the mappings f n may be continuous. In such cases, each f n may be

defined on the ambient structure as long as the following invariance condition holds

f nðG £ GÞ , G for all n: ð2Þ

A function f : G £ G! G is homogeneous of degree one or HD1 for short, if

f ðtx; tyÞ ¼ tf ðx; yÞ for all t; x; y [ G: ð3Þ

If G is not commutative, then equation (3) defines a “left version” of HD1 with the right

version analogously defined. For later reference, we also define f to be HD0 or homogeneous

of degree zero if f ðtx; tyÞ ¼ f ðx; yÞ for all t; x; y [ G: We note in passing that homogeneous

functions of any real degree may be defined in the context of the real number system as

solutions of functional equations similar to equation (3); see Ref. [1] for more details on

this issue.
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Some examples of HD1 functions with G being the set ð0;1Þ of all positive real numbers

under ordinary multiplication are the following:

jaxþ byj;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ax2 þ bxyþ cy2

p
;
ax2 þ bxyþ cy2

axþ by
:

In the first example above a; b [ R (not both zero) and in the last two a; b; c;a;b $ 0with

aþ bþ c;aþ b . 0: These functions are defined on larger subsets of the plane R2 than

ð0;1Þ2 but they satisfy equation (2) with the multiplicative groupG ¼ ð0;1Þ: There are large

classes of HD1 and HD0 functions on groups as the following easy-to-check result shows.

Proposition. Let G be a nontrivial group.

(a) If g : G! G is any given function, then gðy21xÞ is a HD0 function on G £ G and each of

xgðy21xÞ and ygðy21xÞ is HD1.

(b) The composition f ðg1ðx; yÞ; g2ðx; yÞÞ is HD1 if f ; g1; g2 : G £ G! G are HD1.

(c) If f is HD1 and g is HD0, then fgðx; yÞ ¼ f ðx; yÞgðx; yÞ is HD1.

A function f : G £ G! G is semiconjugate to h : G! G if there is a link function

l : G £ G! G such that

lðf ðx; yÞ; xÞ ¼ hðlðx; yÞÞ: ð4Þ

The function h is often called a semiconjugate factor of f. We refer to Ref. [6] for general

facts about semiconjugacy as well as some examples. In this note we are interested in the

special link function lðx; yÞ ¼ y21x. With this link function, we say that f is i-semiconjugate

(or i-sc for short) to h (i is for group inversion). Equation (4) takes the form

x21f ðx; yÞ ¼ hðy21xÞ: ð5Þ

Lemma. Let G be a nontrivial group. Then f : G £ G! G is i-sc to a mapping h : G! G if

and only if f is HD1.

Proof. If f is HD1 then for each u [ G define hðuÞ ¼ f ð1; u21Þ where 1 is the group identity.

Then for each x; y [ G we have hðy21xÞ ¼ f ðx21x; x21yÞ ¼ x21f ðx; yÞ and i-semiconjugacy

follows. Conversely, if f is i-sc to a mapping h as specified, then for every t [ G,

f ðtx; tyÞ ¼ txhððtyÞ21txÞ ¼ txhðy21xÞ ¼ tf ðx; yÞ:

so that f is HD1. A

Remarks.

1. The above Lemma characterizes i-semiconjugacy in terms of the HD1 property in the

group setting. On the other hand, the definition of HD1 functions in equation (3) above

does not require the group inversion, so it is valid in the broader context of semigroups.

But currently a semiconjugate factorization result analogous to the above Lemma for

HD1 functions on semigroups is not known.
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2. Consider the semigroup R of all real numbers under ordinary multiplication. The linear

function ‘ðx; yÞ ¼ axþ by (a, b nonzero constants) is clearly HD1 with respect to this

semigroup, but since 0 is non-invertible ‘ cannot have an i-sc factorization on R. Also, ‘

does not have an i-sc factorization on the multiplicative group R2 {0} because ‘ does

not satisfy (2). On the other hand, ‘ does have an i-sc factorization on the multiplicative

group ð0;1Þ if a; b . 0; furthermore, semiconjugate factorizations (not related to the

HD1 property) are generally known for linear transformations on Rn (including the

unfolding of ‘); see Ref. [6].

Theorem. Let G be a nontrivial group. If all f n in equation (1) are HD1 then equation (1)

is equivalent to the following system of first order equations

unþ1 ¼ hnðunÞ ð6aÞ

vnþ1 ¼ vnunþ1 ð6bÞ

where each function hn is the i-sc factor of f n for every n.

Proof. For each solution {xn}
1
n¼21 of equation (1) define un ¼ x21

n21xn for each n ¼

0; 1; 2; . . . Then xnþ1 ¼ xnunþ1 and

unþ1 ¼ x21
n xnþ1 ¼ x21

n f nðxn; xn21Þ ¼ f nð1; x
21
n xn21Þ ¼ hnðunÞ:

It follows that {un}
1
n¼0 is a solution of equation (6a) so that {ðun; vnÞ}

1
n¼0 is a solution of

(6a,b) with vn ¼ xn for n ¼ 0; 1; 2; . . .

Conversely, let {ðun; vnÞ}
1
n¼0 be a solution of equation (6a,b). Then {un}

1
n¼0 is a solution of

equation (6a). Choose x21 [ G and set xn ¼ vn for n ¼ 0; 1; 2; . . . Then xnþ1 ¼ vnþ1 ¼

vnunþ1 ¼ xnhnðunÞ so that

xnþ1 ¼ xnf nð1; u
21
n Þ ¼ f nðxn; xn½x

21
n21xn�

21Þ ¼ f nðxn; xn21Þ:

It follows that the sequence {xn}
1
n¼21 is a solution of equation (1).

Note that the system of equation (6a,b) is “triangular” since equation (6a) does not depend

on the second variable vn. For general results on the periodic solutions of such systems, see

Ref. [2]. Equation (6b) gives

vn ¼ v0u1u2 . . . un n ¼ 1; 2; 3; . . . ð7Þ

in terms of a given solution {un}
1
n¼0 of the first order equation (6a).

For HD1 functions, the above theorem essentially reduces the study of the second order

equation (1) to that of the first order equation (6a). The following examples illustrate this idea

in simple settings. For a more detailed example involving the absolute value function on the

real line we refer to Ref. [3]. A

Example 1. Let G be the group of positive real numbers ð0;1Þ under ordinary

multiplication and the usual metric. Consider the non-autonomous rational difference

equation

xnþ1 ¼
anx

2
n þ bnxnxn21

cnxn21

ð8Þ
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where an; bn $ 0 with an þ bn . 0 and cn . 0 for all n. Define an ¼ an=cn and bn ¼ bn=cn
and note that f nðx; yÞ ¼ ðanx

2 þ bnxyÞ=y is HD1 for all n. By the above theorem each f n is i-

semiconjugate on the group G to hnðuÞ ¼ f nð1; 1=uÞ ¼ anuþ bn. With the linear maps hn
equation (6a) can be solved explicitly. Then with the aid of equation (7) an explicit solution

for equation (8) can be obtained if desired.

Example 2. This example illustrates the additive case. Let G be the group of all real

numbers under ordinary addition and the usual metric. Consider the second order difference

equation

xnþ1 ¼ an þ xn þ cnðbn þ xn 2 xn21Þ
2 ð9Þ

where an, bn and cn are given sequences of real numbers. Here the functions f nðx; yÞ ¼

an þ xþ cnðbn þ x2 yÞ2 are HD1 on the additive group G since for each real number t,

f nðt þ x; t þ yÞ ¼ an þ t þ xþ cnðbn þ x2 yÞ2 ¼ t þ f nðx; yÞ:

The i-sc factors are hnðuÞ ¼ f nð0;2uÞ ¼ an þ cnðbn 2 uÞ2 and equation (7) gives

xn ¼ x0 þ
Pn

k¼1un. To illustrate the possibility of complex behavior for equation (9) with

minimum calculations, consider the special case where an ¼ a, bn ¼ 0 and cn ¼ 21 for all n

with 1 # a # 2. The quadratic map unþ1 ¼ a2 u2n has an invariant interval ½2a; a� and

exhibits deterministic chaos when a is sufficiently near the value 2 due to the emergence of a

snap-back repeller [5] at the unique interior fixed point in ½2a; a� (or with a close enough to

2, the appearance of a period 3 solution [4]). Each solution {un}
1
n¼0 defines a complicated

orbit {xn}
1
n¼21 which if unfolded in the phase plane will be confined within the strip

y2 a , x , yþ a:

References

[1] Aczel, J., 1966, Lectures on Functional Equations and Their Applications Mathematics in Science and
Engineering, Vol. 19 (New York, NY: Academic Press).

[2] Alseda, L. and Llibre, J., 1993, Periods for triangular maps. Bulletin of the Australian Mathematical Society, 47,
41–53.

[3] Kent, C.M. and Sedaghat, H., 2004, Convergence, periodicity and bifurcations for the two-parameter absolute
difference equation. Journal of Difference Equations and Applications, 10, 817–841.

[4] Li, T-Y. and Yorke, J.A., 1975, Period three implies chaos. American Mathematical Monthly, 82, 985–992.
[5] Marotto, F.R., 1978, Snap-back repellers imply chaos inRn. Journal of Mathematical Analysis and Applications,

63, 199–223.
[6] Sedaghat, H., 2003, Nonlinear Difference Equations: Theory with Applications to Social Science Models

(Dordrecht: Kluwer Academic).

H. Sedaghat456


