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The exponential growth of scientific literature is creating an increased need for

systems to process and assimilate knowledge contained within text. Literature Based

Discovery (LBD) is a well established field that seeks to synthesize new knowledge

from existing literature, but it has remained primarily in the theoretical realm rather

than in real-world application. This lack of real-world adoption is due in part to

the difficulty of LBD, but also due to several solvable problems present in LBD to-

day. Of these problems, the ones in most critical need of improvement are: (1) the

over-generation of knowledge by LBD systems, (2) a lack of meaningful evaluation

standards, and (3) the difficulty interpreting LBD output. We address each of these

problems by: (1) developing indirect relatedness measures for ranking and filtering

LBD hypotheses; (2) developing a representative evaluation dataset and applying

meaningful evaluation methods to individual components of LBD; (3) developing

an interactive visualization system that allows a user to explore LBD output in its
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entirety. In addressing these problems, we make several contributions, most im-

portantly: (1) state of the art results for estimating direct semantic relatedness, (2)

development of set association measures, (3) development of indirect association mea-

sures, (4) development of a standard LBD evaluation dataset, (5) division of LBD into

discrete components with well defined evaluation methods, (6) development of auto-

matic functional group discovery, and (7) integration of indirect relatedness measures

and automatic functional group discovery into a comprehensive LBD visualization

system. Our results inform future development of LBD systems, and contribute to

creating more effective LBD systems.
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CHAPTER 1

INTRODUCTION

Scientific publications are the primary means for disseminating academic research.

Databases contain millions of documents, and thousands are added each day. Scien-

tific literature is growing at an exponential rate [1], and it’s estimated that scientific

output doubles every nine years [2]. This overwhelming amount of information makes

it difficult for researchers to stay current, even in their own disciplines, leading to an

increase in specialization and a fracturing of information. Literature Based Discovery

(LBD) synthesizes new knowledge from fragments of information, to bridge disci-

plines, and generate hypotheses. As the scientific literature grows, LBD is becoming

an increasingly necessary tool for facilitating research.

LBD [3] seeks to find information that is implicit in text, but never explicitly

stated. New knowledge can be formed by piecing together fragments of information

found across multiple documents. For example, one document may state that “A

implies B” and another that “B implies C”; new knowledge is generated by hypothe-

sizing that therefore “A implies C”. In its simplest form, a hypothesis is an assertion

that a relationship exists between two terms that never directly co-occur, and can

be represented as a term-term pair. In modern LBD systems, hypothesis generation

is often more complex and varied than the simple ABC paradigm we used as an ex-

ample, but the goal of generating new knowledge by finding latent relationships is

common to all systems.

LBD shows great promise, and several discoveries have been attributed to its

use [3, 4, 5, 6, 7, 8, 9, 10, 11], but it has failed to achieve widespread adoption and
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use in laboratory environments. The reasons for this lack of adoption are many, but

we identify three problems that are in critical need of being addressed.

Problem 1: Over-generation of knowledge - LBD systems tend to create too many

hypotheses, causing promising and meaningful hypotheses to be buried within

false, uninteresting, or too obvious ones.

Problem 2: Lack of meaningful evaluation methods - LBD is difficult to evaluate,

and evaluation methods are often ad-hoc and system specific. Without standard

evaluation methods, LBD systems and components cannot be quantitatively

compared or objectively improved.

Problem 3: Difficulty interpreting output - LBD systems often output hypotheses

as a simple list of terms. This combined with their over-generation of knowledge

means a user is presented with a list of hundreds or thousands of often unrelated

terms, which are meaningless without extensive manual review.

In this dissertation, we address these problems, and present our work towards

developing more effective LBD systems. One of our core assumptions is that an LBD

hypothesis is an assertion that a relationship exists between two terms that never

directly co-occur, and the likelihood of that hypothesis being true can be estimated

by the strength of their relatedness. If we can predict the future direct relatedness

between two indirectly related terms, then we can predict their likelihood of being

a future discovery. Estimating the relatedness between two directly co-occurring

terms is an established and well studied field, which we use as a starting point in

our study of estimating indirect relatedness, for which little work has been done.

We first address Problem 1, the over-generation of knowledge by LBD systems using

indirect association measures to rank and filter hypotheses. We first apply association
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measures and vector-based measures to direct relatedness, then we extend them to

quantifying indirect relatedness.

Specific contributions to the fields of estimating direct semantic relatedness are

presented in the Chapter 4, and include:

1. Concept Association and Expansion - we use association measures between con-

cepts to estimate direct relatedness, and introduce concept expansion, which

with concept associations is a novel methodology that accounts for lexical vari-

ation at both the synonymous and hyponymous levels.

2. Set Associations - we extend association measures to quantify relatedness be-

tween sets of terms rather than individual term pairs.

3. An analysis of association measures for direct relatedness, for which we achieve

state of the art results.

4. An analysis of vector measures for direct relatedness, for which we achieve state

of the art results.

Chapter 5 focuses on our contributions to estimating indirect relatedness, which in-

clude:

1. Indirect Association Measures - we develop four indirect association measures,

including linking term association (LTA), minimum weight association (MWA),

shared B to C association (SBC), and linking set association (LSA).

2. The development of a dataset and method for evaluating the ability to estimate

future relatedness.

3. An analysis of indirect association measures and vector-based measures on their

ability to estimate direct and future relatedness.
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In Chapter 6, we address Problem 2, the lack of evaluation standards for LBD.

Here, we develop an evaluation framework for LBD and test how well estimating

future relatedness translates to term filtering and ranking for LBD. Specific contri-

butions of this chapter are:

1. Development of a standard evaluation dataset.

2. Assignment of evaluation methods for LBD components in isolation and in

combination.

3. Evaluation of indirect relatedness measures for term filtering and term rankings

steps of LBD.

Our evaluation dataset better models the difficulty of LBD compared to other eval-

uation datasets, and can be used, along with our evaluation framework to analyze

individual or sets of components of LBD. Furthermore our dataset and evaluation

framework can be used by most LBD systems, and provides an evaluation standard

for LBD.

In Chapter 7, we address Problem 3, difficulty interpreting output by developing

an interactive visualization environment to explore LBD output in its entirety. This

visual environment incorporates our indirect relatedness measures and several novel

contributions, including:

1. Automatic Functional Group Discovery - we apply hierarchical clustering al-

gorithms to automatically find functional groups (sets of related terms) in the

LBD output.

2. Functional Group Ranking - we estimate the interestingness of the functional

groups using indirect relatedness measures.
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3. Interactive Visualization - we use the clustering hierarchy and cluster rankings

to create an interactive visualization of LBD output. We use visual cues to aid

a user in exploring LBD output interactively.

Using the visualization, we replicate the historic Raynaud’s Disease - Fish Oil Discov-

ery made by Swanson [3]. Our visualization makes finding eicosapentaenoic acid, the

active ingredient in fish oil and present day treatments for Raynaud’s disease easy,

by providing an understanding of the output as a whole and visual cues to lead to

promising terms.

This dissertation begins with Chapter 2, which provides the necessary back-

ground information. Next, in Chapter 3 we break LBD into a set of discrete com-

ponents with well defined inputs and outputs. Using this framework, we provide a

literature review for each component, but focus on those most relevant to our work.

We also create a set of ideal evaluation criteria, and compare and contrast existing

evaluation methodologies with respect to this criteria. The next four chapters cover

our primary contributions towards direct relatedness (Chapter 4), indirect relatedness

(Chapter 5), LBD evaluation (Chapter 6), and LBD output summarization and visu-

alization (Chapter 7). We end with Chapter 8, where we present our final conclusions

and future work.
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CHAPTER 2

BACKGROUND

In this chapter, we present relevant background information, including the corpora,

tools, and an overview of the topics of distributional semantics, association measures,

and semantic similarity and relatedness. Figure 1 shows an overview of the tools and

datasets used, and how they interact.

Fig. 1. An overview of the tools and datasets used

2.1 Corpora

A corpus is a collection of documents and a corpora is more than one corpus. In

this section, we describe the corpora relevant to this work.
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2.1.1 MEDLINE

MEDLINE is a database combining over 22 million biomedical and life sciences

journal references1 and is maintained by the National Institutes of Health, National

Library of Medicine. The references include a title, author information, and 65%

of the references contain abstracts, as of the 2015 baseline. The 2015 MEDLINE

baseline encompasses approximately 5,600 journals, and contains 22,775,609 citations,

of which 13,835,206 contain abstracts. In this work, we use MEDLINE abstracts and

titles from 1975 to present day. Prior to 1975, only 2% of the citations contained

an abstract. Figure 2 shows the percentage of MEDLINE citations over time. The

percentage of publications that include abstracts steadily increases over time, with

the exception of 2015, for which more abstracts will likely be included in the coming

years.

Fig. 2. The percentage of abstracts included with MEDLINE citations in five year

intervals (as of the 2015 MEDLINE baseline)

1https://www.nlm.nih.gov/bsd/medline.html
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2.1.2 PubMed

PubMed encapsulates MEDLINE, PubMed Central (PMC), and other article

and reference repositories. MEDLINE is the largest subset of PubMed. PMC is a

set of full-text biomedical and life sciences articles. Some PMC references overlap

MEDLINE references, and all PMC references contain full text documents. Articles

within PubMed can easily be searched manually via the web2, and copies of the entire

repository (yearly baselines) may be downloaded for processing3.

2.2 Tools

2.2.1 Concept Hierarchies

A concept hierarchy or taxonomy is an organization of semantic concepts into

a hierarchical or semi-hierarchical structure. They act as both dictionaries and the-

sauri, and play an important role in text normalization and the integration of human

semantic knowledge into NLP tasks. Concepts are the basic units of a hierarchy.

They encapsulate term meaning, and account for the syntactic and lexical variations

of a term. Figure 3 shows an example of a concept hierarchy in which the words

feline, felines, cat, and cats all map to the same concept of Cat. Concepts in the

hierarchy are linked via primarily isA relationships. Concepts with the most narrow

meanings are at the leaf nodes, and concepts with the most broad meanings are at

the root. The example in Figure 3 shows that a Cat isA Mammal isA Animal isA

Organism isA Entity. In this work we use several hierarchies from the biomedical

domain, which are described in the next sections.

2https://www.ncbi.nlm.nih.gov/pubmed
3https://www.nlm.nih.gov/databases/download/pubmed_medline.html
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Fig. 3. An example concept hierarchy (taxonomy).

2.2.1.1 Unified Medical Language System (UMLS)

The Unified Medical Language System (UMLS) contains a Metathesaurus, SPE-

CIALIST lexicon, and Semantic Network.

The Metathesaurus consists of over 3.1 million biomedical concepts. Nearly

200 vocabularies and taxonomies have been semi-automatically combined to form

the Metathesaurus. This includes the Medical Subject Headings (MeSH) taxon-

omy, Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), Online

Mendelian Inheritance in Man (OMIM), Gene Ontology, and HUGO Gene Nomen-

clature Committee (HGNC). A complete list of combined vocabularies is available

online4. Within the Metathesaurus, synonymous terms (including spelling variation)

are mapped to a single concept, which is indicated by a unique code, a Concept Unique

Identifier (CUI). Concepts are arranged in a semi-hierarchical structure, and concepts

are linked via primarily parent/child and narrower/broader relationships. Concepts

are categorized into one of 133 different semantic types (although the semantic types

change over time). Semantic types are grouped together into 15 Semantic Groups to

4https://www.nlm.nih.gov/research/umls/sourcereleasedocs/
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provide an even broader categorization of concepts[12].

Fig. 4. A partial hierarchy of the UMLS. Multiple terms (Heart Attack, Myocardial

Infarction, and Cardiovascular Stroke) are mapped to a single concept, My-

ocardial Infarction with a CUI of C0027051. Myocardial Infarction is linked

to other concepts within the UMLS (Myochardial Ischemia, Heart Diseases,

etc.) all of which have been assigned the semantic type, Disease or Syndrome.

The semantic type, Disease or Syndrome is grouped with the other semantic

types, Acquired Abnormality and Injury or Poisoning to form the semantic

group, Disorders.

The UMLS semantic network contains semantic types arranged in a hierarchical

structure that includes causal, and compositional relationships. The semantic network

models high level relationships among semantic types such as disrupts, part of, or

contains, but these relations do not always translate to individual concepts that are a

part of the semantic type. For example, the semantic network indicates that Clinical

Drugs treat Diseases or Syndromes, and that aspirin is a Clinical Drug, and Cancer

is a Disease or Syndrome, but aspirin does not treat cancer.
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The SPECIALIST Lexicon contains lexical information for commonly occurring

English and biomedical words. Each entry in the lexicon contains lexical variations

of a term, and their syntactic, morphological, and orthographic information.

2.2.1.2 Systematized Nomenclature of Medicine - Clinical Terms

The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is a

comprehensive clinical terminology and taxonomy. In version 2016AA of the UMLS

(the version we use), SNOMED CT contains 280,695 concepts with a PAR/CHD

relation; 219,160 leaf nodes and 91,737 non-leaf nodes. The average depth of the

taxonomy is 10, the average depth of a non-leaf node is 9.2 and the average depth

of a leaf node is 10.9. The average branching factor of a non-leaf node is 5.1 and on

average each node (concept) has 5.1 distinct paths to the root.

2.2.2 Text Processing Tools

In this work, raw text may be processed using one of several tools, MetaMap,

SemRep, and Compoundify. Figure 5 shows examples of the output of each tool at a

conceptual level (the actual output is more complex).

Fig. 5. The output of each of the text processors on the same raw text
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2.2.2.1 MetaMap

MetaMap [13] is a tool developed by the National Library of Medicine, National

Institutes of Health to map raw text to CUIs. From the raw text input, it produces

a set of ordered CUI mappings. This has the effect of performing stop word removal

and text normalization. MetaMap5 is freely available and can be used through an

interactive web interface, or downloaded for local use. MetaMap can be run on any

text, but since MEDLINE is a popular dataset, MetaMap is run on MEDLINE to

produce the MetaMapped MEDLINE baseline6, which contains the text of all titles

and abstracts of MEDLINE mapped to CUIs.

2.2.2.2 SemRep and SemMedDB

SemRep [14] extracts relationships from biomedical text as semantic predica-

tions in the form of subject-predicate-object triples. For example, Figure 5 shows

that two relationships are extracted: fish oils prevent Raynaud’s Dis-

ease and Raynaud’s Disease affects blood viscosity. SemRep preci-

sion rates are between 73-96%, and recall rates between 55-70% [15] depending on

the relation type. The accuracy of the extracted predicates was found to be 84% [16].

SemRep is designed for the biomedical domain, but efforts have been made to extend

SemRep to the other domains [17]. SemRep is freely available7, and can be run on

any text. SemRep has been run on the entire MEDLINE baseline for which greater

than 96 million semantic predications (as of June 30th, 2018) have been extracted to

produce SemMedDB, a database of freely available predications8.

5https://metamap.nlm.nih.gov/MetaMap.shtml
6https://ii.nlm.nih.gov/MMBaseline/index.shtml
7https://semrep.nlm.nih.gov/
8https://skr3.nlm.nih.gov/SemMedDB/
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2.2.2.3 Compoundify

Compoundify combines multi-word terms in text using the UMLS SPECIALIST

Lexicon as a glossary. The result is a corpus in which all compound terms have been

identified (component words joined by an underscore). Compoundify is a standalone

component in the word2vec-interface package9.

2.2.3 Text::NSP

The Text::NSP package developed by Pedersen, et al. [18] is a freely available

open-source software package that identifies n-grams, collocations, and word associa-

tions in text. It contains implementations of the association measures used throughout

this work. It is implemented in Perl and takes advantage of regular expressions to

provide flexible tokenization.

2.3 Distributional Semantics

Distributional semantics is the study of modeling word meaning through these

contexts in which words appear. The distributional hypothesis states that words used

in similar contexts have similar meanings. As stated famously by Firth [19], “You

shall know a word by the company it keeps”. The contexts of words are captured

using training corpora, and are based on co-occurrences between words in text.

A problem fundamental to distributional semantics is the sparsity of co-occurrence

data in text, which obscures term meaning. With direct (first order) co-occurrence

vectors, each element in the vector corresponds to the count of co-occurrences be-

tween a term and another term. Most terms never co-occur with one another which

produces a sparse co-occurrence vector containing many zeros. Several techniques

9https://metacpan.org/pod/Word2vec::Interface
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have been developed to deal with the sparsity problem, and are explained in the next

few sections.

2.3.1 Direct Co-occurrence Vectors

Direct (first order) co-occurrence vectors are the simplest distributional context

vector to construct. They do not deal with the problem of sparsity, and serve as

a baseline. Direct co-occurrence vectors have dimensionality of the vocabulary size,

that is, each element of the vector corresponds to the count of co-occurrences between

the term and the term at that index. Each term in the vocabulary has a single index

in the vector. These vectors are constructed over a training corpus and record all

co-occurrences of terms within a predefined window size. For example, consider the

phrase in the previous sentence: “record all co-occurrences of”. The vector for the

word record would increment values at the vector indexes for the term all using

a window size of 1, all and co-occurrences using a window size of 2, and all, co-

occurrences, and of using a window size of 3.

2.3.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is a factor analysis technique to decom-

pose a matrix, M into a product of three simpler matrices, such that M = U ·Σ ·V T .

The matrices U and V are orthonormal and Σ is a diagonal matrix of eigenvalues in

decreasing order. Limiting the eigenvalues to d, we can reduce the dimensionality of

our matrix to Md = Ud ·Σd ·V T
d . The columns of Ud correspond to the eigenvectors of

Md. Typically this decomposition is achieved without any loss of information. Here

though, SVD reduces a word-by-word co-occurrence matrix from thousands of dimen-

sions to hundreds, and therefore the original matrix cannot be perfectly reconstructed

from the three decomposed matrices. The intuition is that any information lost is
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noise, the removal of which causes the similarity and non-similarity between words to

be more discernible [20]. Singular Value Decomposition (SVD) is the factor analysis

technique used within the commonly used method, Latent Semantic Index (LSI) [21].

2.3.3 Word Embeddings

Word embeddings are another, increasingly popular [22] dimensionality reduction

method. Word embeddings construct reduced dimensionality distributional context

vectors directly from a training corpus by iterating over it and learning word repre-

sentations. The word embeddings method, word2vec, proposed by Mikolov, et al. [23],

is a neural network based approach that learns a series of weights (the hidden layer

within the neural network) that either maximizes the probability of a word given the

surrounding context, referred to as the continuous bag of words (CBOW) approach

(Equation 2.1), or to maximize the probability of the context given a word, referred to

as the skip-gram approach (Equation 2.2). For either approach, the resulting hidden

layer consists of a matrix where each row represents a word in the vocabulary and

columns a word embedding. The basic intuition behind this method is that words

closer in meaning will have vectors closer to each other in this reduced space.

1

T

T∑
t=1

∑
0<j≤c;

log(p(wt|wt−j)) (2.1)

1

T

T∑
t=1

∑
−c≤j≤c;j 6=0

log(p(wt+j|wt)) (2.2)

Equations 2.1 and 2.2 define the optimization functions for CBOW and skip-

gram respectively. In these equations T is the number of words in the corpus, wt

indicates the word for which the window is located, wi indicates the word at location

i (words in the window), c indicates the window size, and p indicates probability.
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Equation 2.1 can therefore be interpreted as: sum of the log probabilities of the word

at location t given the previous t − j words summed over all words in the corpus.

Equation 2.1 can be interpreted similarly.

2.4 Semantic Similarity and Relatedness

Measuring the degree to which two terms are similar (e.g., liver-organ) or related

(e.g., headache-aspirin) is a fundamental natural language processing task. We use

these in LBD to estimate the relatedness between start and target term pairs. There

are many ways to quantify the relatedness or similarity between terms [24], and

measures of similarity often perform well for relatedness quantification tasks, and

vice versa.

Semantic similarity is a subset of semantic relatedness, two terms may be re-

lated, but not similar (e.g., headache-aspirin), or both similar and related (e.g.,

liver-organ). Semantic similarity is based primarily on isA relationships, and as

such, semantic similarity measures often exploit concept hierarchies or taxonomies

such as the UMLS. From the simplest perspective, these measures are based on the

path length between two concepts in the hierarchy (path [25]), but more complex mea-

surements include weighting the edges with information content (lin [26], resnick [27]),

incorporating the depth of the least common subsumer (lowest node the two concepts

have in common) (wup [28]), or measuring path overlap (cmatch [29], batet [30]).

Semantic relatedness measures quantify a greater variety of relationships among

terms than semantic similarity measures. They typically don’t exploit taxonomic in-

formation, but instead are often based on the distributional semantics, and use vector

representations of terms (Section 2.3). For this, a context vector is created for each

concept and the similarity between the concepts is calculated by taking the cosine

between their individual context vectors. Estimating semantic similarity and relat-
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edness is a well established field with standard evaluation datasets and procedures.

In this section we present these evaluation procedures and some previous work.

2.4.1 Evaluation Data

Similarity or relatedness measures are typically evaluated on several standard

evaluation datasets. These datasets consist of term pairs for which a similarity or

relatedness score has been assigned by human graders. The score indicates the degree

to which the two terms are semantically related. We evaluate using the MiniMayoSRS

and UMNSRS reference standard datasets. We use a version of the datasets for which

each term is mapped to UMLS concepts in the SNOMED CT vocabulary.

MiniMayoSRS consists of 30 term pairs whose relatedness was determined by

nine medical coders and three physicians from the Mayo Clinic. The relatedness of

each term pair was assessed based on a four point scale: (4.0) practically synonymous,

(3.0) related, (2.0) marginally related and (1.0) unrelated. The average correlation

between physicians is 0.68. The average correlation between medical coders is 0.78.

UMNSRS, developed by Pakhomov, et al. [31], consists of 725 clinical term

pairs whose semantic similarity and relatedness was determined independently by four

medical residents from the University of Minnesota Medical School. The similarity

and relatedness of each term pair was annotated based on a continuous scale by having

the resident touch a bar on a touch sensitive computer screen to indicate the degree of

similarity or relatedness. As suggested by Pakhomov and colleagues, we use a subset

of ratings with higher Intraclass Correlation Coefficients (ICCs). This subset has an

ICC of 0.73, and consists of 401 pairs for the similarity set (UMNSRS Sim), and 430

pairs for the relatedness set (UMNSRS Rel).
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2.4.2 Correlation and statistical significance

We report the Spearman’s rank correlation (ρ) between the automatically as-

signed relatedness scores and the gold standard scores, and use Fisher’s R-to-Z trans-

formation [32] to compute statistical significance between the correlation results.

Spearman’s measures the statistical dependence between two variables to assess

how well the relationship between the rankings of the variables can be described using

a monotonic function. Spearman’s correlation coefficient is based on the rank of terms

rather than the scores assigned and can therefore be used with any scoring method,

regardless of the range of scores applied. Using Spearman’s correlation means a single

number can be computed for the performance of each method, making them easily and

quantitatively comparable across systems. Fisher’s R-to-Z transformation [32] com-

putes the statistical significance (p-value) between two correlation coefficients. We

report ρ between the automatically assigned relatedness scores and the gold standard

scores and consider a p-value of p ≤ 0.05 to be statistically significant.

2.5 Association Measures

Association measures are based on co-occurrence statistics in a corpus. They

quantify the association between two terms, which is a measure of the likelihood the

terms co-occur together more often than expected. Association measures are based on

terms’ individual occurrence frequencies, and their mutual co-occurrence frequencies.

As such, frequency counts of terms, and term pairs must be collected from a corpus.

Traditionally bigram counts are used, but this can be extended to find co-occurrences

within an arbitrary sized n-gram model, or window size.

Figure 6 shows an overview of the association calculation process. In this process,

co-occurrence information is collected from a corpus and used to populate a contin-
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gency table of values, these values are input into an association measure equation,

such as Pearson’s chi squared [33] (as shown), and a scalar association score is output.

Fig. 6. An overview of how association measures are calculated. The equation shown

is Pearson’s chi squared, where mij values are: m11 = n1p∗np1

npp
, m12 = n1p∗np2

npp
,

m21 = np1∗n2p

npp
, m22 = np2∗n2p

npp
and n2p = npp − n1p, np2 = npp − np1

To calculate an association score, first co-occurrence information is collected from

a corpus. This co-occurrence information may be displayed in a contingency table for

each term pair. Table 1 shows a contingency table for the generic term pair X and

Y , and uses the standard notation, X and Y to indicate any token except X or Y

respectively. ∗ indicates any single token. The cell n11 is the joint frequency of the

term pair X, Y , the number of times tokens X and Y are seen together. The cell n12

is the frequency in which X occurs in the first position but Y does not occur in the

second position, and the cell n21 is the frequency in which Y occurs in the second

position, but X does not occur in the first position. The cell n22 is the frequency in

which neither X nor Y occur in their respective positions. The cells, n1p, np1, n2p

and np2 represent the marginal totals which are the number of times a term does not

occur in the first or second position of the term pair. Lastly, the cell npp is the total

number of term pairs found in the corpus. It is important to note that all contingency

table values can be calculated as sums and differences between just four values, n11,

n1p, np1, and npp.

To illustrate the calculation of association scores, we use the tokens stop and

smoking as example X and Y values. The value n11 indicates the count of all instances
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Y Y totals

X n11 = XY n12 = XY n1p = X∗

X n21 = XY n22 = XY n2p = X∗

totals np1 = ∗Y np2 = ∗Y npp =**

Table 1. A contingency table showing how the counts, nxy are calculated for the generic

term pair XY . X and Y indicate any token except X or Y respectively. ∗
indicates any single token.

of the term pair stop smoking. n12 indicates the count of all term pairs with stop as

the leading token excluding any counts where smoking is the trailing token, and n1p

is the count of all term pairs beginning with stop. Table 2 is a contingency table with

sample values for stop smoking.

stop ¬ stop totals

smoking 2955 75020 77975

¬ smoking 308792 2712312165 2712620957

totals 311747 2712387185 2712698932

Table 2. An contingency table of observed counts of the term pair stop smoking.

Using the observed co-occurrence counts in the contingency table, we can calcu-

late the expected values which estimate the values one would expect to see based on

the independence model. The independence model is the hypothesis that the words

in the term pair happen to co-occur purely by chance. Using this model, the expected

values are calculated as the product of the marginal totals divided by the total num-

ber of term pairs in the text. Table 3 explicitly defines the calculations, where mij is

the expected value, and Table 4 shows the results of the calculations.
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Y Y totals

X m11 = n1p∗np1

npp
m12 = n1p∗np2

npp
n1p

X m21 = np1∗n2p

npp
m22 = np2∗n2p

npp
n2p

totals np1 np2 npp

Table 3. A contingency table of expected value equations. nxy values are retrieved

from the contingency table of observed values (Tables 1 and 2)

stop ¬ stop totals

smoking 9 77966 77975

¬ smoking 311738 2712309219 2712620957

totals 311747 2712387185 2712698932

Table 4. An contingency table of expected values of the term pair, Stop Smoking.

Looking at Table 4, the term pair stop smoking would be expected to occur

9 times if the token pair occurred together by chance, but is observed 2,955 times

(Table 2). Intuitively this indicates a strong association, and to quantify it, we use

an association measure equation. A combination of expected and observed values

are input into an association measure equation (e.g. Pearson’s Chi-Squared [33]) to

produce a single number that quantifies the association between two terms.

In this dissertation, we use association measure equations as implemented in

Text::NSP [18]. Text::NSP includes a wide range of association measures that are

grouped into five categories: Mutual Information, Fisher’s exact Tests, Chi-squared,

Dice, and Odds. Table 5 shows a listing of the association measures implemented in

Text::NSP.

Although all association measure equations use expected and observed contin-
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Class Measure

Mutual Information Measures

Log Likelihood Ratio [33]

True Mutual Information [34]

Pointwise Mutual Information [34]

Poisson-Stirling [35]

Fisher’s Exact Test

Left Tailed Fisher [36]

Right Tailed Fisher [36]

Two Tailed Fisher [36]

Chi-squared

Phi Coefficient [37]

T-score[38]

Pearson’s Chi-Squared [33]

Dice
Dice Coefficient [39]

Jaccard Measure

Odds Odds Ratio [40]

Table 5. Association Measures implemented in the Ngram Statistics Package of

Text::NSP

gency table values as input, they quantify association in different ways. We give an

overview of an association measure from each group in Table 5 below:

• The Log Likelihood Ratio [33] (G2), shown in Equation 2.3, reflects the degree

to which the observed and expected values diverge. A G2 score of zero implies

that the data fits perfectly into the hypothesized model, and the observed values

are equal to the expected. A higher score indicates that the term pair is less

likely to have appeared together by chance.
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G2 = 2 ∗
2∑

i,j=1

nij ∗ log(
nij
mij

) (2.3)

• The Fisher’s Exact Tests [36] (fisher), shown in Equation 2.4, calculates the

significance of observing a set of contingency table values. This is done by fixing

the marginal totals, and exhaustively computing the significances of observing

each possible set of table values that would lead to the observed marginal totals.

This allows the tests to estimate any probability distribution.

fisher =
1

n11!n12!n21!n22!
∗ n1p!n2p!np1!np2!

npp!
(2.4)

• The Pearson’s Chi-squared test (χ2) [33], shown in Equation 2.5, G2, measures

the deviation between the observed data and expected data. The computed

value compares the observed value to the predicted value under a chi-squared

distribution. The greater the difference between the two values, the more likely

the two terms are dependent.

χ2 = 2 ∗
2∑

i,j=1

nij −mij

mij

(2.5)

• The Dice Coefficient [39] shown in Equation 2.6, is a ratio between a term pairs

co-occurrence frequency and the sum of their individual occurrences.

dice = 2 ∗ 2 ∗ n11

np1 + n1p

(2.6)

• The Odds Ratio [40] shown in Equation 2.7, computes the ratio of how often

the term pair co-occurs together over the number of times they do not occur

together.
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odds =
n11 ∗ n22

n21 ∗ n12

(2.7)
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CHAPTER 3

LITERATURE BASED DISCOVERY

This chapter provides relevant background information related to the focus of this

research, literature based discovery (LBD). First, we provide a motivation as to why

LBD is important by covering its main application areas of drug discovery, drug re-

purposing, and adverse drug event prediction. Next, to better understand how our

contributions fit into the LBD process, we define an LBD pipeline. We break LBD

into a series of generalized components, and define the inputs, outputs, and goals of

each. We give examples of each component to illustrate different implementations

and ideologies. Next, we present literature reviews on our main areas of contribu-

tion. Since we apply indirect relatedness measures to ranking and filtering hypotheses

(Chapter 5), we present a literature review on hypothesis ranking and filtering meth-

ods. Next, since we develop new evaluation methods (Chapter 6), we present a review

of existing evaluation methods. We describe different evaluation methods, provide ex-

amples, and contrast them by defining a set of desirable characteristics of evaluation

methods. Lastly, we present a literature review of visualization methods and of func-

tional groups, relevant to our work in developing an interactive visual environment

to explore LBD output (Chapter 7).

3.1 Motivation

LBD has led to countless discovery proposals ranging from treatments for cataracts [41],

multiple sclerosis [42], and Parkinsons Disease [43], to understanding and discovering

new health benefits of curcumin [44], finding potential treatments for cancer [45], find-
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ing a link between Hypogonadism and Diminished Sleep Quality [46], and discovering

obesity mechanisms [47]. Although not all of these proposals have been verified, drug

development [8, 48, 9], drug repurposing [45, 49, 5, 48, 50, 51, 52, 53], and adverse

drug event (ADE) prediction [49, 54, 55, 16, 56] are perhaps the most promising and

prevalent application areas of LBD. These applications can save millions of dollars,

and save lives by bringing new drugs to the market faster, and preventing fatal ADEs.

Since new drug development, drug repurposing, and ADE prediction are common ap-

plication areas, we briefly cover them here to provide real-world motivation that goes

beyond the intrinsic scientific value of LBD.

Drug Discovery: A new drug costs between 500 million and 2 billion dollars

to develop, and can take between 10 to 15 years [51] to come to market. The success

rate is less than 10% [51], and the number of new drugs approved by the FDA is

declining [49]. LBD can provide a deeper understanding of drug mechanisms, inter-

actions, and side effects. This can lead to a better understanding of physiological

functions, leading to, and reducing both the cost and time for new drug development.

Much of the work with LBD and drug discovery has focused on incorporating ge-

netic microarray information into LBD systems [8, 48, 9]. Incorporating microarray

data is promising because it adds empirical evidence to support hypotheses gener-

ated from literature. Hu, et al. [9] correlate microarray analysis of genes and diseases

with the strength of those relationships in literature. Hristovski, et al. [8] incorpo-

rate microarray correlations into discovery patterns found in literature, and Zhang,

et al. [48] identify potential prostate cancer drugs using a combination of semantic

relations found in literature and microarray data. These systems explain links be-

tween drugs, genes, and effects, but may also be used to explain protein interactions

as well [53]. Both proteins and genes affect disease development and progression, and

can be targeted by drugs and chemicals. Understanding this process can lead to the
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next generation of drugs, saving lives and reducing cost.

Drug Repurposing: Drug repurposing, which is the process of finding new

applications for existing drugs. Drug repurposing is on the rise, accounting for “ap-

proximately 30% of the new US Food and Drug Administration approved drugs and

vaccines in recent years” [51]. Classic examples of drug repurposing include Viagra,

which was developed as a treatment for angina, and was repurposed to treat erectile

dysfunction; Rogaine, originally developed for high blood pressure, found success as

a baldness treatment [57]; Topiramate, an anti-epileptic drug was developed to treat

obesity, and Prozac, an anti-depressant was developed to treat premenstrual dyspho-

ria [49]. Although LBD did not play a role in these repurposings, LBD is increasingly

being used towards that goal [45, 49, 5, 48, 50, 51, 52, 53]. Currently there are about

4,000 drugs approved for human use, and about 5,000 more drugs registered for in-

vestigational use [5]. Many of the investigational drugs have been extensively studied

and satisfy basic regulatory requirements. By applying LBD to drug repurposing,

drug development costs may be reduced by up to 50%, and bring drugs to market

much more quickly [49]. LBD is useful for drug repurposing because it yields a better

understanding of the biological effects of a drug, and may be used to evaluate a drug’s

benefit/risk profile. This may allow one to arrive at novel discoveries [49]. As of 2011,

drugs developed using LBD are in the preclinical stage [49].

Adverse Drug Event Prediction: LBD provides a better understanding of

drug mechanisms and side effects, and in a similar way that this knowledge can be

applied for drug repurposing, it can also be applied to adverse drug event (ADE)

prediction [49, 54, 55, 16, 56]. Adverse events can be caused by normal use, misuse,

or sudden discontinuation of medications. ADEs often lead to hospitalization, and

account for an estimated 12% of all emergency room visits [54]. Furthermore, the

number of serious or life-threatening ADEs is increasing [49]. ADEs pose significant
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health and financial problems worldwide [16].

Since LBD can explain drug mechanisms and side effects it makes ADEs more eas-

ily predicted and avoided. A recent study by the Food and Drug Administration [58],

found that ADE prediction systems were able to predict many life-threatening cardiac-

related ADEs, and anticipated that development of similar technologies are in line

with their initiatives, and will be helpful tools in the future. Unforeseen ADEs may

occur after drugs are released to the market, and LBD allows for early detection of

these ADEs through automated analysis of literature and clinical notes. By quickly

identifying ADEs both safety and quality of patient health care increase [54].

3.2 Components

Modern LBD systems consist of many components, and there is a wide variety of

LBD systems. Although two systems may appear very different on the surface, they

share many underlying components, strategies, and goals. In this section, we divide

the LBD process into a series of well defined, independent, and generalized steps.

We describe the inputs, outputs, and goals of each step to create a generalized LBD

framework. We use this framework to identify areas of LBD that need improvement,

and in Chapter 6, assign evaluation methodologies for individual steps and sets of

steps. By breaking LBD into a series of smaller pieces, each step can be quantitatively

evaluated and compared, developed in isolation, and components can be shared among

LBD systems. Figure 7 shows our generalized LBD framework.

There are two main ways to perform LBD, open-discovery and closed discov-

ery [59] (also called one-node search and two-node search respectively [60]). In open

discovery, the user inputs a start term, and the system outputs potential hypothe-

ses. In closed discovery, the user inputs both a start term and a target term, and

the system outputs a set of linking terms, or reasons why a hypothesis may be true.
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Fig. 7. The LBD process as a series of generalized steps. First data is preprocessed,

then, hypothesis generation is performed, in which target terms are generated,

filtered and ranked. Lastly, evidence to support the discovery is collected and

the hypotheses and their evidence is displayed to the user.

Open discovery is used to generate new discoveries, where as closed discovery is used

to explain hypotheses. The contributions of this dissertation focus primarily on open

discovery, which takes place in the hypothesis generation step of our framework.

These generated hypotheses are fed into the hypothesis explanation step, in which

closed discovery may be performed. Each step of our framework is explained below.

Preprocessing: The goal of preprocessing is to convert data from its raw

form to a form accepted by the hypothesis generation step of LBD. It is often tightly

coupled with the data source, and includes, among other things, text normalization,
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stop word removal, collecting co-occurrence information, named entity recognition,

and relation extraction. Generally speaking, preprocessing methods are not unique

to LBD.

Preprocessing is performed on one or more data sources, often a corpus, set

of relations, or database. Popular datasets include MEDLINE, the MetaMapped

MEDLINE baseline, and SemMedDB, but other sources, such as the Therapeutic

Target Database (TTD) [50], Comparative Toxicogenomics Database (CTD) [50],

and microarray data [8], have been included. The use of innovative datasets presents

promising directions of future research [61].

Hypothesis Generation: The goal of hypothesis generation is to create hy-

potheses in the form of start-target term pairs. Hypothesis generation consists of

three sub-steps, target term generation, term filtering, and term ranking. Hypothesis

generation is unique to LBD, and the methods, inputs, and outputs vary system by

system. At its core though, hypothesis generation has the goal of generating a set of

potential hypotheses, which can be represented as a list of target terms. This gen-

eralized model of hypothesis generation is shown in Figure 8, where a start term(s)

and a data source are input, and a ranked target term list is output.

We illustrate the variety of hypothesis generation methods by describing a few

examples and how they fit into our generalized framework.

Yetisgen-Yildiz and Pratt [62] use co-occurrence information collected from MED-

LINE, and a starting term of interest as input. Their term generation step is based on

the ABC co-occurrence model of LBD. A to B co-occurrences are found, spurious B

terms are removed, and B to C co-occurrences are found to produce a list of potential

target terms. No target term filtering step is applied. A target term ranking step is

applied to compare the ranking algorithms of average minimum weight [63], literature

cohesiveness [64], and a linking term count [60]. The final output is a ranked list of
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Fig. 8. A generalized model of the hypothesis generation process. Target terms are

generated from a data source and start term, filtered and ranked to produce

hypotheses as a ranked set of target terms

target terms.

Cohen, et al. [65] perform hypothesis generation in a vector space created from

SemRep predications (Predication-based Semantic Indexing). Using the start term

of interest, a term generation step consisting of a “logical leap”, in which target

terms are generated directly from the start term via a nearest neighbor search. Term

filtering consists of eliminating terms that occur more than 100,000 times. Target

terms are ranked by the cosine distance between the start-target vector mean, and its

nearest neighbor (a linking term). Target terms whose start-target vector mean have

the smallest cosine distance between itself and a linking term are ranked the highest.

The final output is a ranked list of target terms, and their linking term.

Workman, et al.’s Spark system focuses on user interaction. For its hypothesis

generation step (they call it, “initial output”). A user enters a search query (which

includes a start term), from which a maximum of 10,000 semantic predications from

5000 of the most recent SemMedDB citations are retrieved. The term generation is

the retrieval of predications. The term filtering step is the restriction to 10,000 of

31



the 5000 most recent predications. Next, the user selects the desired target term

ranking method (they call it “retrieval affordance”), and the top ranked target terms

(and their relationship to the start term) are displayed to the user, and the process

is repeated.

Term Generation: The term generation step creates a term list of potential

hypotheses related to the user’s start term(s). This is the linking step, where target

term are generated. Examples of term generation include the ABC model [60, 59],

discovery patterns [66], vector-based nearest neighbor searches [67, 68], discovery by

analogy [69], bibliometric linking [70], user interaction [71], or simply returning all

terms in the vocabulary [72]. Each of these methods generate hypotheses in different

ways, but all use a start term and preprocessed data as input, and all output a set of

target terms. Most generate additional information, but that information is typically

used to rank or explain a hypothesis. To restrict the scope of terms output by term

generation, semantic type filters [59] and relationship-type filters [66] are popular.

These reduce the number of target terms generated based on their semantic type

(e.g. Drug, Disease, etc..) or the relationship type connecting them to the start or

linking terms (e.g. reduces, affects, etc..).

Figure 9 shows a generalized model of term generation. Ideally the target term

list output correctly identifies all possible discoveries between the start and target

terms, and no false discoveries. This is, however unlikely, so term filtering and ranking

steps are applied using the generated target term list as input.

Term Filtering: Term filtering removes false start-target term pairs from

the list of target terms generated in the term generation step. Examples of filters

include term occurrence rate, where too frequently [73, 74, 75] or too infrequently [76]

occurring terms are removed; word sense disambiguation [77] to remove multiple

meanings of a token, removal terms that are too broad [74, 78] or too similar to the
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Fig. 9. The term generation step takes a start term of set of start term as input and

a preprocessed data source to produce a set of target terms.

start term [79, 75]; or ranking and thresholding, using Term Frequency-Inverse Global

Record Frequency [80], Term Frequency-Inverse Document Frequency (TF-IDF) [81],

or other ranking and thresholding methods such as those discussed in Section 3.3.1.

Figure 10 shows the input and output of the term filtering step. We can frame

term filtering as a binary classification task, which is input a set of target terms,

and outputs a set of true terms, and a set of false terms, for which the start-target

term pair constitutes a true or false hypothesis. The set of true terms continues as

the input to the term ranking step, and the false terms are removed from further

consideration.

Target Term Ranking: Target term ranking takes a list of target terms as

input, ranks them based on some criteria, and outputs the ranked list. The ranking

criteria may be interestingness of the start-target term pair, the likelihood that it is a

true discovery, or the strength of the relationship. More generally, the goal of target

term ranking is to assign a real-valued number to the start-target term pair. This is

distinct from term filtering, for which a binary true/false value is assigned to each

start-target term pair.
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Fig. 10. The term filtering process takes as input a set of target terms representing

possible discoveries, and classifies them as true discoveries or false discoveries

(noise).

The need for target term ranking is motivated by computational or user-time

requirements of downstream tasks. Hypothesis explanation is generally more compu-

tationally intensive than hypothesis generation, and only a small number of potential

hypotheses may be analyzed by a user. It is critical that a concise list of discoveries

is generated.

Examples of target term ranking algorithms include Linking Term Count (LTC) [60],

Average Minimum Weight (AMW) [63, 62], X to Z support [82], Predicate Interde-

pendence [51], vector-based ranking methods where, a term or concept vector repre-

sentation is constructed, and a score is generated using cosine distance [83], Euclidean

distance [84], or information flow [84] between the A and C terms, Graph-based rank-

ing methods have been proposed, which construct co-occurrence graphs, and rank hy-

potheses based on the graphs’ characteristics, such as degree centrality [76], or graph

proximity metrics [85].

Target term ranking takes as input a list of true discoveries, and outputs a ranked

list of discoveries, for which the rank and score indicates the likelihood a relationship

exists, or a score of interestingness.

Hypothesis Explanation: The goal of hypothesis explanation is to collect

evidence to support a hypothesis, and display that evidence to the user in an under-
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Fig. 11. An unordered set of true target terms is input into the term ranking step,

which outputs a ranked list of target terms.

standable manner. In the first step of this process, evidence collection, any evidence

to support the hypothesis is found. This may consist of finding linking, “B” terms,

finding semantic predications that explain the hypothesis, finding article IDs or text

snippets, or adding any other information to support and explain the hypothesis. In

the next step, hypothesis display, that evidence is displayed to the user. How it is

displayed is heavily dependent on the type of evidence collected. It could be as simple

as a static ranked target term list, or as complex as an interactive explanatory graph

of linking terms, semantic predications, and text snippets. Creating more informative

output for LBD is critical for its adoption in real-world environments. Outputting

just a list of target terms is insufficient, and more information should be provided.

3.3 Literature Review

With this understanding of LBD components, we present a literature review

on the topics most relevant to the contributions of this dissertation. We include a

literature of hypothesis ranking and filtering methods, a comparison between different

evaluation metrics, and overviews of visualization systems and functional groups in

LBD.
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3.3.1 Hypothesis Ranking and Filtering

The number of hypotheses generated by LBD systems is usually too large to be

manually reviewed, so ranking them is critical. This over-generation of knowledge is

due, in large part, to the “small world” problem [63], which states that a start term

will most likely co-occur with a highly connected term. Since a highly connected

term co-occurs with many terms, within the ABC term generation paradigm, the

“B implies C” step will create a set of target term hypotheses that approaches the

vocabulary size. Systems that do not rely on the ABC paradigm [71, 86, 11] also

over-generate knowledge, and require some sort of term ranking for thresholding and

prioritizing what is displayed to the user.

There have been a variety of techniques to limit the target term list. These

include: eliminating B terms via ranking and thresholding [80, 62]; applying semantic

type filters to restrict B and C terms to informative semantic types (such as “drugs”

or “diseases”) [59]; using hierarchical filters to remove terms that are too general [74,

78]; or using relation extraction techniques and relation-type filters (such as keeping

only “treats” or “increases” type relations) [66]. However, even with these techniques,

too many terms are generated, and a term ranking method is required.

Target term ranking methods estimate the interestingness of the start-target term

hypothesis. Ranked terms may be eliminated by applying a threshold, or ordered and

displayed to the user. For LBD, it is assumed that target terms never co-occur with

the start term (since they are new knowledge), meaning that traditional information

retrieval ranking methods, which require direct co-occurrences cannot be applied.

Instead, indirect ranking measures must be used. Methods designed specifically for

LBD include: Linking Term Count (LTC) [60] which counts the number of unique

B (linking) terms between A and C; Average Minimum Weight (AMW) [63, 62]
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calculates the mean of minimum mutual information from A to B and B to C for all

A to B to C pathways; X to Z support [82], which sums the weights of all ABC paths

between A and C; and Predicate Interdependence [51] which ranks drug-disease pairs

based on drug-gene and gene-disease predicate interdependence in literature.

Vector-based ranking methods have also been used in LBD. In these cases, a term

or concept vector representation is constructed, and a score is generated using cosine

distance [83], Euclidean distance [84], or information flow [84] between the A and C

terms. The method in which vectors are created varies by LBD system. Bruza, et

al. [84] construct vectors in Hyperspace Analogue to Language (HAL) space, Cohen,

et al. [69] construct vectors using Predication-Based Semantic Indexing (PSI), and

Sybrandt, et al. [87] construct vector representations using FastText [88] (a word2vec

implementation).

Graph-based ranking methods have also been used. Graph-based methods con-

struct co-occurrence graphs, and rank hypotheses based on the graphs’ characteris-

tics, such as degree centrality [76], or graph proximity metrics such as probability

of best path, network reliability, expected reliable distance, or variations of random

walks [85]. More recently, Kastrin, et al. [89] using the graph proximity metrics of

Jaccard’s Coefficient - a ratio of common neighbors to total neighbors, and Adam-

ic/Adar metric - which uses weighted counts of shared neighbors, such that lower

connected neighbors receive a higher weight. Sybrandt, et al. [87] propose and eval-

uate several ranking methods for LBD which include concept embeddings and topic

network graph based metrics, and a combination of these methods.

Little work has been done in comparing these different ranking methods, but

Yetisgen-Yildiz and Pratt [62] perform a comparison between a few, including LTC

and AMW, and find that LTC is best performing hypothesis ranking method eval-

uated. For LTC, a linking term is defined as any term for which both the start
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and target term co-occur with, and LTC is the number of terms they both co-occur

with. Start-target term pairs with more linking terms are ranked higher than those

with less. Sybrandt, et al. [87] propose and evaluate several ranking methods, in-

cluding both vector and graph based measures. They find PolyMultiple is the best

performing, which is a weighted average of all the methods evaluated.

Although most term ranking methods focus on finding the most probable, or

highest scoring start-target term pairs, Smalhesier [61] argues that the most probable

term pairs are often uninteresting, and instead it is the discoveries that, at the time,

seem the least probable are the most interesting. This rarity principle is incorporated

into several LBD systems including Epiphanet [90] and Spark [71] which are interac-

tive systems with an option to find more rare or surprising terms. Other systems [91,

70, 92] focus on finding infrequently co-occurring terms rather than frequently co-

occurring in the term generation and term ranking steps. RaJoLink [91] first finds

rare terms in the starting term literature. Several of the rare terms are selected, and

common terms within the selected rare term’s literatures are found which forms a set

of target terms. Later work [92] focuses on finding document outliers.

3.3.2 Evaluation

Evaluating LBD systems is difficult. Researchers disagree on many of the funda-

mental goals of LBD, and how to best facilitate discovery. Some points of contention

include the level of automation, what constitutes a discovery, how to convey the

results, and whether rarely or frequently co-occurring terms make the best discover-

ies. These points of contention make the overall goal of LBD difficult to define, and

therefore to quantitatively evaluate. Even if these points of contention were resolved,

accurately defining a gold standard dataset of all possible future discoveries is im-

possible, and estimating one is difficult. Additionally, the intended applications of
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LBD systems vary, leading to a lack of standardized datasets. These disagreements

and differences mean that many different evaluation strategies have been proposed.

In the next subsections, we describe evaluation strategies that are popular, useful, or

relevant this work. We describe each method, and its strengths, and weaknesses. We

also define a set of criteria that LBD evaluation methods should meet, and determine

which of the criteria the evaluation methods meet (summarized in Table 6). Our

criteria states that an ideal evaluation method should be:

1. Automated - it is not a manual process, and should be easy to calculate in a

reasonable amount of time. It is scalable.

2. Replicable - it is objective, and can be replicated with different LBD paradigms.

Preferably it is based on a fixed dataset.

3. Quantifiable - it provides a numeric performance metric, preferably a single

number that allows comparisons between systems.

4. Informative - it provides a deeper understanding of the behavior of the system

or component.

5. Modular - it does not rely on the entire LBD pipeline, instead it evaluates

individual components or sets of components in isolation.

Evaluation Methods
Automated Replicable Quantitative Informative Modular

Discovery Replication X X X
User Studies X X

New Discovery Proposal
Time-Slicing X X X X X
ROC Curves X X X X X

Established MI Graphs X X X X X

Table 6. Evaluation methods and which of the ideal evaluation criteria they meet
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3.3.2.1 Discovery Replication

Description: The goal of discovery replication is to reproduce a historic discov-

ery, most commonly, Swanson’s famous Raynaud’s Disease - Fish Oil Discovery [3].

Discovery replication is simulated using data and knowledge available prior to the

replicated discovery’s publication date. If a system is capable of making the discov-

ery, discovery replication is considered a success. This may mean simply the presence

or absence of the target term of interest in the system’s output, or that it is ranked

sufficiently high in the output. Reporting the rank of the target term makes this

method more quantitative.

Example: Swanson’s Raynaud’s Disease - Fish Oil Discovery was made in 1986,

so data published prior to 1986 is input into a system. The start term of Raynaud’s

Disease is input into the system, and the system will output a list of target terms.

If fish oil (the target term of interest) is present in this list, or if its rank in the

output target term list is subjectively determined to be high enough, the discovery

replication is considered a success.

Strengths: Discovery replication can be automated, is easy to compute, and is

replicable by nearly (if not all) LBD systems. The results are easily understood, and

clearly demonstrates a system’s ability to perform at least one discovery. When the

rank of the discovery is reported, discovery replication is quantitative.

Weaknesses: Discovery replication, is a narrow, constrained task. Only a sin-

gle discovery is reported, and even when multiple discovery replications are made

(Cameron, et al. [93] report fourteen) it is still a very constrained task. Since the

task is so narrow, it is prone to overfitting, and when ranks are reported, it is often an

unstable metric - the rank may vary widely even with small parameter adjustments.

All this means discovery replication is not informative; it provides little insight into
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how a system is working or how it may be improved. When reporting just the presence

or absence of a discovery in the target term list, discovery replication is not quantita-

tive. Lastly, discovery replication is not modular, generally speaking it evaluates the

performance of the entire LBD process.

Conclusion: Although discovery replication may be interesting when used as an

example or case study, it is a poor evaluation strategy, and insufficient on its own.

3.3.2.2 User Studies

Description: User studies determine what users like and dislike about a system,

how a system is used, and how it can be improved. They are performed by creating

questionnaires for, monitoring, or interviewing users of an LBD system. User stud-

ies are particularly important for user-centric systems, where interaction with the

user plays a key role in discovery [71, 90], and for systems with complex or visual

output [10].

Example: User studies were used in the development of the Arrowsmith sys-

tem. In one study [94], researchers are observed using Arrowsmith, and based on

the users’ needs they improve the user interface, and develop and incorporate tools

users’ identified as critical for facilitating discovery. In another study, Smalheiser, et

al. [95] perform a five year study involving a diverse group of voluntary researchers.

Researchers filled out notebooks and described their use of Arrowsmith; weekly phone

calls were made to monitor their progress. This, combined with “unsolicited” sugges-

tions from web users were used to improve the web-interface, guide development of

their system, and discovered novel ways the system was being used.

Strengths: User studies are critical for understanding how LBD systems are

actually being used. Adoption of LBD tools in their intended domain is critical, and

user studies ensure the LBD tools we develop are both usable and useful. All of this
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makes user studies extremely informative. Additionally, they are (arguably) modular ;

they can be used for evaluating the user interface and how results are displayed in

LBD systems.

Weaknesses: User studies are subjective and not quantitative, they consist of

opinions and qualitative evidence. Their reliance on human users means they are

inherently not automated and not replicable.

Conclusion: User interfaces and how the results are displayed are a critical com-

ponent of LBD systems, and user studies are therefore a critical evaluation compo-

nent. They are subjective by their very nature, making them not replicable, but

they provide invaluable insight into how systems are used, and how they can be im-

proved. They can reveal interesting ways LBD systems are being used to drive the

development of tools that will have translational impact. User studies are a neces-

sary evaluation metric and should be used in conjunction with other, quantitative

evaluation metrics.

3.3.2.3 New Discovery Proposal

Description: New discovery proposals are the publication of discoveries made

using an LBD system. New discoveries are best published in a journal of the intended

domain, which lets experts validate the discovery. Often though, new discoveries

and expert evaluation accompany a system description published in a journal more

relevant to LBD researchers.

Example: LBD has produced many different discoveries, with varying level of

empirical evaluation and expert vetting. This ranges from clinical trials [96], in vitro

testing [4, 5], in vivo testing [6, 7], finding support through mircoarray analysis [8,

9], or expert testimonial validating the process [10, 11]. Specific examples include:

• Clinical trials - DiGuacomo, et al. [96] test Swanson’s Raynaud’s Disesase - Fish
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Oil Hypothesis in a clinical trial.

• In Vitro - Fritjers, et al. [4] confirm in-vitro, their predicted associations between

compounds and cell proliferation. Cohen, et al. [5] confirm their predicted

therapies for prostate cancer in-vitro with cell cultures.

• In Vivo - Wren, et al. [6] perform in-vivo testing of their predictions of com-

pounds affecting the development of cardiac hypertrophy with rodent models.

Lekka, et al. [7] perform in-vivo experimentation to support their treatment for

Multiple Sclerosis.

• MicroArray Support - Hu, et al. [9] use microarray and proteomic data to con-

firm hypothesized associations between specific genes and breast cancer. Hris-

tovski, et al. [8] use microarray data to support their hypotheses on Parkinson’s

disease.

Strengths: New discovery proposal show the efficacy of an LBD system, and

is critical for translational adoption, particularly when published in journals of the

application domain. The use of a system to produce discoveries and endorsement by

a domain expert validates the system. It exposes LBD to that community and gives

LBD credibility.

Weaknesses: The reliance on domain experts for empirical evaluation means that

new discovery proposal is not automated and not replicable. New discovery proposal

is not quantitative, and relies on the entire system, so is not modular. Although they

show a system works, they don’t provide any insight into how a system works. They

are not informative with respect to evaluation of individual system components or

improving the system as a whole.

Conclusion: New discovery proposal with empirical evaluation is not really an
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evaluation metric. It shows a system works, provides example applications, and most

importantly, it is critical for the adoption of LBD systems in translational work, but

does not provide any quantitative information on how to improve or compare LBD

systems. New discovery proposal is vital and should be used in conjunction with

quantitative evaluation metrics.

3.3.2.4 Time-Slicing

Description: In time-slicing evaluation [62], a cutoff date is selected to divide the

data into training and test sets. The pre-cutoff (training) dataset is used to generate

hypotheses, and the post-cutoff (test) dataset is used to estimate a gold standard of

all future discoveries. The gold standard is estimated using co-occurrences [62] or

extracted relationships [75] that occur in the post-cutoff dataset and do not occur

in the pre-cutoff dataset (therefore indicating new knowledge). Using the hypothe-

ses (the predicted discoveries) and gold standard discoveries, evaluation metrics are

computed such as: precision and recall graphs over time [79], average precision at

K [62], average interpolated precision graphs [62], mean average precision [62], and

F-measure [75]. These metrics may be calculated using a single starting term (e.g.

multiple sclerosis [97]), several starting terms (e.g. Alzheimer’s disease, migraine, and

schizophrenia [79]), averaged over 100 randomly selected terms [62], or using all terms

in the vocabulary [75].

Example: Yetisgen-Yildiz and Pratt[62] proposed time-slicing evaluation. They

use a cut-off date of January 1, 2000, meaning the pre-cutoff dataset consists of

all publications before January 1, 2000, and the post-cutoff dataset consists of all

publications after January 1, 2000. They use co-occurrences between MeSH descrip-

tors to indicate relationships, and the gold standard set is created by finding all co-

occurrences in the post-cutoff dataset and not in the pre-cutoff dataset. 100 randomly
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selected diseases and the pre-cutoff dataset are input into their LitLinker system [74]

resulting in list of target terms for each of the 100 diseases. The evaluation metrics

of average precision at K, average interpolated precision graphs, and mean average

precision [62] are calculated to quantify performance.

Strengths: Time-slicing evaluation is an automated, large scale evaluation that

provides quantitative and informative metrics. It is replicable and is modular when

used to evaluate individual components of an LBD system. Gold standard datasets

are necessary for large scale, quantifiable evaluation of LBD systems, and time-slicing

is one of the only methods of generating them.

Weaknesses: Time-slicing evaluation has been criticized because gold standard

datasets are noisy; they contain false discoveries, or omit true discoveries. Gold

standard datasets are difficult to estimate. Using co-occurrence information will pro-

duce many false positive relationships, and to increase the precision of gold standard

datasets, Preiss, et al. [75] create use semantic predications rather than co-occurrences

to constitute a relationship. They use multiple parsers, and state that if a relationship

is extracted by any two, or all three parsers, then it is more likely a true relation-

ship. Yang, et al. [50] create a highly precise gold standard using a manually curated

database, the Comparative Toxicogenomics Database (CTD). Both of these methods,

however, increase precision at the expense of recall - many relationships are missed.

There is also a lack of standard evaluation procedures once the gold standard

has been evaluated. A variety of evaluation metrics have been proposed, including,

precision at K [62], average interpolated precision graphs [62], Mean average precision

(MAP) [62], and F-measure [75]. Different papers report evaluation metrics with

different datasets making comparison between systems difficult to impossible.

Conclusion: Time-slicing is a valuable method for estimating gold standard

datasets, but no gold standard evaluation datasets have been widely adopted, and
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the method in which a gold standard is generated is not standardized. Similarly there

is no standard evaluation procedure once a time-sliced gold standard has been gener-

ated. A standardized technique and dataset should be developed and adopted to make

comparison across systems possible. Time-slicing type techniques are necessary for

estimating gold standard datasets, but evaluation procedures must be standardized.

3.3.2.5 Receiver Operating Characteristic (ROC) curve Analysis

Description: Receiver operating characteristic (ROC) curves plot the trade-off

between true and false positive rates, typically to evaluate the performance of binary

classifiers. They require a dataset with true and false samples, and a method of

assigning true and false labels to each sample. ROC curves are generated by varying

some parameter (typically a threshold) and calculating the true and false positive

rates at different values of this parameter. The area under the ROC curve (AUROC)

can be calculated to provide a single number to summarize a system’s performance.

ROC curves have been used in LBD to evaluate the performance of target term

ranking algorithms [85, 89, 87] and link prediction methods [85, 89].

Example: Eronen, et al. [85] frame the evaluation of their BIOMINE system

as a link prediction task. In a time-slicing manner, they generate 500 links that

occur (positive samples) in a “future” network of protein interactions and gene-pairs,

and generate 500 links that never occur (negative samples) in that network. They

evaluate the performance of different graph proximity measures and classifiers for link

prediction. Kastrin, et al. [89] perform link prediction on a co-occurrence network

of MeSH descriptors in a time-slicing manner. They use the entire co-occurrence

network and evaluate both supervised and unsupervised approaches, including target

term ranking measures. ROC curves and AUROC are reported. Sybrandt, et al. [87]

divide a dataset of SemRep predications into pre- and post-cutoff segments. From
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the post-cutoff dataset, they extract a set of published predications, and a set of

highly-cited predications (published predications coming from articles that are cited

more than 100 times). The published and highly-cited predications form two sets of

true samples, where highly-cited predications are more confidently true but contain

fewer samples. They create a set of false samples by creating “noise” predications,

predications that do not occur in either the pre- or post-cutoff datasets. They pose

evaluation as a noise discrimination task, and evaluate several target term ranking

algorithms. ROC curves and AUROC are calculated for noise vs published, and noise

vs highly-cited datasets.

Strengths: AUROC provides a single, quantitative number to summarize perfor-

mance, and the ROC curve itself creates a very informative metric to understand true

and false positive rate trade-offs. ROC curve analysis is automated and replicable - it

can be performed by any LBD system that applies a threshold. ROC curve analysis is

modular, it can be used to evaluate the filtering or term ranking steps of LBD. Since

ROC curve analysis and link-prediction type analysis are smaller, more constrained

evaluation tasks, they relax the constraint that the gold standard dataset contain

all possible future discoveries, and instead evaluate based solely on the presence or

absence of samples in a dataset, making them more easily assessed [98].

Weaknesses: ROC curves are a powerful evaluation method, but may be less

informative than precision and recall (PR) curves for problems with higher class

imbalances such as LBD [99].

Conclusion: ROC curves are an excellent evaluation metric. We use them in

Chapter 5 and 6, however standard and representative datasets should be developed,

and PR curves may be more appropriate for LBD. We address these problems in

Chapter 6.
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3.3.2.6 Established Mutual Information Graphs

Description: Wren [63] evaluates target term ranking algorithms by the rate at

which they accumulate the total established mutual information (MI) in a dataset.

His key hypotheses are that MI between the start and target term can be used as

an estimate of relevance or irrelevance, and that term pairs with high established

MI based on their direct relationship should retain a high MI based on their indirect

relationship. He uses these direct MI scores as gold standard weights, and evaluates

the performance of indirect MI measures on their ability to rank directly related

terms.

Example: Using a single start term, capsaicin, the MI between it and every

directly co-occurring term is found. The sum total of all MI’s is calculated, and each

term is assigned a score that is their percent of total MI contributed. This estimates

their percentage of relevance contributed by that term to the sum total of all relevance.

Next, an indirect ranking algorithm is used to rank this set of directly co-occurring

terms. Using the ranks assigned by the indirect ranking algorithm, and the scores

of percent total MI, a cumulative sum at each rank is calculated and plotted. That

is, for rank 1, the percent total MI accumulated is the percent total contributed by

the first term. For rank 2, the percent total MI accumulated is the percent total

contributed by terms one and two. For rank 3, the percent total MI accumulated is

the percent total contributed by the first three terms, and so on. These accumulated

totals are plotted in a graph of rank versus cumulative established MI to show the

rate at which target term ranking algorithms capture all relevant terms in a dataset.

The area under the curve (AUC) is calculated to quantify performance with a single

number, and the AUC of 50 randomly selected words is averaged to better quantify

performance.
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Strengths: Established MI graphs can be generated using data alone, and are

therefore automated and replicable. They are quantitative, and the AUC provides a

single number for evaluation. They are modular, and very informative, and provide

an understanding of how a system performs. Using direct relationships to estimate

relevance, and using that in evaluation means that established MI graphs are sensitive

to the ranks of the most relevant terms. This sensitivity to rank is critical for target

term ranking evaluation. Other methods, such as mean average precision (MAP) are

also sensitive to rank, but they assume a perfect gold standard. Estimating a gold

standard is difficult, and in methods such as MAP, an untrue sample in the gold

standard would contribute as much as a true sample. Established MI graphs do not

require a perfect gold standard. Instead, relevance can be used both as an estimate

of truthfulness and importance. Co-occurrences that do not constitute a relationship

will presumably be less relevant, and therefore contribute less to the final established

MI graph. In effect, creating a perfect gold standard requires knowing the cutoff

threshold of relevance, and established MI graphs avoid the need for this threshold.

Weaknesses: This is an interesting evaluation metric, but it evaluates a method’s

performance on known relationships only. It makes no use of future relationships,

but instead assumes that a method’s performance on direct, known relationships can

estimate its performance on indirect, future relationships.

Conclusions: Wren’s observation that indirect ranking methods should perform

well for directly related terms is interesting, and we believe indirect ranking measures

are estimating relatedness, and should therefore perform well on standard direct re-

latedness evaluation datasets. Established MI graphs are interesting and informative,

and we combine the idea with time-slicing and future direct relatedness to create

cumulative relatedness graphs in Section 5.2.1.
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3.3.2.7 Other and System Specific

Other evaluation methods have been used, but are often specific to a particular

system or application. Cameron, et al. [10] perform a statistical evaluation on the con-

text driven sub-graphs generated by their system. They determine if a discovery was

replicated in a systematic way or serendipitous manner using sums of the rarity of the

intermediate links. Yang, et al. [50] apply LBD to drug repurposing, for which they

develop drug similarity metrics and relation extraction algorithms. They evaluate

their drug similarity metric using Spearman’s and Pearson’s correlation coefficients

with it and a gold standard drug-similarity based on the based on the anatomical

therapeutic chemical (ATC) classification system. They evaluate the performance of

their relation extraction algorithm using the Comparative Toxicogenomics Database

as a gold standard, and evaluate their repurposed drug candidates with mean average

precision in a time-slicing approach. Baker, et al. [11] use side effect profiles extracted

from ChemoText to predict chemical biological behavior, specifically, 5-HT6 binding

and dopamine antagonism. They evaluate their machine learning algorithms using

sensitivity, specificity, and correct classification rate. Cohen, et al. [73] use a dataset

of SemRep predications from which all “treats” relationships are removed. They use

vector space operations to automatically rediscover these “treats” relationships as a

chain of other relations. They use statistical analysis, including average precision to

evaluate their technique.

3.3.3 Visualization

The development of effective user interfaces for LBD has become an increasingly

important research topic. An effective user interface is critical for promoting the

adoption of LBD systems in actual laboratory work. The goal of systems that focus
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on user interaction is not to automatically produce new discoveries, but rather to

provide a “dynamic and interactive experience that allows scientists to both explore

and validate conceptual connections” [90].

Systems that focus on user interaction place the user as a central part of the

discovery process. Discovery begins with a flash of insight, followed by an effort to

realize and understand that insight [90]. User interaction focused systems are de-

signed to promote abductive reasoning, and provide tools for deductive and inductive

reasoning once a hypothesis has been generated. Their focus is on user interaction,

and displaying information in a manner that facilitates greater understanding. User

interaction systems are based on theories of how humans assemble new information

and create new connections [76]. These systems are an aid to human creativity, rather

than a fully automated hypothesis generation machine.

“Abductive reasoning, as defined by the philosopher and logician, C. S. Peirce

(1839-1914) is concerned with the generation of new explanatory hypotheses given

a set of observations” [65]. Inductive and deductive reasoning can then be applied

to confirm or disprove these hypotheses. Although theories of abductive reasoning

have been applied to other models of LBD [67], it is an important theory for user

interaction systems. In these systems, abductive reasoning is accomplished through

the theoretical framework of distributed cognition [90] in which a machine is viewed

as complementary to the human mind. Users interact with the system to produce

reasoning that is greater than the sum of its parts. The goal is not to automatically

produce new discoveries, but rather to provide a “dynamic and interactive experience

that allows scientists to both explore and validate conceptual connections” [90].

Theories of discovery browsing [100, 101, 71] may also guide the design of systems.

Discovery browsing is based on Information Foraging Theory, and was first proposed

for LBD by Wilkowski, et al. [76], and later implemented by Goodwin, et al. [100] and
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Workman, et al. [71]. In “discovery browsing” information is displayed to the user,

and the user selects topics they find interesting or surprising. The Spark system [71]

uses SemRep predications with a highly interactive graphical user interface to spark

the creativity of the user. Semantic MEDLINE1 provides a visual environment for

exploring SemMedDB predications and has been used for LBD [46, 47].

3.3.4 Functional Groups

Term ranking and Filtering methods focus on removing spurious terms from

the target term list, but in addition to eliminating terms, similar terms may be

grouped to reduce the total number of items that must be analyzed simultaneously.

Weeber, et al. [59] outlined their idea of functional pathways, for which similar linking

terms generated by their LBD system are manually grouped and analyzed. In their

paper, they replicate the three primary pathways (originally identified by Swanson)

for which fish oil treats Raynaud’s Disease. These pathways are fish oil’s effects

on: blood viscosity, platelet aggregation, and vascular reactivity. Groups of terms

related to these functional pathways are identified in the linking term set generated

by their system. Weeber, et al. conclude that by analyzing the data as sets of related

terms, the output is more understandable. Their method is manual and limited to

the linking term set, but they do note that there are several fish oil-related concepts

in their target term list, including: fish oils, maxepa, fatty acids omega-3, omega-3

polyunsaturated fatty acid, eicosapentaenoic acid, epa-e, cod liver oil, salmon oil,

fatty acids essential, and dietary fats.

Automated methods of grouping target terms of an LBD system has been a

largely overlooked topic, but some work has been done. Baker [53] assigns a high-level

1https://skr3.nlm.nih.gov/SemMed/
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classification to sets of terms by exploiting the MeSH hierarchy. She provides a broad

categorization of terms by assigning a category according to the MeSH term at the

third level of the term’s ancestor tree. Although effective for her application, using the

MeSH hierarchy alone is problematic when using multiple taxonomies of the UMLS

(e.g. MeSH and SNOMED CT), as their structures differ significantly. Cameron, et

al. [10] use graph-based similarity measures, and hierarchical agglomerative clustering

to group similar “contexts” of SemRep predications. The system creates an easily

interpretable graphical output that succinctly explains the interaction between terms

of interest. Their system output is impressive, but is computationally intensive,

requires some manual intervention, and is intended for closed discovery, in which

both the start and target terms are pre-defined.
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CHAPTER 4

DIRECT RELATEDNESS

A core assumption is that a literature based discovery (LBD) hypothesis is an asser-

tion that a relationship exists between two terms that never directly co-occur, and the

likelihood of that hypothesis being true can be estimated by the strength of their re-

latedness. Semantic similarity and relatedness measures quantify the degree to which

two concepts are similar (e.g., liver-organ) or related (e.g., headache-aspirin). Tra-

ditionally these measures are used to estimate direct relatedness, for which two terms

directly co-occur. This makes the study and development of semantic relatedness

measures critical to our overall goal of developing more effective LBD systems. Since

estimating direct relatedness is a well studied field with standard evaluation metrics

and datasets, and estimating indirect relatedness is a less well established field, we

study direct relatedness as a starting point in developing indirect relatedness mea-

sures.

In this chapter, we describe our contributions to estimating direct semantic re-

latedness. Broadly, these include studies on association measures and vector repre-

sentations. Results are shown on several standard evaluation datasets, and compared

against several state of the art techniques. These results are interesting both for

the further development of indirect relatedness measures, and for the field of direct

relatedness and its applications.

This chapter is organized by our contributions. First, we present our contribu-

tions to direct association measures, which include concept association and expansion,

set associations, and an analysis of parameters that affect performance. Next, we
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present our contributions to vector-based relatedness measures which include a pa-

rameter analysis and comparison between different vector representations. Next, we

compare against other measures for estimating direct relatedness, and achieve state

of the art results for both association measures and vector-based relatedness mea-

sures. These results, show the effectiveness of association measures and vector-based

measures at estimating semantic relatedness, and are critical to developing indirect

relatedness measures. Lastly, we draw conclusions on how these results impact our

work at estimating indirect relatedness.

4.1 Association Measures

In this section, we apply association measures to estimating direct semantic simi-

larity and relatedness. In our method, we adapt several existing association measures

to fit within our framework, which introduces several novel components. These mod-

ifications greatly improve results across evaluation datasets. Novel contributions of

our method include:

1. Concept Associations - Use of UMLS concept co-occurrence counts rather than

word or term co-occurrence counts to account for lexical variation at the syn-

onymous level.

2. Concept Expansion - Introduction of concept expansion, a technique that prop-

agates frequency counts up the UMLS hierarchy to account for lexical variation

at the hyponymous level (e.g. a migraine is a headache).

3. Set Associations - Extension of association measures to quantify the association

between sets of terms rather than single term-term pairs.
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4. UMLS::Association1 - An open-source Perl implementation of the methods dis-

cussed in this section.

Figure 12 shows a high level view of our method. It consists of three components:

Co-occurrence Collection, Contingency Table Generation, and Quantification. First,

concept co-occurrence counts are collected over MetaMapped text. This co-occurrence

information is stored and used in later calculations. Synonym level lexical variations

and multi-word term identification are accounted for since MetaMapped text is used

in place of plain text. Second, a contingency table is generated from the collected co-

occurrence counts. The contingency table optionally includes hierarchical information

from the UMLS in the case of concept expansion, or incorporates co-occurrence values

of sets of terms in the case of set associations. Third, the values in the contingency

table are used to quantify the association between the concept pair. Each step is

explained below.

Fig. 12. The association measure calculation process. Our specific implementations

are available in UMLS::Association, which uses MetaMapped Text as corpus,

and Text::NSP for association equation calculations.

1https://metacpan.org/pod/UMLS::Association/
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Co-occurrence Collection: We extract UMLS concept co-occurrence counts

from MetaMapped text to build a database from which association measures are

calculated. Although using concepts rather than terms provides stop word removal,

normalization, and identification of multi-word concepts, it introduces a complication

of ambiguity when the text is mapped to concepts. This ambiguity is caused by tokens

for which multiple CUI mappings are valid. Consider the phrase, Stop Smoking. The

term Stop has just one possible meaning, and therefore MetaMap assigns only the

CUI C1947925 to that term. Smoking on the other-hand has three possible inter-

pretations, C0037369 (Smoking), C0453996 (Tobacco Smoking), and C1881674

(Smoke Emission), so MetaMap assigns three CUIS to the token Smoking. We treat

ambiguous mappings as an occurrence of each possible term pair. In our Stop Smoking

example, concept co-occurrence counts are incremented for: C1947925 C0037369,

C1947925 C0453996, and C1947925 C1881674.

Contingency Table Generation: The co-occurrence counts are used to gener-

ate a contingency table as described in Section 2.5. Optionally, the UMLS hierarchy

is used for concept expansion (Section 4.1.1), or the contingency table is augmented

for set associations (Section 4.1.2).

Quantification: We calculate the association between two concepts using the

counts in the contingency table using the Text::NSP package (Section 2.2.3), which

includes a wide range of association measures. The result is a single number to

quantify the relatedness between the two concepts.

4.1.1 Concept Expansion

Here, we describe concept expansion which accounts for lexical variation at the

hyponymous level. Concept expansion propagates the co-occurrence counts of a con-

cept’s descendants up the UMLS hierarchy, such that concept co-occurrence counts
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include all co-occurrences of a concept pair’s descendants. For example, the concept

co-occurrence count of Tobacco Consumption - Heart Diseases could reasonably in-

clude counts of Smoking - Heart Diseases, or Smoking - Coronary Heart Diseases,

since Smoking and Coronary Heart Diseases are more specific mentions of their par-

ent term. Concept expansion captures this relationship by propagating co-occurrence

counts up the UMLS hierarchy for all descendants of a concept. For a given term pair

the co-occurrence counts of the concept pair and any of their children is calculated.

This process is best shown through an example. Consider the simplified hierarchy in

Figure 13 of the concepts Heart Diseases and Tobacco Consumption (In reality, there

are more children of this pair, but it creates an ineffective example to show the entire

descendant hierarchy).

Fig. 13. Simplified descendant hierarchies of C0018799 (Heart Diseases) and

C0543414 (Tobacco Consumption).

The contingency table for Tobacco Consumption - Heart Diseases is constructed

such that co-occurrences of all concept pairs in the descendant hierarchy are recorded.

Using our example, when retrieving the co-occurrence frequency, n11, co-occurrences

are counted by finding all occurrences of the term pairs: Tobacco Consumption - Heart

Diseases OR Smoking - Heart Diseases OR Tobacco Consumption - Ischemic Heart

58



Diseases OR Smoking - Ischemic Heart Diseases OR Tobacco Consumption - Carci-

noid Heart Disease OR Smoking - Carcinoid Heart Disease OR Tobacco Consumption

- Coronary Heart Diseases OR Smoking - Coronary Heart Diseases. In this manner

the semantic meaning of the concept captures hyponymous concept co-occurrences,

producing more accurate association scores.

4.1.2 Set Association

Set associations are an extension of association measures in which we quantify

the association between one set of concepts and another set of concepts rather than

a single concept and another single concept. This is accomplished by modifying the

contingency table values n11, n1p, np1, and npp (described in Section 2.5) prior to

plugging them into an association measure equation. Specifically, we redefine: n11 as

the sum of co-occurrences between set A and set C. n1p as the sum of co-occurrences

between set A and any term. np1 as the sum of co-occurrences between set C and

any term. npp remains unchanged, and is the total co-occurrence count.

Figure 14 shows an example of two sets of terms. Set A, indicated by white

circles, and set C, indicated by black circles co-occur with one another, and other

terms, indicated by gray squares. Co-occurrences are shown as edges, the number

next to the edge indicates that term pair’s co-occurrence count. In this example:

n11 = 5+2+4=11, n1p = 5+2+4+8=19, np1 = 9+5+2+4+7=27, and npp = the total

number of co-occurrences in the dataset. These numbers are then plugged into an

association measure equation to output a scalar value for the association between sets

A and C.

Concept expansion can be generalized as a special case of set associations, for

which we define set A as concept A and its ancestors in the UMLS, and set C as

concept C and its ancestors in the UMLS. Set associations have direct applicability

59



Fig. 14. A diagram showing set A and set C co-occurrences. Set A and C occur both

with each other, and terms not in either set.

in indirect association measures (Chapter 5), and possible applications in other fields

such as sentence or phrase similarity, or automatic keyword identification.

4.1.3 Experimental Details

In the next section we present a parameter analysis of association measures,

for which we use UMLS::Association version 0.13. Co-occurrence counts were col-

lected from the 2015 MetaMapped MEDLINE baseline. For concept expansion, we

used SNOMED CT in the UMLS version 2016AA with parent/child (PAR/CHD)

relations. We use the SNOMED CT taxonomy, because it is a taxonomy of clin-

ical terms, and our evaluation data contains clinical terms. Analysis is performed

as described in Section 2.4.1 by reporting Spearman’s Rank Correlation (ρ) on the

UMNSRS tagged for Similarity and Relatedness, and the MiniMayo dataset rated

by coders and by physicians, and using Fisher’s R-to-Z transformation to calculate

the degree of significance between the correlation results. Statistical significances are

used throughout, and here we define significant, or significance, to mean statistically

significantly different correlations with two-tailed p < 0.05.
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4.1.4 Association Measure Results

In our experiments, we attempt to answer several questions, the first of which

is, how well do association measures perform for estimating semantic similarity and

relatedness, and does using concept co-occurrences rather than term co-occurrences

improve performance. This is followed by a comprehensive analysis of the effects

of various hyper-parameters, such as corpus size, window size, enforcement of word

order, and thresholding. Finally, we determine if our method of concept expansion

improves results, and analyze the performance of individual association measures.

Do Concept Associations Outperform Term Associations? In this ex-

periment, we generate baseline results of term co-occurrences rather than concept

co-occurrences. We use the compoundify tool to identify multi-word terms in text,

from which term co-occurrences are found using Text::NSP. We compare these term-

term pair results to concept-concept pair results. For both techniques we use the

same corpus and hyper-parameter settings, that is: The 2015 MEDLINE baseline

titles and abstracts from the years 1975 to present. We use a window size of 8, do

not consider word order in the calculation, and do not apply a minimum frequency

threshold. Concept expansion is not applied. In this manner we can directly compare

the performance of using term co-occurrence counts to concept co-occurrence counts.

Results are shown in Table 7, where only the highest correlation among all association

measures is shown for each dataset.

The results show that using concept co-occurrences rather than term co-occurrences

significantly increases the performance for the UMNSRS Rel dataset. Additionally,

using concepts rather than terms allows for more term pairs (indicated by n) to be

calculated. Conclusion: Since performance increases significantly for UMNSRS Rel,

and because n is always larger when using concept co-occurrences, we recommend us-
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Correlation Coefficients (ρ) and number of samples (n)

MiniMayo Cod MiniMayo Phys UMNSRS Sim UMNSRS Rel

terms 0.6151 (20) 0.6985 (20) 0.6401 (122) 0.5054 (211)
concepts 0.8092 (29) 0.8405 (29) 0.7061 (392) 0.6559 (418)

p-value 0.1902 0.2501 0.2460 0.0069*

Table 7. Results and statistical analysis of using term associations versus concept

associations. Bold terms indicate the best performing method for a dataset.

Statistically significant p-values are marked by an asterisk

ing concept co-occurrence counts rather than term co-occurrence counts for semantic

association measures.

What is the best subset of MEDLINE to use? Language use and the

meaning of words change over time. This can be the result of new science, changes

in word meanings, or new vocabulary. Outdated information or word usage affects

co-occurrences patterns in text, and therefore may influence association measures.

For instance, tobacco use was considered healthy until studies in the 1960’s indicated

otherwise. To determine the impact of these effects, we divide the MetaMapped

MEDLINE baseline into three subsets: all of MEDLINE (1809+), which contains

citations dating back to 1809; MEDLINE from the year 1975 onward (1975+), and

MEDLINE from the year 2000 onward (2000+). We chose 1975+ because prior to

1975, only 2% of the citations contained an abstract, and we chose 2000+, because

it seems adequately representative of recent citations. Table 8 shows the results of

using these three date ranges on each evaluation dataset. Results using the best hyper-

parameters are shown, that is, the best window size, with or without enforcement of

word order, with or without concept expansion, and best association measure.

The results and statistical analysis show that there is no significant difference be-

tween any of the date ranges. A disadvantage of using 2000+ though, is that scores for

all term pairs are not generated for both UMNSRS datasets. Conclusion: Although
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Correlation Coefficients (ρ) and number of samples (n)

Date Range MiniMayo Cod MiniMayo Phys UMNSRS Sim UMNSRS Rel

1809+ 0.7777 (29) 0.8093 (29) 0.7115 (392) 0.6247 (418)
1975+ 0.7811 (29) 0.8109 (29) 0.7109 (392) 0.6267 (418)
2000+ 0.8231 (29) 0.8132 (29) 0.6885 (390) 0.5870 (414)

p-values

Date MiniMayo Cod MiniMayo Phys UMNSRS Sim UMNSRS Rel
Range 1809+ 1975+ 1809+ 1975+ 1809+ 1975+ 1809+ 1975+

1975+ 0.9761 - 0.9840 - 0.9840 - 0.9601 -
2000+ 0.6455 0.6672 0.9681 0.9840 0.8287 0.5419 0.3898 0.3681

Table 8. Results and statistical analysis of different date range subsets of MEDLINE.

Bold terms indicate the best performing method for a dataset. The p-val-

ues table assesses the significance of difference between date ranges for each

dataset. No p-values are significant.

there is no statistical significance between the results generated using different MED-

LINE subsets, we prefer using 1975+ because this is when recording abstracts became

common, and association scores are calculated for all term pairs in the dataset. The

p-values of using 1975+ compared to 1809+ are very high, >0.96, indicating that

using 1975+ is a good estimate of 1809+. The lack of significant difference between

results is a testament to the robustness of association measures to corpus size, but

also likely a result of the exponential growth of publications. The number of publica-

tions in more recent years greatly outnumbers older publications, drowning out older

word usage and outdated science.

What is the best window size, and does word order matter? When

collecting co-occurrence counts, the window size, which is the proximity between

words for which co-occurrences are counted, may be changed. Similarly word order,

which is whether or not terms only after, or terms both before and after the term of

interest are recorded may be enforced. Association measures traditionally use bigram

counts, meaning the window size is 1, and word order is enforced. For example, if Stop
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Smoking is seen in text, the co-occurrence count (n11) between Stop and Smoking will

be incremented, but not Smoking and Stop. This makes sense for many tasks, but it is

not clear that word order matters, or that only direct adjacencies should be counted

when estimating relatedness; particularly because MetaMap automatically detects

and identifies multi-word terms. Let’s expand the example to the text, “Smoking

increases risk for Heart Disease and Lung Disease”. It makes sense to increment co-

occurrences for both Smoking and Heart Disease, Smoking and Lung Disease, Heart

Disease and Smoking, and Lung Disease and Smoking.

Here, we compare the performance of collecting co-occurrence counts with a

window size 1 and enforcing word order (window 1 ordered), a window size of 1 and

ignoring word order (window 1 no order), a window size of 8 and enforcing word

order (window 8 ordered), and a window size of 8 and ignoring word order (window

8 no order). When enforcing word order, we increment co-occurrence counts for all

word pairs of the word of interest and each of the window size words after it. When

ignoring word order, we increment co-occurrence counts for all word pairs of the

word of interest and each of the window size words before and after it. In both cases,

sentence boundaries are ignored. Results are shown in Table 9 using the 1975+ subset

of the MetaMapped MEDLINE baseline as the corpus, and the best result among all

association scores, and with or without concept expansion reported.

When comparing word order enforcement and window sizes, the results are never

significantly different. This indicates that association measure are robust to changes

in these parameters. The p-values are all quite high for window 8 ordered versus un-

ordered, while the p-values are slightly lower for window 1 ordered versus unordered.

This indicates that when using larger window sizes, order and no-order distributions

more similar than those generated with a window size of 1. This is likely because

co-occurrences that cross sentence boundaries are counted, and an increased count of
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Correlation Coefficients (ρ) and number of samples (n)

parameters MiniMayo Cod MiniMayo Phys UMNSRS Sim UMNSRS Rel

window 1 ordered 0.8213 (29) 0.8337 (29) 0.6890 (392) 0.5924 (418)
window 1 no order 0.7811 (29) 0.8109 (29) 0.7109 (392) 0.6267 (418)
window 8 ordered 0.8219 (29) 0.8483 (29) 0.7208 (392) 0.6559 (418)
window 8 no order 0.8281 (29) 0.8484 (29) 0.7299 (392) 0.6512 (418)

p-values
comparison MiniMayo Cod MiniMayo Phys UMNSRS Sim UMNSRS Rel

best window 1 vs. best window 8 0.9362 0.8572 0.5823 0.4777
best ordered vs. best no order 0.9442 1.0000 0.7872 0.9045

window 1 order vs. window 1 no order 0.6818 0.8026 0.5485 0.4295
window 8 order vs. window 8 no order 0.9442 1.0000 0.7872 0.9045

Table 9. Results of different window sizes and how enforcement of word order af-

fects performance. Bold terms indicate the best performing method for each

dataset. The p-values assess the significance of difference for the comparison

of that row on each evaluation dataset. No p-values are significant.

co-occurrences overall means that the same distribution is estimated. Conclusion:

A window size of 8, and ignoring word order is preferred for theoretical reasons,

although the improvements are not significant.

Does concept expansion increase performance? The process of concept

expansion described in section 4.1.1 augments the co-occurrence counts of concepts

by using the UMLS hierarchy. Here, we compare the results across window sizes, and

with or without word order. Results both with (with) and without (w/o) concept

expansion are listed in Table 10. Only the best performing association measure for the

parameters listed is shown. The number of terms compared (n) does not increase with

concept expansion, so just a single n is listed. The results show that concept expansion

does not significantly improves performance for any dataset or parameter settings.

Conclusion: Concept expansion requires additional computation cost, and does not

significantly increase performance for any dataset or parameter settings. For these

reasons it is not recommended, however concept expansion may increase the number
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of terms that can be compared and provide more accurate co-occurrence statistics

particularly when using smaller corpora, for which data sparsity is a problem.

Correlation Coefficients (ρ) and number of samples (n)

MiniMayo Cod MiniMayo Phys
parameters w/o with n w/o with n

1975+ window 1 ordered 0.8213 0.8010 (29) 0.8337 0.8320 (29)
1975+ window 1 no order 0.7731 0.7811 (29) 0.8043 0.8109 (29)
1975+ window 8 ordered 0.8092 0.8219 (29) 0.8405 0.8483 (29)
1975+ window 8 no order 0.8162 0.8281 (29) 0.8419 0.8484 (29)

parameters UMNSRS Sim UMNSRS Rel
w/o with n w/o with n

1975+ window 1 ordered 0.6705 0.6890 (392) 0.5900 0.5924 (418)
1975+ window 1 no order 0.6983 0.7109 (392) 0.6267 0.3201 (418)
1975+ window 8 ordered 0.7061 0.7208 (392) 0.6559 0.6372 (418)
1975+ window 8 no order 0.7129 0.7299 (392) 0.6512 0.6374 (418)

p-values
with vs. w/o concept expansion MiniMayo Cod MiniMayo Phys UMNSRS Sim UMNSRS Rel

1975+ window 1 ordered 0.8337 0.9840 0.6312 0.9601
1975+ window 1 no order 0.9442 0.9442 0.7263 0.8729
1975+ window 8 ordered 0.8870 0.9203 0.6745 0.6455
1975+ window 8 no order 0.8966 0.9362 0.6241 0.7339

1975+ window 1 best 0.8650 0.9840 0.5353 0.8729
1975+ window 8 best 0.9203 0.9442 0.5961 0.9840

Table 10. Results and statistical analysis of whether or not concept expansion in-

creases performance. The p-values table assesses the significance of differ-

ence between using concept expansion and not using concept expansion.

Each row indicates the parameters used for the comparison, for instance the

1975+ window 1 ordered row shows the p-values for the results with versus

without concept expansion using the 1975+ MEDLINE subset, a window

size of 1, and enforcement of word order. The 1975+ window 1 best and

1975+ window 8 best rows compare the best performance with or without

word order for that window size. Bold values indicate the best performing

set of parameters for each dataset. No p-values are significant.

Does minimum count thresholding improve results? Co-occurrence counts

can be noisy as a result of the wording of a sentence or paragraph, choosing a window

size that is too large, or ambiguity when mapping text to a concepts. A minimum co-

occurrence count threshold may be applied to reduce co-occurrence noise. Applying
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this threshold eliminates any co-occurrence counts from the co-occurrence database

that are less than or equal to the minimum threshold (e.g. a threshold of 1 removes

any term pairs that co-occur just once). Here, we compare performance using no

minimum co-occurrence threshold, and thresholds of 1, 3, 5, and 10. Results are

shown in Table 11.

Minimum Threshold (thresh) Results

1975+ window 8 1975+ window 1

thresh dataset score n p-value thresh dataset score n p-value

none cod 0.8281 29 - none cod 0.8213ˆ 29 -
none phy 0.8484 29 - none phy 0.8337 29 -
none sim 0.7299ˆ 392 - none sim 0.7109ˆ 392 -
none rel 0.6559ˆ 418 - none rel 0.6267ˆ 418 -

1 cod 0.8301 29 0.9840 1 cod 0.8178 29 0.9681
1 phy 0.8460 29 0.9761 1 phy 0.8310 29 0.9761
1 sim 0.7213 390 0.8026 1 sim 0.6991 390 0.7414
1 rel 0.6404 416 0.7039 1 rel 0.6109 414 0.7114

3 cod 0.8339 29 0.9442 3 cod 0.8178 29 0.6981
3 phy 0.8462 29 0.9762 3 phy 0.8366 29 0.9761
3 sim 0.7184 387 0.7339 3 sim 0.6627 386 0.2077
3 rel 0.6305 412 0.5333 3 rel 0.5471 402 0.0836

5 cod 0.8373 29 0.9124 5 cod 0.8178 29 0.9681
5 phy 0.8537 29 0.9442 5 phy 0.8328 29 0.9920
5 rel 0.7080 387 0.5287 5 rel 0.6373 384 0.0601
5 sim 0.6226 407 0.4178 5 sim 0.5147 396 0.0178*

10 cod 0.8410 29 0.8808 10 cod 0.7607 29 0.5619
10 phy 0.8537 29 0.9442 10 phy 0.7622 29 0.4777
10 rel 0.6970 383 0.3524 10 rel 0.6205 368 0.2051*
10 sim 0.5985 398 0.1770 10 sim 0.4946 383 0.0063*

Table 11. Results of various minimum thresholds. The left set of tables shows results

using a window size of 8, and the right shows results using a window size of

1. The highest correlation using a threshold for each dataset and window

size is bolded. A ˆ indicates that using no threshold performed the best

for the dataset and window size. The p-values shows the degree of signifi-

cance between the threshold and using no threshold. Statistically significant

p-values are marked with an asterisk (*).

The results show that using a threshold has little impact on performance using

67



either a window size of 8 or 1, although there are significantly different results with

thresholds of 5 and 10 and a window size of 1. The number of terms compared

(n) decreases as the threshold size increases for both a window size of 1 and 8.

Conclusion: The results show applying a minimum co-occurrence threshold of 3

or less does not significantly change the performance of association measures. This

shows that association measures are robust to the noise that thresholds attempt to

remove. Applying a threshold can greatly reduce the number of elements of a co-

occurrence database, making thresholding a method to improve computation time

while not significantly decreasing performance.

What is the best association measure? For all the results shown so far we

have reported the best result among all association measures. Here, we determine

which association measure is best. To do this, we compare both the best results

across all parameters (any), and the results using a recommended set of parameters

(rec.). The recommended parameters are chosen from the results of experiments in

previous subsections, and are: MetaMapped MEDLINE citations from 1975 onwards

(1975+), a co-occurrence window size of 8 (window 8), ignoring word order (no order),

not applying a minimum co-occurrence threshold, and not using concept expansion.

Table 12 shows these results, and p-values to assess the statistical significances using

five association measures: Log Likelihood Ratio (ll), Left Tailed Fisher (lf ), Pearson’s

Chi Squared (χ2), Dice Coefficient (dice), and Odds Ratio (odds).

Analysis of the results show that when using the recommended parameters (best

of rec. vs. worst of rec.) there is no significant difference between any of the associ-

ation measures on three of four evaluation datasets. There is a significant difference

for UMNSRS Sim, for which Odds Ratio (odds) significantly outperforms Dice Coef-

ficient (dice), the worst performing association measure for that dataset. It does not

significantly outperform any other measure though (p = 0.2585 for Odds against Log
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Association Measure Results using Recommended Parameters

MiniMayo Coders MiniMayo Phys UMNSRS Sim UMNSRS Rel

ll 0.7945 29 ll 0.8138 29 ll 0.6708 392 ll 0.6378 418
textbf χ2 0.8162 29 χ2 0.8419 29 χ2 0.6934 392 χ2 0.6406 418

dice 0.7207 29 dice 0.7103 29 dice 0.5298 392 dice 0.6108 418
odds 0.8027 29 odds 0.8188 29 odds 0.7129 392 odds 0.6266 418

lf 0.7582 29 lf 0.7199 29 lf 0.6782 392 lf 0.6512 418

freq 0.7431 29 freq 0.7603 29 freq 0.6604 392 freq 0.6267 418

Association Measure Results using any Parameters

MiniMayo Coders MiniMayo Phys UMNSRS Sim UMNSRS Rel

ll 0.8234 29 ll 0.8382 29 ll 0.6764 392 ll 0.6439 29
χ2 0.8288 29 χ2 0.8537 29 χ2 0.7044 392 χ2 0.6427 29

dice 0.7120 29 dice 0.7002 29 dice 0.5428 392 dice 0.6200 29
odds 0.8410 29 odds 0.8241 29 odds 0.7299 392 odds 0.6251 29

lf 0.8261 29 lf 0.7176 29 lf 0.6880 392 lf 0.6559 29

p-values summary

MM Cod MM Phys UMNSRS Sim UMNSRS Rel

best of rec. vs. worst of rec. 0.2301 0.1471 0.0000* 0.3843
best of any vs. worst of any 0.3953 0.2187 0.0000* 0.3320

best any vs. best rec. 0.7718 0.8808 0.6241 0.9045

best rec vs. freq 0.4965 0.4065 0.1645 0.5485

p-values for UMNSRS Sim using recommended parameters

ll χ2 dice odds lf

χ2 0.5552 - - - -
dice 0.0019* 0.0002* - - -
odds 0.2585 0.5892 0.0000* - -

lf 0.8493 0.6892 0.0010* 0.3472 -

freq 0.1949 0.3953 0.0045* 0.1645 0.6527

p-values for UMNSRS Sim using any parameters

ll χ2 dice odds

χ2 0.4533 - - -
dice 0.0028* 0.0001* - -
odds 0.1389 0.4654 0.0000* -

lf 0.7642 0.6599 0.0010* 0.2380

Table 12. Results using the recommended parameters, and the best of any parame-

ters for each association measure (top two tables). Each sub-table shows

the results for a single dataset. The columns within the subtables show

the association measure, the Spearman’s Rank Correlation, and the num-

ber of samples. The best results for each dataset are bolded. The p-values

summary table shows the p-values of the comparison described in that row.

Since UMNSRS Sim is the only dataset with significant differences, the

bottom two tables show p-values between all association measures for that

dataset.The p-value tables for UMNSRS Sim indicate p-values for each as-

sociation measure versus other association measures for the UMNSRS Sim

dataset using recommended (second from bottom table) or any parameters

(bottom table). Statistically significant p-values are marked with an aster-

isk.
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Likelihood Ratio (ll), the second worst).

We also compare results across the best performance using any parameter settings

(date range, window size, word order, threshold, with or without concept expansion).

These results are shown in the second from top table of Table 12, and p-values are

shown in the best of any vs. worst of any row of the p-values table. Again, there

is no significant difference between any of the association measures on three of four

evaluation datasets. There is a significant difference for UMNSRS Sim, for which

Odds significantly outperforms Dice, the worst performing association measure for

that dataset. It does not significantly outperform any other measure though (p =

0.1389 for Odds against ll, the second worst). The results for any parameters and the

results for recommended parameters indicate that choosing an association measure

is somewhat arbitrary. Dice is not recommended, since Odds Ratio outperforms it

using any parameters and recommended parameters on the UMNSRS Sim dataset.

To further compare different association measures we also compare each associa-

tion measure to each other using recommended and any parameters on the UMNSRS

Sim dataset. This was selected, since it is the only dataset for which any associa-

tion measure is significantly different. The p-values in these tables show that every

association measure, significantly outperforms dice using recommended and any pa-

rameters, however none of the association measures significantly outperform any of

other association measures.

The similarity between results using any parameters and recommended param-

eters indicates that association measures are robust to parameter selection, so we

compare the best results using any parameters, to the best results using the recom-

mended parameters (best any vs. best rec.). We find that for all datasets there is no

significant difference between performance, and confirm the robustness of association

measures to the parameter selection.
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Lastly, we compare the performance of association measures using recommended

parameters to using frequency of co-occurrence (best rec. vs. freq), which scores

term-term pairs as the number of times they co-occur in a corpus. This serves as

our baseline. For all datasets association measures do not outperform the frequency

baseline. This is surprising, but hints at the power of co-occurrence information in

estimating semantic similarity and relatedness. Conclusion: Selecting an associ-

ation measure is somewhat arbitrary, but we do not recommend Dice, since every

other association measure significantly outperforms it. Left Fisher is computation-

ally the most expensive, so is not recommended for large datasets. Odds does not

take into account npp, in its association calculation, which differentiates it from other

association measures, and may affect its selection for theoretical reasons.

Summary

In this section, we presented an in depth analysis of parameters that affect the

performance of association measures at estimating direct semantic relatedness. We

found that using UMLS concepts instead of terms increases performance, association

measures are robust to corpus size and our selection of a MEDLINE subset, associ-

ation measures are robust to window size and word order, concept expansion does

not significantly increase performance, applying a minimum co-occurrence threshold

of 3 or less does not affect performance, and that choosing an association measure

equation is somewhat arbitrary. This robustness to parameter choice is encouraging,

and indicates that association measures are applicable for a wide range of training

corpora and applications, including the development of indirect association measures.

Based on these findings, we select some recommended parameters, and use them to

evaluate direct and indirect association moving forward. These parameters are to use

concept co-occurrence counts collected from titles and abstracts of MEDLINE from
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dates ranging from 1975 onward with a window size of 8 and word order ignored, do

not use concept expansion, apply a minimum co-occurrence threshold of 1, and use

the Pearson’s chi squared (χ2) association measure.

4.2 Vector Representations

In this section, we perform an analysis of different vector representations and pa-

rameters affecting their performance at estimating direct semantic relatedness. Since

vector cosine distance can intrinsically calculate indirect relatedness - no direct co-

occurrence is needed to calculate the cosine of two vectors - they are directly applicable

to calculating indirect relatedness. Additionally, distributional context vectors have

been shown to perform well on direct semantic similarity and relatedness tasks [102,

103, 104], and are therefore exciting for our research.

In previous work, vectors are built for individual words, and the best method

to represent multi-word terms (e.g. New York City, or Heart Attack) is unclear. To

answer this question, we explore several aggregation methods for vector representa-

tions of multi-word terms. An answer to this question would be incomplete without

addressing the challenges of sparseness and noise of distributional context vectors.

We define sparseness as the vectors contain mostly zero values, and noise as infor-

mation that is overly general and does not contribute to the word’s representation.

Dimensionality reduction techniques may be applied to transform the data from a

higher dimensional space to a lower dimensional space, in which sparseness and noise

are reduced. Most previous methods exploring feature extraction for quantifying

the relatedness between biomedical and clinical term pairs have ignored multi-word

terms [105, 106, 107]. We analyze several dimensionality reduction techniques for each

multi-word term aggregation method, and vary the vectors dimensionality parameter

for these techniques. Specifically, the contributions of this section are an analysis of:
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• Multi-Word Term Aggregation Methods: We compare the performance of sum-

mation of component word vectors, averaging of component word vectors, direct

creation of multi-word term vectors using the compoundify tool, and direct cre-

ation of concept vectors using the MetaMap tool.

• Dimensionality Reduction Techniques: singular value decomposition (SVD),

word embeddings using skip-gram, and word embeddings using continuous bag

of words (CBOW) are evaluated as dimensionality reduction techniques. Direct

co-occurrence vectors (direct) of word-to-word, term-to-term, or concept-to-

concept co-occurrences are used as a baseline.

• Vector Dimensionality: the dimensionality of the generated vectors is a param-

eter that effects performance. We evaluate each multi-word term aggregation

method’s and dimensionality reduction technique’s performance at dimension-

alities of 100, 200, 500, 1000, and 1500. For SVD we also evaluate at dimen-

sionalities of 2000, 2500, and 3000.

4.2.1 Methods and Experimental Details

Analysis is performed as described in Section 2.4.1 by reporting Spearman’s

Rank Correlation (ρ) on the UMNSRS tagged for Similarity and Relatedness, and

the MiniMayo dataset rated by coders and by physicians, and using Fisher’s R-to-Z

transformation to calculate the degree of significance between the correlation results.

Figure 15 shows the overall method used to generate relatedness scores. The

major steps in this process are: 1) preprocess the text, 2) create vector representa-

tions, 3) aggregate terms, and 4) calculate relatedness. The arrows show how vector

representations flow through the process, and the boxes show different steps in the

process. In this section, we discuss each major step.
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Fig. 15. Procedure for generating vector representations using different dimensionality

reduction techniques and term aggregation methods.
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Corpus Preprocessing: We use the titles and abstracts from the 2015 MED-

LINE baseline as the training corpus for all techniques, however different multi-word

term aggregation methods, and different dimensionality reduction techniques require

different preprocessing steps. Figure 15 shows how each vector representation was

obtained. First, the raw 2015 MEDLINE corpus, and the 2015 MetaMapped MED-

LINE corpus are downloaded for the years 1975 onward. The 2015 MetaMapped

MEDLINE baseline is used directly, without further preprocessing to generate CUI

term aggregation vectors, but the raw (not MetaMapped) 2015 MEDLINE corpus

must be preprocessed for the other methods. The raw corpus is converted to all

lowercase, and all apostrophe s’s (‘s) are removed. This normalized corpus is used

as input for each dimensionality reduction technique to generate the word vectors

used in the sum and mean aggregation methods. To generate compound vectors, this

normalized corpus is compoundified using the compoundify tool.

Vector Representation and Dimensionality Reduction: When applying

a dimensionality reduction technique, the dimensionality of the resulting vector is a

parameter. A dimensionality that is too small will not be able to effectively differ-

entiate between words in vector space. A dimensionality that is too large does not

successfully solve the problems of sparsity and noise. We aim to find the optimal

vector dimensionality, that is, the most compact vector representation with the best

performance.

We used the following packages and settings to obtain our vector representations

and perform dimensionality reduction:

1. Direct Representation: We used the Text::NSP package to create a

direct co-occurrence matrix, the rows of which are direct co-occurrence vector

representations for terms. To construct these direct representations, we used
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a windows size of 8, a frequency cutoff of 5, and removed stopwords (stopword

removal is a package option, for a complete list of stop words see the Text::NSP

package).

2. Singular Value Decomposition. We ran the MATLAB R2016b implementation

of sparse matrix SVD (svds) on the direct representation matrix, and used each

row of the resulting U matrix as a reduced vector.

3. Word Embeddings: We used the word2vec package developed by Mikolov, et

al. [23]. for the continuous bag of words (CBOW) and skip-gram word (SG)

embedding models with a window size of 8, a frequency cutoff of 5, and default

settings for all other parameters.

Aggregation Methods: To compute the relatedness of multi-word terms us-

ing distributional context vectors, an aggregation method must be used. Typically,

distributional context vectors are created for individual words in a corpus. For exam-

ple, the words “heart” and “attack” are represented by their vector representations,

−−−→
heart and

−−−−→
attack. These component word vectors of a multi-word term must be com-

bined to create a single vector for that term (
−−−−−−−−→
heart attack). We compare two combine

operations:

1. sum - the multi-word term vector is the summation of the component word

vectors -
−−−→
heart+

−−−−→
attack =

−−−−−−−−→
heart attack

2. mean - the multi-word term vector is the average of the component word vectors

- (
−−−→
heart+

−−−−→
attack)/2 =

−−−−−−−−→
heart attack

Rather than combine word vectors after construction, multi-word term vectors

may be constructed directly from a preprocessed training corpus in which multi-word
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terms have been identified. For example, in the training corpus, any occurrence of

“heart” followed by “attack” will be tagged as the multi-word term “heart attack”

rather than either of the component word vectors. A heart attack vector may then

be directly from this corpus. We compare two preprocessing methods for direct

construction of multi-word term vectors:

3. compounds - text is preprocessed using the compoundify tool. Multi-word

term vectors are directly constructed from this compoundified text.

4. CUIs - the MetaMapped MEDLINE baseline is used, which contains text that

has been preprocessed using the MetaMap tool. MetaMap maps raw text to

UMLS concepts (CUIs) resulting in an ordered list of CUIs, from which multi-

word concept vectors are directly constructed. A complication of MetaMap

is that multi-word terms may be ambiguous. In these cases, MetaMap will

generate all possible concepts that map to that term. When this occurs, as is

the case with association measures (Section 4.1), we replace the term with each

possible concept mapping.

4.2.2 Vector Representations Results

Table 13 shows all of the results for each term aggregation method, dimensionality

reduction method, and vector dimensionality tested. Values in each cell show the

correlation, slash, n, the number of samples compared. A hyphen (’-’) indicates a

score could not be calculated using those parameters. CBOW at a dimensionality of

1500 could not be calculated due to errors in the word2vec package. The first column

(“100/e”) shows results for a dimensionality of 100, and results with direct vector

representation (for which dimensionality is the vocabulary size and does not vary).

A discussion and analysis of these results is presented in the next few subsections.
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MiniMayo Phys MiniMayo Cod

Dimensionality Dimensionality

Aggreg. Red. 100/e 200 500 1000 1500 100/e 200 500 1000 1500

sum

SG 0.78/29 0.79/29 0.74/29 0.76/29 0.74/29 0.79/29 0.80/29 0.78/29 0.79/29 0.78/29

CBOW 0.81/29 0.82/29 0.79/29 0.75/29 - 0.82/29 0.82/29 0.79/29 0.78/29 -

SVD 0.38/28 0.57/28 0.56/28 0.79/28 0.66/28 0.36/28 0.53/28 0.52/28 0.54/28 0.71/28

direct 0.37/28 - - - - 0.34/28 - - - -

mean

SG 0.78/29 0.79/29 0.74/29 0.76/29 0.74/29 0.79/29 0.80/29 0.78/29 0.79/29 0.78/28

CBOW 0.81/29 0.82/29 0.79/29 0.75/29 - 0.82/29 0.81/29 0.79/29 0.78/29 -

SVD 0.37/29 0.52/29 0.54/29 0.77/29 0.65/29 0.36/29 0.53/29 0.53/29 0.54/29 0.71/29

direct 0.34/28 - - - - 0.36/29 - - - -

compound

SG 0.78/28 0.78/28 0.77/28 0.76/28 0.75/28 0.75/28 0.76/28 0.76/28 0.75/28 0.76/28

CBOW 0.79/28 0.80/28 0.79/28 0.77/28 - 0.76/28 0.78/28 0.78/28 0.78/28 -

SVD 0.65/28 0.74/28 0.75/28 0.72/28 0.70/28 0.65/28 0.73/28 0.70/28 0.72/28 0.72/28

direct 0.49/28 - - - - 0.51/28 - - - -

cui

SG 0.76/29 0.76/29 0.77/29 0.76/29 0.76/29 0.77/29 0.77/29 0.78/29 0.77/29 0.79/29

CBOW 0.77/29 0.75/29 0.78/29 0.76/29 - 0.83/29 0.83/29 0.83/29 0.82/29 -

SVD 0.41/28 0.42/28 0.50/28 0.40/28 0.38/28 0.35/28 0.39/28 0.58/28 0.48/28 0.35/28

direct 0.37/28 - - - - 0.26/28 - - - -

UMNSRS Rel UMNSRS Sim

100/e 200 500 1000 1500 100/e 200 500 1000 1500

sum

SG 0.70/374 0.70/374 0.68/374 0.69/374 0.68/374 0.59/396 0.61/396 0.62/396 0.62/396 0.62/396

CBOW 0.68/374 0.69/374 0.66/374 0.61/374 - 0.55/396 0.61/396 0.61/396 0.58/396 -

SVD 0.53/331 0.52/331 0.55/331 0.56/331 0.52/331 0.41/343 0.36/343 0.45/343 0.47/343 0.45/343

direct 0.46/331 - - - - 0.42/343 - - - -

mean

SG 0.70/374 0.70/374 0.68/374 0.69/374 0.68/374 0.58/397 0.60/397 0.61/397 0.61/397 0.61/397

CBOW 0.68/374 0.69/374 0.66/374 0.61/374 - 0.55/397 0.59/397 0.59/397 0.57/397 -

SVD 0.53/332 0.52/332 0.55/332 0.55/32 0.52/332 0.39/346 0.34/346 0.46/346 0.47/346 0.43/346

direct 0.33/400 - - - - 0.36/430 - - - -

compound

SG 0.72/373 0.71/373 0.70/373 0.69/373 0.70/373 0.63/393 0.64/393 0.64/393 0.65/393 0.66/393

CBOW 0.70/373 0.70/373 0.68/373 0.65/373 - 0.62/393 0.64/393 0.65/393 0.65/393 -

SVD 0.49/328 0.51/328 0.58/328 0.60/328 0.58/328 0.39/335 0.38/335 0.48/335 0.54/335 0.52/335

direct 0.45/328 - - - - 0.45/335 - - - -

cui

SG 0.74/388 0.74/388 0.74/388 0.74/388 0.74/388 0.62/413 0.62/413 0.63/413 0.64/413 0.64/413

CBOW 0.72/388 0.73/388 0.73/388 0.72/388 - 0.56/413 0.56/413 0.59/413 0.60/413 -

SVD 0.41/362 0.45/362 0.50/362 0.53/362 0.57/362 0.26/380 0.31/380 0.30/380 0.34/380 0.38/380

direct 0.35/362 - - - - 0.20/380 - - - -

Table 13. Results of each term aggregation method, dimensionality reduction tech-

nique, and vector dimensionality on all datasets. Values in each cell show

the correlation, slash, n, the number of samples compared. A hyphen (‘-’)

indicates a score could not be calculated using those parameters. The first

column (“100/e”) shows results for a vector dimensionality of 100, and re-

sults with direct vector representation. Bolded scores indicate the highest

performing combination of parameters in each box.
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Comparison between Dimensionality Reduction Techniques: Here, we

compare the different dimensionality reduction techniques of SVD, SG, and CBOW

against each other, and against the baseline of direct. Figure 16 shows the highest

correlation of each of these techniques, for each dataset. Here, the highest correla-

tion indicates the highest correlation among any results generated for that technique

regardless of dimensionality or aggregation method. Table 14 shows statistical signif-

icances among the scores shown in Figure 16.

Fig. 16. Best results for each dimensionality reduction technique. The correlation for

each dataset is shown within its rectangle, and the sum of correlations is

shown above each column. A sum of 4.0 would indicate a perfect correlation

of 1.0 for every dataset.

CBOW generates the highest overall accuracy, with a sum of correlations at

3.03. Although CBOW’s overall accuracy is slightly higher than SG, SG outperforms

CBOW on some datasets, and CBOW and SG do not perform significantly different

on any single dataset. CBOW is the only method to perform significantly better

than direct on MiniMayo Phys, or MiniMayo Cod The word embeddings methods
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MiniMayo Phys

direct SVD SG

SVD 0.0588 - -

SG 0.0561 1.0 -

CBOW 0.0264* 0.7642 0.7566

MiniMayo Cod

direct SVD SG

SVD 0.1971 - -

SG 0.0561 0.5419 -

CBOW 0.0257* 0.3524 0.749

UMNSRS Sim

direct SVD SG

SVD 0.0029* - -

SG 0.0* 0.0021* -

CBOW 0.0* 0.0054* 0.7642

UMNSRS Rel

direct SVD SG

SVD 0.1236 - -

SG 0.0* 0.0114* -

CBOW 0.0001* 0.022* 0.8103

Table 14. The two tailed p-values using Fishers R-to-Z transform, comparing the re-

sults of each dimensionality reduction technique. Each table corresponds to

a different dataset, each row and column a different dimensionality reduction

technique. p-values less than 0.05 are marked with an asterisk (*).

SG and CBOW, generate statistically significant higher correlations than SVD and

direct on UMNSRS Sim and UMNSRS Rel SVD only generates a significantly higher

correlation than direct for a single dataset (UMNSRS Sim). Conclusion: all the

dimensionality reduction techniques improve correlation accuracy, but the word em-

beddings approaches (SG and CBOW) perform significantly better than SVD and

direct. SG and CBOW perform on par with each other, with no significant differ-

ences. CBOW does, however generate the vector representations much more quickly

than SG (our rough estimates indicate that SG takes between 5 and 9 times as long

to train), and may be preferred due to this decreased computation time.

Comparison between Vector Dimensionality: Here, we tested the effects

of vector dimensionality on performance for each dimensionality reduction technique.
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Beginning with a vector dimensionality of 100, we increased the dimensionality of

each vector representation to values of 200, 500, 1000, and 1500. Due to errors gen-

erated by the word2vec package, we were unable to generate vectors with CBOW at

a dimensionality of 1500, although to more comprehensively test SVD, we continued

to increase the dimensionality of SVD vectors to 2000, 2500, and 3000. Figure 17

shows the correlations of each technique on each dataset as the dimensionality in-

creases. Each sub-figure shows performance on a different dataset. We show the

highest correlation for each dimensionality reduction method and vector dimension-

ality, regardless of aggregation method. These results show that SG’s and CBOW’s

correlations remain nearly constant as dimensionality increases, indicating that vec-

tor dimensionality has little impact on their performance, and a dimensionality of

200 is sufficient for these methods. For SVD, we do see an increase in performance

as dimensionality increases. The performance continues to increase to 1500, and to

determine whether a dimensionality greater than 1500 would continue to increase

performance, we created additional SVD vectors with dimensionalities of 2000, 2500,

and 3000. Figure 18 shows the overall performance of SVD at each vector dimension-

ality. The values above each column indicates the sum of the dataset correlations. We

see an increase in correlation up to a dimensionality 1000, at which point correlation

scores remain constant at 1500, and decrease at 2000, 2500, and 3000, indicating a

dimensionality of 1000 is sufficient for SVD. Conclusion: a dimensionality of 200 is

sufficient for the word embeddings methods, SG and CBOW. A larger dimensionality

of 1000 is sufficient for SVD.

Comparison between Term Aggregation Methods: Here, we compare the

multi-word term aggregation methods, sum, mean, compounds, and CUIs. Figure 19

shows the highest correlations of different aggregation methods across all dimension-

ality reduction techniques, and dimensionalities for each dataset. From this, we see
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Fig. 17. Results of varying vector dimensionality on each datasets. The subgraphs

correspond to a single dataset, and the column groupings a dimensionality

reduction technique. Different colored columns indicate a different vector

dimensionality.

that CUIs achieves the highest sum of correlations, but only by a small amount,

and is not the best performing method on all datasets. Each method performs the

best (or ties) on different datasets: sum and mean tied for highest on the MiniMayo

Phys dataset, compounds on the UMNSRS Rel dataset, and CUIs on the UMNSRS

Sim and MiniMayo Cod datasets. Table 15 shows the p-values for the correlations

shown in Figure 19. No aggregation method performs significantly better on any

single dataset, and the sum of correlations for CUIs is only marginally higher than

other methods. Conclusion: there is no significantly best aggregation method, when

comparing over all parameters.
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Fig. 18. Sum of results across datasets for each vector dimensionality tested with SVD.

Each column corresponds to a vector dimensionality, individual dataset cor-

relations are shown within the colored rectangles, and sum of correlations are

shown above each column.

To further analyze the aggregation methods, we set the dimensionality reduction

technique, and vector dimensionality parameters to our recommendations found in

previous subsections. That is, we compared results of each multi-word term aggrega-

tion method using dimensionality reduction of word embeddings using CBOW and a

vector dimensionality of 200. Table 16 (restated from Table 13) shows these results.

Table 17 shows the statistical significance between these results. No multi-word term

aggregation method achieves the highest correlation on all datasets, and each method

achieves (or ties) the highest result for one of the datasets. There is no statistical

significance between any of the techniques on any of the datasets. After preprocess-

ing, the computational cost of each method is nearly identical. Ambiguity is only an

upfront problem for concept vectors, but they also have the advantage of mapping

synonymous terms to the same concept before vector construction. This is likely why
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Fig. 19. Results of different aggregation methods on each dataset.

concept vectors (CUI) achieve the highest correlation on two datasets (MiniMayo

Cod, and UMNSRS Rel), and is why they are able to compare more terms (higher

n). Concept mapping is however, an expensive preprocessing step, and it is unclear

how to best handle ambiguous concept mappings. Using compounds requires less

expensive data preprocessing, and since it does not map synonymous terms to the

same concept, the problem of ambiguity is essentially ignored. Using sum or mean

requires the least preprocessing, and does not rely on external lexicons to construct

mutli-word term vectors, ambiguity is ignored, and vectors can be created for any

term in any domain. Conclusion: There is no significantly best multi-word term

aggregation method across either all parameters or recommended parameters. Using

concept vectors achieves the highest correlation on more datasets and it is able to

compare more terms. It is therefore slightly favored, but requires the term to map to

a concept. Sum or mean provide more flexibility and less preprocessing.
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MiniMayo Phys

sum mean compound

mean 1.0 - -

comp. 0.8337 0.8337 -

CUI 0.6892 0.6892 0.8493

MiniMayo Cod

sum mean compound

mean 1.0 - -

comp. 0.5823 0.5823 -

CUI 0.2543 0.2543 0.5552

UMNSRS Sim

sum mean compound

mean 1.0 - -

comp. 0.5823 0.5823 -

CUI 0.2543 0.2543 0.5552

UMNSRS Rel

sum mean compound

mean 0.8181 - -

comp. 0.3421 0.242 -

CUI 0.6384 0.4839 0.6241

Table 15. The two tailed p-values using Fishers R-to-Z transform of each term aggre-

gation method’s correlation scores of each dataset. Each table corresponds

to a different dataset, each row and column a different term aggregation

method.

Summary

In this section, we explored methods to create distributional context vectors of

multi-word terms for the task of direct semantic relatedness. We used direct co-

occurrence vectors (direct) as a baseline, and applied dimensionality reduction using

singular value decomposition (SVD), word embeddings with skip-gram (SG), and

word embeddings with CBOW (CBOW). We found that all dimensionality reduction

techniques improved correlation accuracy, and that SG and CBOW perform the best.

Since SG takes much longer to train, we favor using CBOW in future experiments. We

varied the dimensionalities of the vectors, and found that a dimensionality of 200 is

sufficient for SG and CBOW, and a larger dimensionality of 1000 is sufficient for SVD.
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CBOW Results at Vector Dimensionality of 200

sum mean compound CUI

MiniMayo Cod 0.82/29 0.81/29 0.78/28 0.83/29

MiniMayo Phys 0.82/29 0.82/29 0.80/28 0.75/29

UMNSRS Sim 0.61/396 0.59/397 0.64/393 0.56/413

UMNSRS Rel 0.69/374 0.69/374 0.70/373 0.73/388

Table 16. Results of each multi-word term aggregation technique using the recom-

mended settings of word embeddings using CBOW at a vector dimensional-

ity of 200.

MiniMayo Phys

sum mean compound

mean 1.0 - -

comp. 0.4168 0.4168 -

CUI 0.5093 0.5093 0.8337

MiniMayo Cod

sum mean compound

mean 0.9124 - -

comp. 0.6892 0.3859 -

CUI 0.9124 0.8259 0.6101

UMNSRS Sim

sum mean compound

mean 0.6599 - -

comp. 0.4902 0.2585 -

CUI 0.2801 0.5222 0.0767

UMNSRS Rel

sum mean compound

mean 1.0 - -

comp. 0.7949 0.7949 -

CUI 0.2670 0.2670 0.4009

Table 17. The two tailed p-values using Fishers R-to-Z transform of the correlation

scores of multi-word term aggregation methods using recommended param-

eters. Each table corresponds to a different dataset, each row and column

a different term aggregation method using CBOW and a dimensionality of

200.
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In our evaluation of multi-word term aggregation methods, we compared using text

with compound words identified, text mapped to concepts, text with individual words

for which vectors are combined via mean or summation operations. We found that

none of these methods are significantly better than another, indicating that vector

representations are robust to data preprocessing and vector combination methods.

In our development of indirect relatedness measures, we use CBOW vectors with a

dimensionality of 200, since CBOW and SG performed the best, and because using

UMLS concepts allows additional information from the UMLS such as semantic types

and semantic groups to be incorporated. Additionally, we use direct co-occurrence

vectors as a baseline.

4.3 Comparison with Related Work

In this section, we summarize and compare other state of the art semantic simi-

larity and relatedness measures to our association measures and vector cosine results.

We generate results using the experimental set up as described in Sections 4.1.4

and 4.2.2.

Although previous work explores different parameters and corpora, multi-word

term aggregation methods have been ignored, and multi-word terms are often dropped

from the evaluation standards to account for the inability to represent such terms [105,

106, 107]. Table 18 summarizes the contributions of previous authors’ work with word

embeddings for semantic similarity and relatedness.

Sajadi, et al. [108] use the OHSUMED corpus, a collection of 348,566 biomedical

research articles to train the word2vec [23] skip-gram model over UMLS concepts

identified by MetaMap. They also develop the HITS-sim algorithm, a graph-based

similarity metric based on Wikipedia hyperlinks. They show that incorporating an

ontology into vector based methods can improve results, and that using specialized

87



Method

Citation CBOW SG Training Dataset(s) Hyperparams

This Work X X MEDLINE X

Sajadi, et al. [108] X OHSUMED

Muneeb, et al. [105] X X PMC X

Chiu, et al. [106] X X Pubmed, PMC X

Pakhomov, et al. [107] X Fairview, PMC, Wiki

Table 18. Summary of related work using word embeddings for semantic relatedness

in the biomedical domain. The citation column indicates the author and

reference. The method column indicates whether the author used CBOW,

skip-gram (SG), or both for their evaluation. The training dataset(s) column

shows the training corpora used in the experiments, and the hyperparams

column indicates whether the author reported results with various hyperpa-

rameter settings (e.g. vector dimensionality, window size, etc.).

corpora (OHSUMED) performs comparably to general domain resources (Wikipedia).

Muneeb, et al. [105] trained both the skip-gram and continuous bag of words

(CBOW) word2vec models over the PubMed Central Open Access (PMC) corpus of

approximately 1.25 million articles using a window size of 9. They evaluated the

models on a subset of the UMNSRS data, removing word pairs that did not occur

in the corpus more than ten times. The authors evaluated vector dimensionalities

of 25, 50, 100, and 200, finding that a dimensionality of 200 performed better than

the lower dimensionalities. They report a correlation with the UMNSRS tagged for

similarity of 0.46 with CBOW and 0.52 with skip-gram; and a correlation with the

UMNSRS tagged for relatedness of 0.41 with CBOW and 0.45 with skip-gram.

Chiu, et al. [106] evaluated both the skip-gram and CBOW word2vec models

over the PMC corpus and PubMed. They evaluated a lot of hyper-parameters in-
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cluding vector dimensionality, windowing, learning rate, and minimum count. They

used a subset of the UMNSRS dataset that ignores word pairs that do not exist in

the corpus. They found that using PubMed obtained a higher correlation than PMC

or a combination of PMC and PubMed. They also found that although the hyper-

parameter settings can improve the performance of the model, the effects vary. They

find a dimensionality of 400 and 500 for UMNSRS Sim and Rel are the best respec-

tively, however their extrinsic evaluations show a dimensionality of 200 is the best.

Upon closer examination, the dimensionality of 400 and 500 are almost certainly not

statistically significantly different from their reported results with a vector dimen-

sionality of 200 (n is not reported, therefore statistical significance cannot be exactly

computed). They find the skip-gram model outperforms CBOW on UMNSRS.

Pakhomov, et al. [107] trained CBOW word2vec over three different types of

corpora: clinical (clinical notes from the Fairview Health System), biomedical (PMC

corpus), and general English (Wikipedia). They evaluated the method using a subset

of the UMNSRS restricting to single word term pairs. Using a window size of 8, and

a dimensionality of 200, they create CBOW vectors with each corpus, and evaluate

on UMNSRS. They find that the model trained on the PMC corpus obtained the

highest correlation for both similarity and relatedness, with a correlation of 0.62,

and 0.58 respectively. They explored varying the corpus size for the clinical data,

and found that the results increased as they systematically increased the corpus size

from 1 million to over 4 billion tokens. They also evaluate on several extrinsic tasks.

Although techniques and parameters differ between other authors and us, our results

with multi-word terms achieve comparable results to previous work evaluated on

single word terms.

Yu, et al. [109] retrofit distributional word vectors with hierarchical information

from the MeSH hierarchy of the UMLS. In their method, word vectors are built
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using observed co-occurrence information from a corpora, and inferred word vectors

are constructed by incorporating hierarchical information. The inferred vectors are

expected to be close to both their observed word vectors and connected (based on the

hierarchy) inferred vectors. The final inferred vectors are constructed by minimizing

an objective function.

Workman, et al. [110] use SemRep predications to generate similarity and re-

latedness scores of CUIs using a variety of metrics including: semantic predication

frequency, Pointwise Mutual Information, Information Radius, and the L1 norm dis-

tance.

Table 19 summarizes our results and results from other authors. The table shows

the Spearman’s rank correlation coefficient followed by the number of terms compare

in parentheses. A ‘-’ indicates results were not reported for that method. Table 19 is

divided into several sections: The topmost section shows our results from association

scores. These are our best results using any parameter settings (Association Best)

and our best results using our recommended parameters (Association Recommended)

of a co-occurrence window size of 8 (window 8), ignoring word order (no order),

not applying a minimum co-occurrence threshold, not using concept expansion, and

the Pearson’s chi squared association measure. The section below that shows our

results with vector representation of terms. These are our results using word2vec

word embeddings using CBOW and a vector dimensionality of 200, trained over

with words (CBOW words), compoundified (CBOW comp.), and with CUIs (CBOW

cuis). The section below that shows results from other authors (see Section 4.3)

that are not word2vec implementations, and below that from authors using word2vec

word embeddings with different parameters and datasets than our own. Chiu, et

al. do not report n, so we list this as “n/a”. The bottom box shows results we

generated results for several similarity and relatedness measures as implemented in
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the UMLS::Similarity [111] package version 1.47 using the default parameters unless

specifically stated below. We used the SNOMED CT with PAR/CHD relations for the

path–based similarity measures (Path [25]), information content (IC)-based measures

(Resnik [27], Lin [26]), and the entire UMLS for the relatedness measures (Lesk [112],

Vector [113]).

Data Set
Measure MiniMayo Phy MiniMayo Cod UMNSRS Sim UMNSRS Rel

Association Best 0.85 (29) 0.84 (29) 0.73 (392) 0.66 (418)
Association Recommended 0.84 (29) 0.81 (29) 0.69 (392) 0.64 (418)

CBOW words (ours) 0.82 (29) 0.82 (29) 0.61 (396) 0.69 (374)
CBOW comp. (ours) 0.80 (29) 0.78 (28) 0.65 (393) 0.70 (373)
CBOW cuis (ours) 0.77 (29) 0.83 (29) 0.60 (413) 0.73 (388)

Yu, et al. [109] 0.70 (25) 0.67 (25) - -
Sajadi, et al. (HITS-sim) [108] 0.67 (29) 0.72 (29) 0.58 (566) 0.51 (587)

Workman, et al. [110] 0.67 (29), 0.69 (25) - - -
Sajadi, et al. (word2vec) [108] - - 0.39 (566) 0.39 (587)

Pakhomov, et al. [107] - - 0.62 (449) 0.58 (458)
Muneeb, et al. [105] - - 0.52 (462) 0.45 (465)

Chiu, et al. [106] - - 0.65 (n/a) 0.60 (n/a)
UMLS::Similarity Path [25] 0.35 (26) 0.44 (26) 0.53 (340) 0.29 (360)

UMLS::Similarity Resnik [27] 0.34 (26) 0.46 (26) 0.49 (340) 0.26 (360)
UMLS::Similarity Lin [26] 0.42 (26) 0.53 (26) 0.49 (340) 0.29 (360)

UMLS::Similarity Lesk [112] 0.52 (29) 0.57 (29) 0.50 (387) 0.33 (412)
UMLS::Similarity Vector [113] 0.59 (29) 0.58 (29) 0.58 (387) 0.45 (412)

Table 19. Our best and recommended parameters results for association measures and

vector representations compared to state of the art methods from other au-

thors. “-” indicate that results were not reported for that dataset. Each row

shows results using a different technique, and each column corresponds to a

different dataset. The Spearman’s correlation coefficient is shown, followed

by n, the number of terms compared.

These results are not directly comparable to each other, or ours due to different

number of term pairs compared. This is due to differences in corpora and preprocess-

ing methods. Still, the results indicate that we achieve state of the art performance

using both association measures, and vector cosine, and that vector measures and

association measures achieve comparable performance.
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4.4 Conclusions

In this chapter we achieved state of the art performance at estimating direct

semantic relatedness using two different methods, association measures and vector

cosine. Since estimating direct semantic relatedness is a well studied field, it serves as

a good starting point for the development of indirect relatedness measures and their

application to LBD. Contributions of this chapter included a parameter analysis for

association measures and state of the art results for estimating semantic relatedness,

concept associations, concept expansion, and set associations. A parameter analysis

of vector representations for estimating semantic relatedness, including the effects of

multi-word term aggregation methods, dimensionality reduction techniques, and vec-

tor dimensionality, and a comparison of our results to other state of the art methods.

These contributions are interesting for direct relatedness measures, and its applica-

tions, but are also interesting for our overall goal of developing more effective LBD

systems. These results show the effectiveness of association measures at estimating

semantic relatedness, indicating that they are good candidates for their development

as indirect association measures. Vector measures can intrinsically compute indi-

rect association, and therefore are good candidates for indirect association measures

without further modification.

Specifically, these results indicate that using MetaMapped text is a good idea.

Association measures perform significantly better using concepts rather than terms,

and there is no statistical difference for vector representations. Additionally, we

found that using the 1975 onward subset of MEDLINE is sufficient. Through an

extensive parameter analysis, we found a recommended set of parameters for associ-

ation measures, which include using a window size of 8 and word order ignored, do

not use concept expansion, apply a minimum co-occurrence threshold of 1, and use
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the Pearson’s chi squared (χ2) association measure. We found our preferred vector

representation, which is word2vec CBOW with a vector dimensionality of 200. These

findings inform our development and analysis of indirect relatedness measures and

their application to LBD in Chapter 5.
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CHAPTER 5

INDIRECT RELATEDNESS

In this chapter, we address our first critical problem of LBD, the over-generation

of knowledge by LBD systems, by creating more effective LBD hypothesis ranking

methods. Using these methods, we can rank and filter uninteresting, false, or too

obvious hypotheses. In their simplest form, hypotheses can be represented as start

term-target term pairs, and we hypothesize that the likelihood that the term pair

represents a true and interesting future relationship can be estimated by the strength

of the future relatedness between the start and target term. We view prediction of

future relatedness as a task of estimating the relatedness between two terms which

never co-occur in a corpus.

Since estimating indirect relatedness is not a well studied field, we first analyzed

the performance of several methods for estimating direct relatedness in Chapter 4.

That laid the groundwork for our development of indirect relatedness measures pre-

sented in this chapter. Specifically, we showed in Chapter 4 that association measures

are good indicators of semantic relatedness, but were designed for direct relatedness,

rather than indirect relatedness. In this chapter, we present indirect association

measures, which incorporate connecting term information to quantify the relatedness

between terms that never directly co-occur. Specifically, in this chapter we introduce

four indirect association measures:

1. Linking term association (LTA), which quantifies association using counts of

unique connecting terms.

2. Minimum weight association (MWA), which quantifies association using co-
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occurrence counts of A-B-C pathways.

3. Shared B to C association (SBC), which quantifies association using the set of

shared B terms as a proxy for A.

4. Linking set association (LSA), which quantifies association using the sets of

terms A and C co-occur with as proxies for themselves.

Since it is unclear how to best evaluate a method’s ability to estimate indirect

relatedness, we evaluate each indirect relatedness measure using three evaluation

methods: (1) their ability to estimate direct semantic similarity and relatedness, (2)

their ability to distinguish between term pairs that will or will not be related in the

future in a time-slicing based link prediction task, and (3) their ability to predict

future semantic relatedness using a time-slicing based approach.

Specific contributions of this chapter are:

1. The development of four indirect association measures, including LTA, MWA,

SBC, and LSA.

2. The development of a dataset and method (cumulative relatedness graphs (CRGs))

for evaluating the ability to estimate future relatedness.

3. A evaluation of indirect association measures and vector-based methods on their

ability to estimate direct relatedness, for link prediction, and on their ability

estimate future relatedness.

In this chapter, we first introduce our indirect association measures. Next, we

explain our evaluation procedures, including CRGs, and our experimental details.

Next, we show results for each evaluation method, and lastly we discuss conclusions

and limitations.
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5.1 Indirect Association Measures

To quantify indirect relatedness, we developed four indirect association measures.

Indirect association measures are modifications of direct association measures, which

are presented in detail in Chapter 2. Both direct and indirect association measures are

based on co-occurrence statistics in a corpus. They quantify two terms’ expected co-

occurrence together by chance versus their observed co-occurrence together in text,

and follow the calculation process shown both in Chapter 2, and summarized in

Figure 20. The difference is direct association measures require that the two terms

co-occur together in a corpus, and indirect association measures do not.

Fig. 20. The association measure calculation process. In this process, co-occurrence

counts are collected from a corpus, a contingency table is generated, and

association is quantified. The equation shown is Pearson’s chi squared, where

mij values are: m11 = n1p∗np1

npp
, m12 = n1p∗np2

npp
, m21 = np1∗n2p

npp
, m22 = np2∗n2p

npp
and

n2p = npp − n1p, np2 = npp − np1

As previously described in Section 2.5, co-occurrence counts are collected from a

corpus, and used to populate a contingency table. The contingency table values, n11,

n1p, np1, and npp are input into an association measure equation, such as Pearson’s

Chi-Squared [33] (shown in Figure 20) to produce a single number that quantifies the

association between two terms. For indirect association measures, we modify how the

contingency table values are calculated prior to input into the association measure

equation. These modifications make it possible to quantify the association between

indirectly related terms while preserving the beneficial statistical properties encoded
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in association measure equations. We modify the contingency table values as follows:

1. Minimum weight association (MWA): modifies n11 as the average mini-

mum co-occurrence for each A-to-B-to-C pathway.

2. Linking term association (LTA): uses the counts of unique linking terms to

populate the contingency table.

3. Shared B to C association (SBC): uses the co-occurrences between the

shared B term set and C to populate the contingency table.

4. Linking set association (LSA): uses co-occurrences between terms that co-

occur with A (BA) and terms that co-occur with C (BC) to populate the con-

tingency table.

MWA and LTA are similar, since rather than using direct A to C co-occurrences,

they combine A to B and B to C co-occurrence information. MWA uses A−B and

B − C co-occurrence counts, while LTA uses the count of unique B terms. SBC and

LSA are similar, since they are based on set associations. SBC uses the shared B

terms set as a proxy for A when collecting co-occurrence counts, and LSA uses BA

and BC as proxies for A and C respectively when collecting co-occurrence counts.

In the next few subsections, we give detailed explanations on how each association

measure is calculated. We define the following terminology: A is the set of starting

term(s); BA is the set of terms preceded by A (A’s connecting terms); C is the set of

target terms; BC is the set of terms preceding C (C’s connecting terms); V is the set

of all terms (the vocabulary); wij is the weight of the edge going from node i to node

j in the co-occurrence graph, and is the frequency that term i is followed by term j.

We also use Figure 21 as an example. Figure 21 shows a co-occurrence graph between

term A and term C. A and C directly co-occur with a set of connecting terms, B.
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Fig. 21. A co-occurrence graph showing A and C co-occurrences with a set of B terms

A subset of which co-occur with both A and C; an indirect relationship is created

through this set of shared B terms. Each circle in Figure 21 indicates a unique term,

and each edge indicates a direct co-occurrence. The number above each edge indicates

that edge’s co-occurrence frequency. The terms A co-occurs with are shown as white

and black-and-white circles. The terms C co-occurs with are shown as black and

black-and-white circles. White B terms co-occur with A only, black B terms co-occur

with C only, and black-and-white terms are shared connecting terms that co-occur

with both A and C. Gray B terms exist in the vocabulary, but do not co-occur with

A or C. Figure 21 therefore shows that A co-occurs with four different terms, it co-

occurs with the top-most B term one time, the second top-most B term two times,

the B term below that eight times, and the term below that three times. C co-occurs

with three different terms, four times, five times, and seven times respectively, and

there is a single B term that co-occurs with neither A or C.

Using Figure 21 as an example, we define direct association contingency table

values as follows:

n11 (Equation 5.1) is the sum of weights (co-occurrences) between A and C. In
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Figure 21, n11 = 0, since A and C never directly co-occur.

n11 =
a∈A∑ c∈C∑

wac (5.1)

n1p (Equation 5.2) is the sum of weights between A and each Bi. In Figure 21,

n1p = 1 + 2 + 8 + 3 = 14.

n1p =
a∈A∑ j∈V∑

waj (5.2)

np1 (Equation 5.3) is the sum of weights between each Bi and C. In Figure 21,

np1 = 4 + 5 + 7 = 16.

np1 =

j∈V∑ c∈C∑
wjc (5.3)

npp (Equation 5.4) is the sum of all weights in the dataset, which is the total

number of co-occurrences between all terms.

npp =
i∈V∑ j∈V∑

wij (5.4)

Using these four contingency table values, we can calculate the rest of the values

in a contingency table, and calculate an association measure equation, such as Pear-

son’s chi squared (shown in Figure 20) to test for association between A and C with

a single value. Start-target term pairs in LBD explicitly do not co-occur, meaning

n11 = 0 for all start-target term pairs. This is shown in Figure 21, where A and C

never co-occur. Since there is no direct co-occurrence between the terms, we develop

indirect association measures which incorporate additional information to quantify

the association between two terms which do not directly co-occur, but are instead,

indirectly related.
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5.1.1 Minimum Weight Association

Minimum Weight Association (MWA) calculates association between A and C

based on the information flow between them relative their co-occurrences with all

terms in the dataset. It uses co-occurrence counts to populate the contingency table,

however we modify the value of n11 to allow indirect associations to be quantified.

We can view each A to Bi to C link as a weighted path connecting A and C, and use

the co-occurrence information along this path to calculate n11. The question becomes

how to combine the A−Bi and Bi−C weights. One approach may be to sum, average,

or take the maximum value of weights along a path, but association measures require

that n11 ≤ n1p ≤ npp and n11 ≤ np1 ≤ npp; sums, averages, or maximums may violate

this. Therefore, for MWA we take the minimum value along each A − Bi − C path,

and sum over all A−Bi−C pathways. If we imagine the co-occurrence counts along

each A − Bi − C pathway as information flowing between A and C, then summing

the co-occurrence counts is analogous to finding the total information flow between

A and C, where each A − Bi − C pathway cannot carry more than its minimum

capacity. n1p, np1, and npp remain unchanged from direct association measures. The

contingency table values are defined formally as:

n11, (Equation 5.5) is the sum of minimum A to Bi and Bi to C weights of each

shared Bi term. In Figure 21, n11 = min(8, 4) +min(3, 5) = 7.

n11 =

b∈BA∩BC∑
min(

a∈A∑
wab,

c∈C∑
wbc) (5.5)

n1p, (Equation 5.2) remains unchanged from direct association measures. It is

the sum of A to Bi weights. In Figure 21, n1p = 1 + 2 + 8 + 3 = 14.

np1, (Equation 5.3) remains unchanged from direct association measures. It is

the sum of B to C weights. In Figure 21, np1 = 4 + 5 + 7 = 16.
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npp, (Equation 5.4) remains unchanged from direct association measures. It is

the sum of all possible weights (total co-occurrence count) of the whole dataset.

5.1.2 Linking Term Association

Linking term association (LTA) quantifies the association between A and C based

on the counts of their linking terms. It combines the empirically proven performance

of Linking Term Count (LTC) [62] (see Section 3.3.1) with the statistical properties of

association measures. Rather than using co-occurrence counts for contingency table

values, LTA uses counts of unique co-occurring terms. If we view the co-occurrence

graph in Figure 21 as an unweighted graph, the contingency table value equations for

LTA are identical to MWA, but it is perhaps more intuitive to define these values in

terms of set theory.

n11, (Equation 5.6) is the count of unique shared linking terms. In Figure 21,

n11 = 2.

n11 = |BA ∩BC | (5.6)

n1p, (Equation 5.7) is the count of unique terms A co-occurs with. In Figure 21,

n1p = 4.

n1p = |BA| (5.7)

np1, (Equation 5.8) is the count of unique terms C co-occurs with. In Figure 21,

np1 = 3.

np1 = |BC | (5.8)

npp, (Equation 5.9) is the count of all possible unique terms (vocabulary size).

npp = |V | (5.9)

In this formulation, the value of n11 is equivalent to the LTC between A and C,
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but we weight the LTC by the number of terms A and C independently co-occur with

in the association measure equation. This makes the associations between terms that

co-occur with many terms lower than those that co-occur with a few.

5.1.3 Shared B to C Association

Shared B to C association (SBC) quantifies the association between A and C as

the set association between their shared B terms and C itself. It builds upon the idea

of set associations (introduced in Chapter 4) by using the shared B terms between

A and C as a proxy for the A term, then calculates the direct set association. That

is, we populate the contingency table using the co-occurrences between the shared

B term set and C, rather than between A and C. Equation 5.10 formally defines

SBC in terms of set theory, where assoc() is an association measure equation such as

Pearson’s chi squared.

assoc(BA ∩BC , C) (5.10)

5.1.4 Linking Set Association

Linking Set Association (LSA) quantifies association between A and C using the

set association between BA and BC . Like SBC, LSA is based on direct associations

between sets of terms, but for LSA, we replace both A and C. A is replaced with

the set of all terms that it co-occurs with (BA), and C is replaced with the set of all

terms that it co-occurs with (BC). The association between these two sets is then

calculated. Equation 5.11 formally defines LSA in terms of set theory.

assoc(BA, BC) (5.11)

Intuitively, both SBC and LSA are estimating A and C with a set of terms. LSA
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estimates A and C with their co-occurrences, which is indicative of their context, and

therefore their meaning. SBC estimates A with respect to its shared co-occurrences

with C, and uses C directly. In other words, the association between how A’s meaning

overlaps with C’s, and C itself. LSA defines its proxies in terms of their own inde-

pendent contexts, where as SBC defines the proxies in terms of the more constrained,

shared context.

5.2 Evaluation Methods

Since it is our hypothesis that ranking in LBD should be based on estimating

the strength of a relationship between two unrelated terms, ranking methods should

perform well at estimating direct as well as indirect semantic relatedness. Estimat-

ing direct semantic relatedness is a well established field with standard evaluation

datasets.

Evaluating indirect relatedness measures on their ability to predict direct re-

latedness is not sufficient in isolation. They should also be able to determine if a

relationship exists between two indirectly related terms, and if so the strength of

that relationship. Since our application of indirect association measures is for rank-

ing target terms in LBD, we use time-slicing based techniques to evaluate this, and

create a co-occurrence time-slicing based dataset. We divide the dataset into pre-

and post-cutoff datasets, and predict whether a relationship between two terms in

the post-cutoff dataset for which no relationship exists in the pre-cutoff dataset. Ef-

fectively we are estimating if a future relationship exists between two terms, and

therefore constitutes a discovery.

Previous work [85, 89, 87] poses this as a link prediction task and evaluate it

using receiver operating characteristic (ROC) curves. ROC curves indicate whether

a measure can distinguish between terms that will or will not have a future rela-
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tion. This is an important feature of an indirect relatedness measure, particularly

for hypothesis filtering, where false hypotheses are removed from our list of LBD

predictions.

ROC curves, however do not explicitly take rank into account, meaning they do

not evaluate an indirect relatedness measure’s ability to distinguish between strong

and weak future relations. This is important both due to the intrinsic value in quan-

tifying relatedness (as is the case with direct relatedness measure evaluation), but

also specifically for LBD, where gold standard datasets are noisy, and often contain

many false positive future relationships. Presumably a true future relationship will

have a higher relatedness score than a false future relation, and we can estimate the

likelihood of that relationship being true by the start and target term pair’s indirect

relatedness. To evaluate a measure’s ability to estimate future relatedness, we develop

cumulative relatedness graphs (CRGs).

In the following subsections, we describe each evaluation method in detail, these

include: 1) estimating direct semantic relatedness, 2) link prediction using ROC

curves, and 3) estimating future relatedness using CRGs.

5.2.1 Evaluation Details

Evaluation Details: Estimating Direct Semantic Relatedness. We evalu-

ate indirect relatedness measures on their ability to estimate direct semantic similarity

and relatedness as described in detail in Section 2.4.1. We use the reference standards

of: the UMNSRS [31] tagged for similarity (UMNSRS Sim), the UMNSRS tagged for

relatedness (UMNSRS Rel), the MiniMayoSRS dataset [114] rated by medical coders

(MiniMayo Cod) and the MiniMayoSRS rated by physicians (MiniMayo Phys). We

report Spearman’s Rank Correlation Coefficient (ρ) between the scores generated for

each term pair and these gold standards scores.
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The use of these datasets is common, but the MiniMayoSRS and UMNSRS

datasets contain term pairs of different UMLS semantic groups, concept pairs of

the same semantic group, and synonymous term pairs. LBD is often used to find

new treatments (chemicals and drugs) for diseases or disorders, and we are therefore

only interested in term pairs of different semantic types, specifically, chemicals and

drugs - diseases or disorders term pairs. Therefore, we select concepts from the

semantic groups of Disorders and Chemicals and Drugs to generate 113 and 126

Disorders-Chemicals and Drugs or Chemicals and Drugs-Disorders concept pairs in

the UMNSRS Sim and Rel datasets respectively [115]. In addition to results using

the full datasets, we report the results with these two subsets. The results with the

UMNSRS Rel subset are particularly relevant to LBD, and although we also report

results with the UMNSRS Sim subset for completion, we question how meaningful

they are. The UMNSRS Sim was tagged for similarity, and since similar terms are

linked by isA type relationships, all Chemicals and Drugs-Disorders concept pairs

should have low scores.

Evaluation Details: Link Prediction. As described in Section 3.3.2, we eval-

uate indirect relatedness measures on their ability to distinguish between true and

false future predictions on a link prediction task using ROC curves. ROC curves

plot the trade-off between true and false positive rates, typically to evaluate the

performance of binary classifiers. We generate ROC curves by ranking all future

relationships with an indirect relatedness measure and apply a threshold. All rela-

tionships above this threshold are considered true, and all relationships below it are

considered false. The corresponding true and false positive rates are calculated and

plotted. This threshold is applied at every rank to produce a single ROC curve. The

area under the ROC (AUROC) curve can be calculated to give a single number that

summarizes performance. ROC curves are calculated in a standard manner, but we
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ensure that relationships with tied ranks are penalized. This is a simple modification,

where in the event of a tie, the worst case scenario is always used, meaning we make

sure false pairs are always ranked higher in the ROC curve calculation.

Evaluation Details: Estimating Future Relatedness. We evaluate indirect

relatedness measures on their ability to estimate future relatedness using our novel

evaluation method, Cumulative Relatedness Graphs (CRGs). To create a CRG, we

rank a set of future relationships weighted by the future relatedness between its start

and target term. Each point on the CRG shows the sum of weights for the relationship

at that rank and higher. Better measures will rank relationships with higher weights

first, and will have a higher cumulative relatedness at each rank.

CRGs are an extension of established mutual information (MI) graphs [63] (ex-

plained in detail in Section 3.3.2.6), which were proposed to evaluate LBD hypothesis

ranking algorithms. Their key observation is that the MI between the start and target

term of an LBD hypothesis can be used as an estimate of relevance or irrelevance,

and that term pairs with high MI should be ranked higher than those with low MI.

Established MI graphs however, only evaluate using directly related terms which isn’t

representative of LBD’s indirectly related terms, and only use a single start term, so

they don’t show generalized performance.

We develop CRGs by taking their idea of using direct relationships to estimate

relevance, and incorporating time-slicing techniques [116] and direct future related-

ness. CRGs use the future relatedness between many terms to create an evaluation

technique relevant to LBD. MI can be used as an estimate of semantic relatedness,

however we found in Chapter 4 that Pearson’s chi squared performs better. CRGs

are generated in four steps:

1. Generate future relationships
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2. Weight future relationships

3. Relationship ranking

4. Create cumulative relatedness graph

Step 1: Generate future relationships: We generate a set of future relationships

in a time-slicing manner by dividing the dataset into pre- and post-cutoff segments.

All relationships are extracted from the pre- and post-cutoff segments, and the gold

standard is created by removing all pre-cutoff relationships from the set of post-cutoff

relationships. We represent relationships as start-target term pairs.

We select 200 start terms (represented as UMLS Concept Unique Identifiers

(CUIs)) by randomly selecting 50 terms from each of the semantic types of: Clini-

cal Drug (T200, clnd), Pharmacologic Substance (T121, phsu), Disease or Syndrome

(T047, dsyn), Sign or Symptom (T184, sosy). Target terms are generated for each

term pair as all terms in the vocabulary. The result is a set of all possible rela-

tionships between each start term and every term in the vocabulary. We remove all

co-occurring term pairs in the pre-cutoff dataset and end up R, a set of 67,754,497

possible relationships for which no direct co-occurrence exists.

Step 2: Weight future relationships: We assign a weight, wij, as the future

relatedness between the start term, si and the target term, tj in R. We use Pearson’s

chi squared [33] as our weighting function, due to its good performance in Chapter 4

at estimating direct semantic relatedness. Lastly, we normalize wj by the total future

relatedness between si and all possible target terms, T , such that, wij = wij∑|T |
k=0 wik

, the

percentage of total future relatedness ti contributes.

Step 3: Relationship ranking: We calculate the indirect relatedness between each

term pair in R. So, for each start term, si we rank all start-target term pairs to create

Ri, a ranked list of si-tj term pairs for each si.
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Step 4: Create cumulative relatedness graph creation: We generate a CRG using

the gold standard weights (wij) from Step 2, and the ranked hypotheses (Ri) from

Step 3. For each set of ranked Hypotheses Ri in R, we create a CRG and create an

average of these to create our final CRG. Each CRG is created using the ranks of Ri

and the weights wij. We calculate the accumulated sum of weights at each rank, such

that at rank l, the point in the CRG cil =
∑l

k=0wij. With each ci, we calculate the

CRG averaged over all Ri, such that each point on the CRG, cµj =
∑n

l=0
cil
n

. Not all

Ri are the same size, so if cil is undefined meaning l > lmax, then cil = cilmax, the

total weight accumulated for that Hi. The result is a single CRG averaged over the

all future relationships of n start terms.

The result is a CRG that shows the rate at which the total future relatedness

in a dataset is reached. CRGs reward methods which rank relationships with a high

future relatedness highest, and penalize methods that rank relationships with low

future relationships high. CRGs are more robust to noise since they don’t assume the

correctness of a gold standard, but instead weight the gold standard by the future

relatedness.

CRGs were designed to evaluate LBD, and they explicitly use rank while eval-

uating. The rank of the most confident and important relationships contribute the

most to a system’s overall performance. Their high weights also lessen the effect of

the long tail of uninteresting terms caused by the Zipfian nature of language; the most

interesting part of the dataset is weighted more, while performance on the dataset as

a whole still has some influence.

5.3 Experimental Details

In this section, we describe the specific implementations and datasets use to

generate results. All evaluation datasets use a set of UMLS concept-concept pairs,
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and our selection of parameters is based on our analysis of direct relatedness measures

in Chapter 4.

Baseline Measures: Vector measures can inherently quantify indirect relat-

edness, and in Chapter 4 we performed an analysis of vector representations for

estimating direct relatedness. In this chapter we take what we learned to study the

ability of concept embeddings vector cosine [23] and the explicit vector representation

of direct co-occurrence vector cosine [117] at estimating indirect relatedness. We also

use linking term count (LTC) [60] as a baseline, because it has been shown to be one

of the best performing target term ranking methods in LBD [62].

Corpus: All indirect relatedness methods and baselines rely on a corpus, for

which we use the 2015 MetaMapped MEDLINE baseline. For the time-slicing tasks

of link prediction and estimating future relatedness, we use a time-sliced version of

this corpus for which all data from January 1, 1975 to December 31, 1999 is used

as a pre-cutoff dataset. and data from January 1, 2000 to December 31, 2015 (the

last date in the corpus) are used as a post-cutoff dataset. For estimating semantic

relatedness, and for calculating future relatedness, no time-slicing is required, so we

use all data from January 1, 1975 to December 31, 2015.

Co-occurrence Matrix: We create the pre-cutoff, post-cutoff, and full co-

occurrence matrices used by all measures except concept embeddings cosine using

UMLS::Association version 1.3’s CUI Collector tool1 run over titles and abstracts of

the 2015 MetaMapped MEDLINE Baseline, with sentence boundaries ignored. We

used a window size of 8 (meaning 8 concepts after a concept are counted) and default

values for all other parameters. The result is a co-occurrence matrix for which each

row corresponds to the co-occurrences of a single UMLS concept to every other UMLS

1https://metacpan.org/pod/UMLS::Association
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concept (indicated by the column). We apply a minimum co-occurrence threshold of

1 to all matrices.

Indirect association measures: Indirect association measures and LTC are

implemented in the UMLS::Association v1.7 package1, a Perl implementation of asso-

ciation measures. LTC is calculated using the ‘- -lta’ option with ‘measure=freq’. The

Pearson’s chi squared association measure (‘measure=x2’) is used for the association

equation for all indirect association measures.

Concept Embeddings: Concept embeddings rely on co-occurrence informa-

tion, but not a co-occurrence matrix. Vector representations are created as the train-

ing algorithm iterates over the corpus. We use the word2vec-interface package version

0.032 with the Continuous bag of words (CBOW) embedding model, a window size

of 8, a frequency cutoff of 5, and default settings for all other hyper-parameters. The

pre-cutoff corpus is used to create embeddings for time-slicing based methods, and

the full corpus is used for estimating direct relatedness.

Time-Sliced Dataset: We develop our time-sliced dataset in a similar manner

as Yetisgen-Yildiz and Pratt [116]. We remove all pre-cutoff co-occurrences from the

set of post-cutoff co-occurrences. This results in a set of co-occurrences present in

the post-cutoff dataset only. We use this as our set of future relationships to estimate

a gold standard. For CRGs a weight is added to each future relationship, which is

the direct Pearson’s chi squared association between the relations start and target

term as implemented in UMLS::Association v1.7 with default parameters, and the

full (1975-2015) co-occurrence matrix. As described in section 5.2.1 200 start terms

of specific semantic types are selected, and all possible future relations are considered.

2https://metacpan.org/pod/Word2vec::Word2vec
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5.4 Results

In this section, we evaluate our newly proposed indirect association measures

(LTA, MWA, SBC, and LSA) against the baselines of concept embedding cosine

distance (Emb Cos), direct co-occurrence vector cosine distance (Dir Cos), linking

term count (LTC), and randomly assigned scores. We evaluate using 3 different

evaluation techniques, each technique measures a different aspect of a relatedness

measure’s performance.

1. Estimating direct semantic relatedness - shows how well a measure estimates

direct semantic relatedness using Spearman’s rank correlation coefficient against

human gold standard datasets.

2. Link prediction - shows the ability of a measure at distinguishing between term

pairs that will or will not be related in the future using receiver operating char-

acteristic (ROC) curves and a time-sliced dataset of MEDLINE co-occurrence

data.

3. Estimating future relatedness - shows the ability of a measure at ranking term

pairs with a high future relatedness before term pairs with a low future relat-

edness using cumulative relatedness graphs (CRGs) and time-sliced MEDLINE

co-occurrence data.

5.4.1 Results: Estimating Direct Semantic Relatedness

Table 20 shows results for each method on each dataset on the task of estimating

semantic similarity and relatedness. Each row shows the results for a single ranking

method, and each column for a single dataset. The Spearman’s Rank Correlation

coefficient (ρ) with the number of terms (n) compared in parentheses are shown for
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each method on each dataset. The top two rows show the performance of baseline

methods of randomly assigning scores and LTC. The middle four rows show results

for indirect association scores (LTA, MWA, SBC, LSA), and the bottom two rows

show results for vector-based methods (Dir Cos, and Emb Cos). Higher values of ρ

are better, and indicate higher rank correlation to the gold standard. Higher values

of n indicate more terms are able to be compared. The best performing method for

each dataset is shown in bold.

Correlation Coefficients (ρ) and number of samples (n)

Measure MiniMayo Cod MiniMayo Phys UMNSRS Sim UMNSRS Rel

Random -0.0300 (29) -0.1279 (29) -0.0185 (401) -0.0113 (430)

LTC 0.5132 (29) 0.5063 (29) 0.2195 (390) 0.2386 (415)

LTA 0.4930 (29) 0.5403 (29) 0.4772 (390) 0.3526 (415)

MWA 0.2902 (29) 0.3231 (29) 0.3617 (390) 0.2606 (415)

SBC 0.6351 (29) 0.5978 (29) 0.5163 (389) 0.5112 (414)

LSA 0.3881 (29) 0.4027 (29) 0.3366 (390) 0.3080 (415)

Dir Cos 0.5946 (29) 0.5165 (29) 0.5315 (390) 0.4015 (415)

Emb Cos 0.7762 (29) 0.6942 (29) 0.7038 (392) 0.5537 (418)

Table 20. Semantic relatedness results

Emb Cos performs the best for each dataset (MiniMayo Cod, MinMayo Phys,

UMNSRS Sim, and UMNSRS Rel), and SBC performs the second best for each

dataset except UMNSRS Sim, for which Dir Cos performs better. Emb Cos performs

statistically significantly better than Dir Cos on the UMNSRS Sim and UMNSRS

Rel datasets, and statistically significantly better than SBC on only the UMNSRS

Sim dataset. SBC performs statistically significantly better than direct cosine on

only the UMNSRS Rel dataset. The results of other indirect association measures
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and LTC are mixed. MWA performs worse than LTA and LSA for all datasets, and

worse than LTC for both MiniMayo datasets; it is the worst performing indirect

association measure. LTC performs well for the MiniMayo datasets, and poorly for

the UMNSRS datasets, indicating that since it is a simplistic method, it may not be

able to effectively quantify indirect association for all concepts, and that the concepts

in the MiniMayo dataset may be “easy” examples. LTA performs better than LSA

for each dataset.

All methods are able to quantify most concepts in all datasets (indicated by n),

but notably, SBC can calculate the association for one less concept than other indi-

rect association measures for the UMNSRS Sim and UMNSRS Rel datasets. When

concepts share no linking terms, the shared B set is undefined, and association cannot

be quantified; for other methods, their modified n11 value is 0, which generates an

association of 0.

The results for each method on estimating semantic similarity and relatedness for

Disorders and Chemicals and Drugs concept pairs are shown in Table 21. Each row

shows the results for a single ranking method, and each column for a single dataset.

Only 109/113, and 122/126 concept pairs for the UMNSRS Sim and UMNSRS Rel

subsets occur in our corpus. Only 121/122 concept pairs can be computed using the

metrics based on a co-occurrence matrix (LTC, LTA, MWA, SBC, LSA, and Dir Cos),

because the C0392071 is removed from the co-occurrence matrix when the threshold

of 1 is applied.

Overall, the results for Disorders and Chemicals and Drugs semantic group pairs

are lower than results using the full datasets. This indicates that estimating related-

ness between different concept pairs of different semantic groups is a harder problem

than estimating relatedness between concept pairs that are synonymous or of the

same semantic group. The order of performance of the methods is, however similar
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Correlation Coefficients (ρ) and number of samples (n)

Method UMNSRS Sim UMNSRS Rel

Random 0.0460 (109) 0.0433 (122)

LTC 0.2480 (109) 0.2190 (121)

LTA 0.1622 (109) 0.3191 (121)

MWA 0.0412 (109) 0.2435 (121)

SBC 0.3639 (109) 0.4146 (121)

LSA 0.1982 (109) 0.2663 (121)

Dir Cos 0.2519 (109) 0.2878 (121)

Emb Cos 0.5690 (109) 0.5730 (122)

Table 21. Semantic relatedness results for Disorders and Chemicals and Drugs seman-

tic group pair subsets. The Spearman’s Rank Correlation coefficient (ρ) with

the number of terms (n) compared in parentheses are shown for each method

on each dataset. The best performing method for each dataset is shown in

bold.

to the full dataset. Emb Cos performs the best, and SBC performs the second best

for both UMNSRS Sim and Rel subsets. Dir Cos performs the third best, and fourth

best for the UMNSRS Sim and Rel datasets respectively. Results are mixed for the

other methods, but interestingly, LTC performs third best for the UMNSRS Sim

subset, and the worst on the UMNSRS Rel subset. LTA performs third best on the

UMNSRS Rel subset, and second worst on the UMNSRS Sim subset. MWA performs

very poorly on the UMNSRS Sim subset, but OK on the UMNSRS Rel subset. Emb

Cos performs statistically significantly better than SBC on neither dataset, but sta-

tistically significantly better than the third best performing measures (Dir Cos and

LSA) on both datasets.
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5.4.2 Results: Link Prediction

Figure 22 show the ROC curves generated for the highly-cited versus noise, and

published versus noise datasets respectively.

In ROC curve analysis, an ideal classifier would produce a curve that goes straight

up the y-axis at a value of 0.0 and straight across the x-axis at a value of 1.0, and

produce an AUROC of 1.0. A random classifier would produce a straight ROC curve

going diagonally from (0,0) to (1,1) and an AUROC of 0.5. Therefore lines closer to

this perfect scenario with higher AUROCs are better, and lines closer to this random

scenario with lower AUROCs are worse.

Fig. 22. This ROC curve shows the ability of each ranking method to distinguish be-

tween term pairs that co-occur in the future and those that do not using

MEDLINE co-occurrences to represent a relationship. Each measure’s AU-

ROC is shown in parentheses.

The order of performance from best to worst is LTC, Dir Cos, SBC, LTA, MWA,

LSA, and Emb Cos. The ROC curves of LTC, Dir Cos, and SBC are very similar, and
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all have AUROC values greater than 0.9; this is excellent performance. LTA performs

the next best, with decent performance, followed by ROC curves for MWA, LSA, and

Emb Cos. MWA’s curve is interesting in that it is not concave down throughout,

with the least slope in the middle. This indicates that it has trouble distinguishing

between true and false relationships ranked in the middle.

5.4.3 Results: Estimating Future Relatedness

Figure 23 shows the CRGs generated using our time-sliced co-occurrence dataset.

The Y-axis shows the cumulative relatedness at the rank indicated by the x-axis.

Each colored line shows the CRG of a different method. Not all lines are the same

length, and no methods except random reach 100% cumulative relatedness. This is

because some methods are able to quantify relatedness between more terms. For

example, when randomly assigning scores, we can quantify relatedness between all

possible term pairs, but for other measures the terms must share some linking term

information in order to quantify relatedness. Most notably, Emb Cos quantifies the

relatedness between less terms than all other methods. This is because a frequency

cutoff of 5 is used, meaning that embeddings are not created for concepts that occur

less than 5 times in the corpus.

The ideal CRG is generated by using the direct future relatedness scores to rank

terms. It shows the best possible ranking, and very quickly achieves a cumulative

relatedness of 100%. It is much shorter than the other lines, which shows how few

actual future relationships in the gold standard. There is a lot of room for improve-

ment for all methods, but Emb Cos, Dir Cos, and SBC perform the best. Emb Cos

performs the best at low ranks, but as more terms are ranked, Dir Cos performs the

best, followed closely by SBC. LTC, LTA, and MWA all perform similarly, and LSA

performs the worst.
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Fig. 23. This cumulative relatedness graph shows the ability of each ranking method

to estimate future relatedness. Each line corresponds to a different ranking

method. The ideal line is shown for which the direct future relatedness is used

to rank.

5.5 Analysis

The results of indirect relatedness measures sometimes varied depending on the

evaluation method. This is understandable because the evaluation methods differ in

what they evaluate. Estimating direct relatedness is evaluated using Spearman’s rank

correlation with standard evaluation datasets. Distinguishing between true and false

future predictions in a link prediction manner with ROC curves, and estimating future

relatedness with CRGs. To better understand each indirect relatedness measure’s

overall performance, we summarized their results in Table 24. Each row shows the

results of a different method and a “grade” of their performance. The grades were

assigned in a somewhat subjective manner based on their order of performance and
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noticeable groupings and are included to give an overall understanding of performance.

Fig. 24. The performance of each ranking method on each evaluation task. An overall

grade of good, OK, or bad is assigned to each method to summarize perfor-

mance.

The first evaluation method, estimating direct relatedness using the full UMN-

SRS and Mini Mayo datasets (abbreviated “Dir Rel All”) shows the mean Spearman’s

rank correlation averaged across all four datasets, and a grade of their performance.

Emb Cos, SBC, and Dir Cos all perform well. LTA, LTC, and LSA perform OK, and

MWA performs poorly.

The next evaluation method, estimating direct relatedness of the subsets of UMN-

SRS Sim and UMNSRS Rel using the Disorders and Chemicals and Drugs concept

pairs (abbreviated “Dir Rel Subset”) shows the mean Spearman’s rank correlation

across both datasets, and a grade of their performance. All methods perform poorly,

with the exceptions of SBC and Emb Cos, which perform OK and well respectively.

Both Dir Rel All and Dir Rel Subset results are used to determine the performance of

measures at estimating direct relatedness, but since the order of performance is sim-

ilar for both methods, Dir Rel All better summarizes their performance at a glance.

Overall, for estimating direct semantic relatedness Emb Cos, SBC, and Dir Cos per-

form the best, followed by LTA, then LTC and LSA. MWA performs the worst.

The next column shows the link prediction evaluation results with ROC curves.
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The AUROC is shown for each method along with a grade. LTC, Dir Cos, and SBC

perform the best, followed by LTA and MWA which perform just OK. Lastly, LSA

and Emb Cos perform poorly.

The next column shows the performance at estimating future relatedness eval-

uated with CRGs. Just a grade is shown, since CRGs don’t have a single number

to quantify performance. Dir Cos, SBC, and Emb Cos perform the best, followed by

LTC, LTA, and MWA, which perform OK, and lastly LSA, which performs poorly.

The final column shows an overall grade based on the results of each evaluation

method. SBC, Dir Cos, and Emb Cos perform the best overall, LTC performs OK,

and LTA, MWA, and LSA perform poorly.

The order and quality of performance for estimating direct and indirect semantic

relatedness is similar. For both evaluation methods SBC, Dir Cos, and Emb Cos

perform the best, indicating these methods are the best for estimating relatedness

overall. The order of performance with ROC curves is different from the others, but

LSA and MWA perform poorly for all evaluation methods, and SBC performs good

or OK for all evaluation methods.

The difference in performance between SBC and LSA is surprising since their

methodologies are similar, but indicates that their performance may be sensitive to

the selection of the proxy sets for A and C. We believe LSA performs poorly because

the BA and BC sets are too large and too noisy. SBC uses the shared linking term

set, which is much smaller and more relevant to how A and C interact. Interestingly,

direct cosine also uses the overlap of co-occurring terms or shared contexts, since only

concepts that co-occur with A and C (and therefore are non-zero) contribute to the

cosine distance. Filtering, or selecting only the most relevant terms for LSA, SBC,

and direct cosine may improve results in the future.

It is surprising the Emb Cos performs well at estimating direct and future re-
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latedness, but poorly for link prediction, and that LTC performs the best for link

prediction, but just OK for the other tasks. This indicates that different relatedness

measures have different strength and weaknesses. Overall, these results indicate that

SBC, Dir Cos, and Emb Cos are the best methods for estimating direct and indirect

relatedness, where as LTC is the best method for link prediction tasks, so it may

be beneficial to combine the results of the measures or use them both in a single

application.

Even though the performances of each method varied, having a variety of rank-

ing methods with different theoretical foundations is useful; it allows the best method

to be selected for each application. Preliminary collaborative efforts show that re-

searchers often know the types of connections they are looking for, and want to fix

both the A and B term sets to determine how some known A interacts with some C

term set via the means of a relatively small, known B set (e.g. how a drug affects a

class of diseases through means of several metabolites). In this scenario, it is likely

that most terms will co-occur with the entire B term set, which means that each

evaluated method except MWA would produce uninteresting results. LTC, LTA, and

LSA require that the linking terms between A and C are different in order to produce

interesting results. SBC and direct cosine produce similarly uninteresting results,

since restricting the B set restricts the shared B set making results identical for all A

and C terms. Emb Cos takes the cosine between A and C vectors and ignores the B

terms entirely, and therefore how A interacts with C through B. So, although MWA

performs poorly at estimating future relatedness, MWA is the only method capable

of producing interesting rankings in this scenario.

To summarize our findings, we divide our methods into three groups, linking

term based association methods (LTC, LTA, MWA), which directly use the linking

terms in their calculations. Set based association methods (SBC, LSA), which use
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set associations between proxy sets in their calculations. Vector methods (Dir Cos,

Emb Cos) which use vector cosine to quantify relatedness. Below, we summarize the

differences between evaluated measures and indicate their strengths:

• LTC - linking term based, which is simple to compute and has the best empirical

performance for link prediction.

• LTA - linking term based method, is faster to compute than other indirect

association measures.

• MWA - linking term based method, which may be the only interesting method

when B terms are restricted to a small set.

• SBC - set based association method, which performs well at all tasks making

this a good general purpose indirect relatedness measure.

• LSA - set based association method, which performs poorly at most tasks, but

uses the largest sets of proxy terms. This gives it the greatest chance of being

able .to quantify relatedness and could therefore be useful in domains with small

datasets.

• Dir Cos - vector method, which performs well on all tasks (except Dir Rel

Subset), making this a simple to compute general purpose method.

• Emb Cos - vector method, good for estimating direct and future relatedness.

This is the only method that does not rely on a co-occurrence matrix, which

makes it the fastest to compute. This means the vectors can be created from

the larger corpora faster than other methods.
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5.6 Conclusions

We evaluated our indirect association measures, LTA, MWA, SBC, and LSA, and

the baseline measures of concept embeddings cosine (Emb Cos), direct co-occurrence

vector cosine (Dir Cos) and linking term count (LTC) on the tasks of estimating

direct relatedness using four datasets and two subset, the task of link prediction, and

on estimating future relatedness using cumulative relatedness graphs (CRGs). For

our evaluation, we developed the evaluation method of CRGs, and a time-sliced co-

occurrence dataset which we used with ROC curve analysis. We found that SBC, Dir

Cos, and Emb Cos are the best methods for estimating direct and indirect relatedness,

and LTC is the best method for link prediction tasks.

The goal of this analysis is to evaluate indirect relatedness measures applied to

LBD, and although we showed that our methods perform well for these tasks, it is

unclear if these tasks are indicative of performance for LBD. How to best evaluate

LBD systems is an open question which we discussed in Section 3.3.2. In Chapter 6

we develop a generalized evaluation framework for LBD, and introduce our proposed

evaluation methods and dataset.
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CHAPTER 6

LITERATURE BASED DISCOVERY EVALUATION

In this chapter, we address our second critical problem of LBD, the lack of meaningful

evaluation methods and datasets. LBD is difficult to evaluate, and evaluation meth-

ods are often ad-hoc and system specific, but representative datasets and effective

evaluation standards are critical for improving, comparing, and sharing LBD systems

and components. In this chapter, we create a standard LBD evaluation dataset, assign

evaluation methods to individual LBD components, and evaluate indirect relatedness

measures (introduced in Chapter 5) for the term filtering and term ranking steps of

LBD. Specific contributions of this chapter are:

1. Development of a standard evaluation dataset

2. Assignment of evaluation methods for LBD components in isolation and in

combination

3. Evaluation of indirect relatedness measures for term filtering and term rankings

steps of LBD

We begin this chapter by defining desirable evaluation dataset characteristics.

Next, we compare our co-occurrence-based time-slicing dataset (introduced in Chap-

ter 5) to a SemMedDB-based time-slicing dataset developed by Sybrandt, et al. [87].

We then present a hybrid time-slicing dataset that addresses other datasets’ weak-

nesses. We illustrate the datasets’ differences with ROC Curve evaluation of indirect

relatedness measures. Next, we assign evaluation methods to each of the LBD compo-

nents identified in Chapter 3. These evaluation methods include precision and recall
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(PR) curves, precision at K graphs, and user studies. With our hybrid dataset and

evaluation methods, we evaluate indirect relatedness measures for term filtering and

term ranking in LBD, and make conclusions.

6.1 Dataset Comparison

Time-slicing [116] and link prediction [85, 87] type evaluation techniques are

common LBD evaluation methods, but they require a gold standard of future dis-

coveries for evaluation. There is no widely accepted gold standard dataset, and no

consensus on the best way to generate a gold standard. An ideal gold standard would

contain all possible future discoveries, and no currently known discoveries. This is an

impossibility, so instead, the gold standard is estimated with several assumptions and

simplifications. Time-slicing is a way to estimate future discoveries. In time-slicing

evaluation, a dataset is divided into pre- and post-cutoff segments. The pre-cutoff

segment represents all known knowledge, and the post-cutoff segment represents all

future knowledge. Future discoveries are simplified as a future relationship, and a fu-

ture relationship is simplified as a term pair. Term pairs that occur in the post-cutoff

dataset and not in the pre-cutoff dataset are considered new discoveries. With these

simplifications, we can evaluate an LBD system’s ability to predict future discoveries

by its ability to predict whether a term pair that is absent from the pre-cutoff set will

occur in the post cutoff set. The question remains though, how to best generate the

pre- and post-cutoff sets of term pairs?

There are two general methods of doing this, (1) using co-occurrences or (2) us-

ing extracted relationships. Both methods have advantages and disadvantages, and

in this section, we define several characteristics desirable for time-slicing datasets,

and compare a co-occurrence-based to a relationship-based dataset. Time-slicing is

used primarily to evaluate hypothesis generation and its sub-steps (Figure 29), and to
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illustrate differences between the datasets, we evaluate our indirect relatedness mea-

sures of linking term association (LTA), minimum weight association (MWA), shared

B to C association (SBC), and linking set association (LSA) against the baselines of

concept embeddings cosine (Emb Cos), direct co-occurrence vector cosine (Dir Cos)

and linking term count (LTC) for link prediction using each dataset and ROC curves

(as described in Section 5.2.1). Additionally, a good time-slicing dataset should have

the following characteristics:

1. Universal - be able to evaluate each component of the LBD hypothesis genera-

tion process in combination or separately.

2. Representative - be representative of real-world LBD data.

3. High Precision - contain minimal false discoveries.

4. High Recall - contain maximum true discoveries.

5. Generalizable - be usable by (nearly) all LBD systems, so systems can be com-

pared.

In the next two sections, we compare the co-occurrence based dataset we devel-

oped in Chapter 5, an extracted-relation based dataset that uses SemMedDB predica-

tions developed by Sybrandt, et al. [87], and a hybrid dataset we developed. Table 22

summarizes which of the criteria these datasets meet. No mark means that criteria

is not met, an “X” indicates the dataset meets that criteria, and a “/” indicates a

dataset almost meets that criteria. All presented datasets use UMLS concepts instead

of terms, however a mapping between terms and concepts exists, so these datasets

can be used regardless of whether a system uses concepts or terms.
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Time-Slicing Dataset Criteria
Universal Representative High Precision High Recall Generalizable

Our Co-occurrence X / X X
Sybrandt SemMedDB / /

Our Hybrid X X / / X

Table 22. Evaluation dataset criteria and which ones they meet. No mark means that

criteria is not met, an “X” indicates the dataset meets that criteria, and a

“/” indicates a dataset almost meets that criteria.

6.1.1 Our Co-occurrence Dataset

Description: We developed a co-occurrence based time slicing dataset using the

procedure outlined by Yetisgen-Yilidz and Pratt [116]. We describe the dataset’s con-

struction in detail in Section 5.3, but briefly, the dataset consists of co-occurring term

pairs collected from MEDLINE. We select 200 start terms by randomly selecting 50

terms from each of the semantic types of: Clinical Drug (T200, clnd), Pharmacologic

Substance (T121, phsu), Disease or Syndrome (T047, dsyn), Sign or Symptom (T184,

sosy). A set of target terms is defined as all terms in the vocabulary, and start-target

term pairs are generated for all possible start-target term pairs. Term pairs that exist

in the pre-cutoff segment are removed, and the result is a set of all possible start-target

term pairs for which no direct co-occurrence exists in the pre-cutoff dataset.

Analysis: This dataset is universal, it can evaluate all LBD hypothesis gener-

ation components. Specifically, since all possible target terms are used to generate

term pairs, it can evaluate the term generation step. This dataset is somewhat rep-

resentative of LBD data, since using all terms in the vocabulary mimics how LBD

is performed, the distribution of true and false samples should be representative of

real LBD data. It, however, relies of randomly selecting 200 start terms, and there is

no guarantee these terms are representative samples. The dataset has low precision

since using co-occurrence information over-generates relationships [75]. This dataset
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has high recall, since using co-occurrences will capture nearly all true relationships in

the data. This dataset is generalizable since it uses concept-concept pairs, and can

therefore be used by nearly all LBD systems.

Results: We previously evaluated indirect relatedness measures using this

dataset in Chapter 5 for estimating future relatedness, and we show the results again

here in Figure 25. Each colored line corresponds to a different indirect relatedness

measure. The legend shows the area under the ROC curve (AUROC) in parentheses.

The best performing measures are LTC, Dir Cos, and SBC. LTA performs OK, and

MWA, LSA, and Emb Cos which perform the worst.

Fig. 25. This ROC curve shows the ability of each ranking method to distinguish

between term pairs that co-occur in the future and those that do not using

MEDLINE co-occurrences to represent a relationship. The AUROC of each

method is shown in parentheses.

127



6.1.2 Sybrandt Dataset

Description: Sybrandt, et al. create two time-slicing datasets of SemMedDB

predications (available online1). These datasets are the published dataset, which

consists of a non-exhaustive (it is unclear how the predications were selected) set of

predications that are present in the post-cutoff segment and absent from the pre-cutoff

segment, and the highly cited dataset, which consists of predications selected from

the published dataset which occur in papers that are cited at least 100 times. They

use a cutoff date of January 1, 2010, and create a gold standard of 4319 published

predications, and 1448 highly-cited predications. These predications are represented

as start-target term pairs. To add false pairs to their dataset, they create a noise set

by randomly generating term pairs that do not occur in either the pre- or post-cutoff

segments. Pairs are randomly selected from the noise set to create datasets with a

balanced number of true and false samples. The end result is their published dataset

of 4319 true and 4319 false term pairs, and their highly-cited dataset contains 1448

true and 1448 false term pairs.

Analysis: Since the false term pairs are randomly generated and selected, this

dataset is not universal, it cannot evaluate all components of LBD. Evaluating term

generation requires that for each start term, all possible start-target term pairs be

defined as either true, false, or known. If we input a start term into the term genera-

tion step, we may output a start-target term pair that is not defined in our dataset,

and we therefore cannot determine a truth value for it. Since this dataset cannot

evaluate term generation, it therefore cannot evaluate the hypothesis generation step

as a whole. This dataset can, however evaluate the term filtering and term ranking

steps.

1https://github.com/JSybrandt/Moliere_Validation_Data
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This dataset is not representative of LBD data. There are two reasons for this:

(1) Sybrandt, et al. artificially produce a balanced dataset, but since most term

pairs are not future discoveries, LBD evaluation datasets should have a high class

imbalance; (2) using co-occurrence counts collected from the pre-cutoff segment of

MEDLINE, we found a distinct difference in term occurrence rates for the term in

true pairs versus the term in false pairs. This difference is with respect to the number

of terms the terms occur with, and the count of occurrences of the terms. Table 24

summarizes our findings. It shows the average number of co-occurring terms, and

average number of occurrences for the start (A) and target (C) terms in the highly-

cited, published, and noise datasets.

Difference in Co-occurrences Rates between Terms in each Dataset

Term Set mean co-occurring terms mean occurrences

highly-cited A 13,587 987,086

highly-cited C 9,065 607,984

published A 10,312 627,894

published C 7,109 398,202

noise A 2,152 82,555

noise C 1,770 76,213

Table 23. ROC dataset co-occurrence means. Average number of co-occurring terms

and average occurrence count for each A and C term in the highly-cited,

published, and noise datasets.

Table 23 shows that on average, both the start (A) and target (C) terms in the

true pair sets (highly-cited and published) occur much more frequently and co-occur

with many more terms than the terms in the false (noise) dataset. This difference in

occurrence rates is understandable, since highly cited term pairs may come from more
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popular research areas than just any published term pair, and noise term pairs that

never co-occur together likely consist of rarely used terms. This difference though,

creates a bias in the dataset and is not representative of real-world LBD data.

Sybrandt, et al.’s dataset is, however somewhat precise, since using relationships

rather than co-occurrences greatly increases the precision of the extracted relation-

ships. SemRep (which is used to generate SemMedDB) has precision rates between

73% and 96% [15] depending on the relationship type. This increase in precision

from using SemMeDB also means a decreased recall; SemRep recall rates are be-

tween 55-70% depending on the relationship type. Furthermore, the set of published

pairs is not exhaustive, and it is not clear how the discoveries were sampled, meaning

there is low recall overall. Lastly, this dataset is only somewhat generalizable. It uses

concept-concept pairs so it can be used by nearly all LBD systems, but it relies solely

on SemMedDB to create the pre- and post cutoff segments. This is problematic for

systems that use co-occurrence information from MEDLINE instead of, or in addi-

tion to SemMedDB information. Although the true concept pairs (highly-cited and

published sets) may be absent from the pre-cutoff segment of SemMedDB, they may

co-occur together in a pre-cutoff version of MEDLINE. We found that over half of

these true pairs directly co-occur in the pre-cutoff portion of MEDLINE. This means

we are treating known knowledge as true discoveries, which makes the informativeness

of any results (including our own) questionable.

Results: We evaluated indirect relatedness measures using the highly-cited ver-

sus noise and published versus noise datasets. To generate the results, we use the

parameters described in Section 6.4. Figures 26 and 27 show the ROC curves gener-

ated for the highly-cited versus noise, and published versus noise datasets respectively.

Results are very similar for both the highly-cited versus noise and published

versus noise datasets. The order of performance from best to worst for both datasets
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Fig. 26. This ROC curve shows the ability of each method to distinguish between

highly-cited term pairs and noise. Highly-cited pairs appear in papers with

over 100 citations after the cutoff date. Each measure’s AUROC is shown in

parentheses.

is LTC, Dir Cos, SBC, LTA, MWA, Emb Cos, and LSA. The ROC curves of LTC,

SBC, and Dir Cos are very similar, and all have AUROC values greater than 0.9;

this is excellent performance. LTA performs the next best, with good performance,

followed by similar ROC curves for MWA and embeddings cosine. LSA performs

similar to random, indicating very poor performance. In both datasets, there is a

straight line portion of the ROC curve for Emb Cos that is caused by having many

tied terms. In our ROC curve implementation (see Section 5.2.1), we penalize tied

terms to produce the worst case scenario results, such that any false terms are ranked

higher than true terms.

Interestingly, the results are very similar for our co-occurrence based dataset and

for Sybrandt, et al.’s dataset. The order of performance is the same for all but the

worst two performing methods, Emb Cos and LSA, which perform the worst on our
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Fig. 27. This ROC curve shows the ability of each method to distinguish between

published term pairs and noise. Published pairs appear in at least one paper

after the cutoff date. Each measure’s AUROC is shown in parentheses.

co-occurrence dataset and Sybrandt, et al.’s datasets respectively. Additionally, the

groupings of performance are similar. LTC, Dir Cos, and SBC all clearly perform

better than the other methods, and LTA performs somewhere in between. MWA,

Emb Cos, LSA remain the worst performing metrics. The similarity in results is

surprising, since the datasets are quite different from each other. The co-occurrence

based dataset is much larger, and likely contains many false positives. Sybrandt,

et al.’s dataset is smaller and more precise, but is not representative of actual LBD

data. In the next section, we present our hybrid dataset which addresses problems

with these datasets, and we evaluate the performance of indirect relatedness using it.
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6.2 Our Hybrid Dataset

Description: In this section we describe our hybrid evaluation dataset (available

online2). This dataset addresses the problems of our co-occurrence based dataset and

of Sybrandt, et al.’s relationship-based dataset by using both relationship (SemMedDB

predication) and MEDLINE co-occurrence data. Specifically, we address problems

with:

1. Representative - we use all possible term pairs in a restricted vocabulary to

more accurately model the distribution of actual LBD data. Specifically, this

addresses problems caused by randomly selecting start terms (as is the case with

our co-occurrence dataset), and sampling true term and randomly generating

false term pairs (as is the case with Sybrandt, et al.’s dataset).

2. Universal - since we use all possible term pairs in this restricted vocabulary we

can evaluate all components of the hypothesis generation process, including the

term generation step.

3. High Precision - we use SemMedDB data rather than co-occurrence data to gen-

erate a set of future discoveries. This has increased precision over co-occurrence

data.

4. Generalizable - our set of known knowledge has high recall since we generate it

using both SemMedDB and co-occurrence data. This means that our dataset

can be nearly all systems regardless of relation extraction method, since known

term pairs will not occur as future discoveries (which creates a bias).

We represent current (known) and future knowledge as start-target concept pairs

2https://github.com/henryst57/LBD_Evaluation/releases/tag/v0.01
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in pre- and post-cutoff segments. Known concept pairs are generated from both co-

occurrence information in a pre-cutoff versions of MEDLINE and from predications

in SemMedDB. Future concept pairs are generated using post-cutoff SemMedDB

predications only. The set of true future discoveries is created by removing all pre-

cutoff pairs from the post-cutoff pairs. We create false concept pairs as all possible

concept pairs that are not in the known or true future datasets. Heuristics are used to

reduce the vocabulary, which reduces the size of true and false pairs to a manageable

number. The heuristics are semantic type and relationship type filters, restriction

to concepts pairs of different semantic types, and co-occurrence based thresholds.

Details are explained in Section 6.2.1.

Analysis: Since our hybrid dataset uses all possible term pairs in a restricted

vocabulary, it is universal, it cannot evaluate all components of the LBD hypothesis

generation process. Using all possible term pairs in a restricted vocabulary also

means that our hybrid dataset is representative; we do not select a small, possibly

biased sample of start terms, and we do not generate random, possibly biased false

pairs. Unfortunately, since using all term pairs creates a dataset that is too large to

be practical, we must apply co-occurrence thresholds to reduce its size which could

potentially introduce a bias. Our hybrid dataset uses SemMedDB predications as

a gold standard, so it has moderately high precision (73% and 96%) and acceptable

recall(55-70%). Since we use concept pairs to represent relationships it can be used

by nearly all LBD systems, and since we use MEDLINE and SemMedDB data for

our pre-cutoff segment, it can be used with LBD systems that use either SemMedDB

or MEDLINE data.

Results: Here, we evaluate indirect relatedness measures using our hybrid

dataset. To generate the results, we use the parameters described in Section 6.4.

Figure 28 shows the results of each indirect relatedness measure on our hybrid dataset.
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Fig. 28. This ROC curve shows the performance of indirect relatedness measures on

our hybrid dataset. Each measure’s AUROC is shown in parentheses.

The results using this dataset are much different than the results of the other

datasets. All indirect relatedness methods perform poorly, but most perform better

than random. These poor results may seem discouraging or confounding, but we

believe that our hybrid dataset better models the difficulty of LBD, and that the good

performance of the measures on other datasets is caused by biases in those datasets.

Our co-occurrence dataset, and Sybrandt, et al.’s dataset introduce a similar bias in

two different ways. In our co-occurrence dataset, we use co-occurrence information to

construct a gold standard which produces a true set with unacceptably low precision

rates. The set of true discoveries is more likely to contain frequently occurring terms,

because those terms are used more used often, and are therefore more likely to co-

occur with something new in the future. Sybrandt, et al. construct a dataset with

a randomly created false discovery set. The majority of terms in a vocabulary occur

very infrequently (due to the Zipfian nature of language), so by randomly choosing
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terms, they are more likely to select infrequently occurring terms. These terms are

therefore more likely to be a part of false discovery (see Table 23). Therefore, for

both of these datasets terms that occur frequently are more likely to be a part of

discoveries labeled as true. This is problematic, and we addressed it in creating our

hybrid dataset. We create true discoveries with high precision (in the same manner as

Sybrandt, et al.) by using SemMedDB predications, and we create a comprehensive

set of false discoveries (in the same manner as our co-occurrence dataset) by using all

terms in the vocabulary. This prevents occurrence rate biases in the both the true

and false discovery sets, and better models real-world LBD data.

The order of performance of the indirect relatedness measures on our hybrid

dataset (based on AUROC scores) from best to worst is LTC, LSA, Emb Cos, MWA,

LTA, SBC, and Dir Cos. LTC performs the best for all datasets, but Dir Cos, and

SBC which, for other datasets, were the second and third best performing measures

perform the worst with this dataset. Dir Cos is the only method that performs

noticeably worse than other methods; it performs no better than random.

In creating the results shown in Figure 28, we observed an interesting phe-

nomenon; results improve if the order of rankings are reversed for LTA, MWA, LSA,

Dir Cos, and Emb Cos. For other datasets, ranking is performed in descending order

(a pair with a high relatedness score ranks higher than one with a low score), but

for these measures ranking in ascending order improves performance on this dataset.

Therefore, in Figure 28 we report LTA, MWA, LSA, Dir Cos, and Emb Cos ranked

in ascending order, and LTC and SBC in descending order. Reversing these orders

results in performance worse than random for all measures except for Dir Cos, which

performs on par with random regardless of ranking order.

Ranking in ascending order is counter-intuitive, since we hypothesized that the

degree to which two terms are indirectly related indicates the likelihood they are a
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future discovery. These results indicate the opposite is true; that terms that are less

related are more likely to be future discovery. This is an important finding, and

supports the idea that likely relationships are uninteresting, too obvious, or produce

only incremental discoveries, and that surprising, unlikely relationships constitute

meaningful discoveries and scientific progress [61]. This idea of surprising relations

is incorporated into several existing LBD systems [70, 91, 90, 92, 71]. Estimating

relatedness is still important though, since it can be reversed (as we do here) to

determine interestingness, or a system can be built using multiple filters, where a

user can toggle between the types of relationships they are searching for.

6.2.1 Construction Details

In this section, we describe details of the construction of our hybrid dataset.

Since LBD is often used to find new treatments (chemicals and drugs) for diseases or

disorders, we restrict our dataset to treatment-disease, and disease-treatment pairs

which we believe are of high interest to the LBD community. Additionally, since order

of co-occurrence or order of subject-object in a relationship does not matter, we do

not consider term order during construction. The dataset is constructed in several

steps: First, relevant SemMedDB relationship pairs are generated. Next, relevant

MEDLINE co-occurrence pairs are generated. Third, time-slicing is performed, and

the pairs are divided into pre- and post-cutoff segments. Fourth, the time-sliced co-

occurrence and relationship pairs are merged to create sets of known pairs and true

future discoveries. Fifth, false concept pairs are generated, and last co-occurrence

thresholds are applied to reduce the dataset to a manageable size.

SemMedDB Pair Generation: SemMedDB pairs are generated by first ex-

tracting all predications from SemMedDB version 31 R processed up to June 30, 2018.

We restrict the subjects and objects of the predications such that they are treatments
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(semantic types ‘Clinical Drug’ (‘clnd’) or ‘Pharmacologic Substance’ (‘phsu’)) or

problems (semantic types ‘disease or syndrome’(‘dsyn’) or ‘sign or symptom’ (‘sosy’)).

Concepts that are too general are also removed by choosing only novel concepts, indi-

cated by the subject novelty and object novelty flags in SemMedDB. The result is vo-

cabulary of novel treatment and problem concepts. Next, we restrict the relationships

to predication types of: isa, location of, part of, uses, causes, process of, treats, diag-

noses, associated with, coexists with, method of, affects, interacts with, occurs in,

precedes, complicates, prevents, administered to, disrupts, manifestation of, com-

pared with, predisposes, augments, higher than, inhibits, lower than, same as, stim-

ulates, converts to, than as. We treat the remaining predications as term pairs in a

set, and remove all but problem-treatment or treatment-problem pairs, causing the

set of predication types to narrow further.

MEDLINE Pair Generation: Co-occurrence term pairs are generated using

co-occurrence information from MEDLINE. We run UMLS::Association version 1.3’s

CUI Collector tool3 over titles and abstracts of the 2015 MetaMapped MEDLINE

Baseline, with sentence boundaries ignored, and use a window size of 8 and default

values for all other parameters.

Time-Slicing: We divide both the term pairs extracted from SemMedDB and

from MEDLINE into pre- and post-cutoff segments using a cutoff date of January 1,

2010. We use the post-cutoff term pairs extracted from SemMedDB predications as

our future term pair set. We use the pre-cutoff term pairs extracted from SemMedDB

predications and from MEDLINE co-occurrences as our known term pair set. Oddly,

when combining the term pairs from SemMedDB and MEDLINE, we found 508 con-

cepts which occur in SemMedDB, but not in MEDLINE. Many of these concepts are

3https://metacpan.org/release/UMLS-Association
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synonyms of those that occur in MEDLINE, or are very general terms. It is unclear

why this difference in vocabulary exists, but we suspect it is due to differences in

MetaMap versions or UMLS releases used to process the data. Regardless of the

reason, this is a small number of concepts, so we removed them from the vocabulary,

such that any pairs containing them are removed from the dataset. Next, we ensure

the order of term pairs is ignored by adding B − A term pairs for all A − B term

pairs in a set. We do this for both the known and future term pair sets. Next, we

create our preliminary silver standard set of future discoveries by removing all known

term pairs from the future term pair set, and last we limit the vocabulary of the silver

standard to that of the pre-cutoff dataset, since we cannot predict unknown concepts.

False Pair Generation: At this point we have a preliminary set of silver

standard future discoveries represented as start-target term pairs extracted from

SemMedDB predications. The vocabulary of our silver standard is limited to pre-

cutoff terms of specific semantic types. To evaluate LBD we must also have a set

of false pairs, which we generate as all possible term pair combinations within the

silver standard vocabulary. Next, we remove all known and future pairs from this

false set, and as with the silver standard pairs restrict them to problem-treatment or

treatment-problem term pairs. We add these false term pairs to the silver standard

dataset to result in a set of labeled, true and false term pairs. These term pairs are

all problem-treatment, treatment-problem term pairs that do not occur in the known

term pair set.

Thresholding: At this point, the silver standard dataset is impractically large.

Many terms in the vocabulary co-occur with just a few other terms, therefore we re-

duce the size of vocabulary by removing terms that occur with only small number of

subjects or objects. In effect, this removes terms that have few discoveries associated

with them. Using a threshold, t, we remove terms that occur with ≤ t unique sub-
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jects and ≤ t unique objects. This is an iterative process, since removing a concept

as a subject can affect the number of objects other terms co-occur with. Terms are

removed from the vocabulary until the entire silver standard consists of terms with

greater than t subjects and t objects associated with them as new discoveries. Limit-

ing vocabulary in this manner greatly decreases the number of concept pairs that are

in our silver standard dataset, and at t = 7, no terms remain. We use the smallest set

(t = 6) as our silver standard. Applying this threshold skews the class distribution of

true and false samples, but we believe this is acceptable, since the class distribution

remains highly imbalanced. Table 24 shows the vocabulary size and class balance at

each threshold.

Hybrid Dataset Statistics at with Different Thresholds (t)
Threshold Vocab Size True Pairs False Pairs True/False Ratio Mean True Pairs per Term
t = 0 6,488 29,878 42,064,266 0.0007 4.61
t = 1 3,778 24,662 14,248,622 0.0017 6.53
t = 2 2,436 19,506 5,914,590 0.0033 8.01
t = 3 1,594 14,726 2,526,110 0.0058 9.24
t = 4 960 9,860 695,281 0.0142 10.27
t = 5 502 5,606 171,494 0.0327 11.16
t = 6 204 2,306 24,664 0.0935 11.30
t = 7 0 0 0 0 0

Table 24. Hybrid dataset statistics at different thresholds. A threshold of 6 is used as

our final hybrid dataset.

6.3 Literature Based Discovery Evaluation

In this section, we present standard evaluation methods for LBD, which along

with our hybrid dataset creates meaningful LBD evaluation methods and datasets.

We first describe the evaluation methods, then describe how they are used to evaluate

different LBD components.
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6.3.1 Evaluation Methods

The LBD components presented in Chapter 3 and shown in Figure 29 have

different inputs, outputs, and goals. Evaluating different components in isolation

and in combination allows for a more meaningful understanding of the evaluation

results, comparison between other systems, and sharing components between them.

We propose using three evaluation methods, which along with our hybrid dataset

allow all the components of LBD to be evaluated. The evaluation methods are:

1. Precision and Recall (PR) Curves - which show the trade-off between precision

and recall.

2. Precision at K graphs - which shows the precision at each rank (K) averaged

over all start terms.

3. User-studies - which show how a system is used, users thoughts on a system,

and how easily results are interpreted.

In Chapter 3, we compared existing evaluation methods. Their strengths and

weaknesses, along with those of PR curves and precision at K graphs are summarized

in Table 25.

Evaluation Methods
Automated Replicable Quantitative Informative Modular

Discovery Replication X X X
User Studies X X

New Discovery Proposal
Time-Slicing X X X X X
ROC Curves X X X X X

Established MI Graphs X X X X X

PR Curves X X X X X
Precision at K Graphs X X X X X

Table 25. Evaluation methods and which of the ideal evaluation criteria they meet as

described in Chapter 3
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Precision and Recall (PR) Curves: Although most previous work [85,

89, 87] uses ROC curves as an evaluation method for LBD, PR curves have also

been used [62]. PR curves and ROC curves show similar information. An ROC

curve shows the true and false positive fractions on each axis, where as a PR curve

shows the precision and recall on each axis. Recall and true positive fraction are

different terms for the same measurement. They measure the percentage of total true

samples identified. Precision and false positive fraction differ. Precision measures the

percentage of samples identified as true that are actually true. False positive fraction

measures the percentage of total samples identified as false that are truly false. As

with ROC curves, we can report the area under the curve (AUC) as a single number

to quantify performance.

Since PR curves are closely related to ROC curves, they meet the same evalua-

tion method criteria for the same reasons as ROC curves (summarized in Table 25).

However, PR curves have been show to be more informative for tasks with a severe

class imbalance [99], such as LBD. since our evaluation dataset has a true/false ratio

of 0.0935, we recommend using PR curves for evaluation.

Precision at K: Yetisgen-Yildiz and Pratt [62] use precision at K graphs for

the top 100 ranked terms in evaluating their LBD system. Precision at K graphs are

created by averaging the precision at each rank (K) over all start terms. In target

term ranking, we rank a list of start-target term pairs for a single start term. The

output is a single set of ranked start-target term pairs. Using this set of ranked pairs,

we can calculate the precision at each rank (K) and plot it to create a precision at

K graph. In our evaluation we create a precision at K graphs averaged over all start

terms as an evaluation method. An ideal system would have perfect precision until

there are no remaining true term pairs. We use precision at K graphs for all ranked

terms in our LBD evaluation. We calculate the mean average precisions at each K
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(average precision at K) to quantify performance with a single value.

Precision at K graphs are a time-slicing technique, and therefore meet the cri-

teria outline in Chapter 3. They are automated, replicable, and they are quantifiable

since the average precision at K can be reported as a single number to quantify

performance. They are informative since we can see how precision changes as rank

increases. Additionally, with the inclusion of our hybrid dataset, they are modular,

since they can be used to evaluate the term ranking step, or the hypothesis generation

step of LBD.

Here, we decide to use precision at K graphs rather than established mutual

information (MI) graphs (Section 3.3.2.6) because established MI graphs only evaluate

directly co-occur terms and their suitability for LBD is therefore questionable. We do

not use cumulative relatedness graphs (Section 5.2.1), since our results (Section 6.2)

indicate that relatedness may not be a good predictor of future discoveries. We use

precision at K graphs in addition to PR curves, because PR curves are designed for

binary classifiers and do not explicitly take rank into account.

As we did with our ROC curve construction (Section 5.2.1), when creating both

our PR curves and precision at K graphs, we penalize tied terms. That is, when a

tie occurs, we create the worst case scenario by ranking false terms higher than true

terms. This rewards methods that produce few ties.

User Studies: Although user-studies may not meet all of our ideal evaluation

method criteria, they are still a necessary evaluation method. LBD systems are

designed to be aids to human discovery and the human component is inescapable,

particularly for evaluating how the effectiveness of user interfaces and how results are

displayed (a focus of Chapter 7).
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Fig. 29. The LBD process as a series of generalized steps. First data is preprocessed,

then, hypothesis generation is performed, in which target terms are generated,

filtered and ranked. Lastly, evidence to support the discovery is collected and

the hypotheses and their evidence is displayed to the user.

6.3.2 Literature Based Discovery Component Evaluation

In the Chapter 3, we described a generalized framework for LBD. This framework

is summarized in Figure 29. It consists of three major steps, and six sub-steps.

First data is preprocessed, and along with a starting term(s) input into a hypothesis

generation step, where hypotheses in the form of term-term pairs are generated,

filtered, and ranked. Next, an explanation for the remaining hypotheses are created

via evidence collection and displayed to the user who analyzes the results. In this

section, we describe evaluation procedures for each of these steps and sub-steps. Our

work focuses on term filtering and ranking, so a more in depth explanation for those

components is given in the next subsections.
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Preprocessing: Preprocessing techniques are generally not unique to LBD,

and standard evaluation datasets and techniques often exist. For instance, prepro-

cessing may consist of named entity recognition or relation extraction. These can be

evaluated using precision, recall, or F-measure on tasks such as the 2014 i2b2 De-

identification and Heart Disease Risk Factors Challenge dataset [118] or 2010 i2b2

Relations Challenge dataset [119], the ChemDNER dataset [120], or BioCreative V

CDR dataset [121]. Extrinsically evaluating the effect of a different data source or

preprocessing method with respect to their effect on LBD may be performed by eval-

uating their effects on the hypothesis generation step of LBD. For instance, more

accurate relationship extraction should produce more accurate hypotheses.

Term Generation: Given a vocabulary and a start term, term generation

outputs a list of target terms representative of future discoveries. Term generation is

a prediction task which can be evaluated as a binary classification task which outputs

only the terms it thinks are true discoveries. Using this idea, previous works [85, 89,

87] used ROC curves to evaluate LBD, however LBD has a severe class imbalance,

where there are many more terms than true discoveries. We use PR curves which are

better for classification tasks with class imbalances [99], and quantify performance

with a single number using the area under the curve. Term generation and the

downstream tasks of filtering and ranking are all often very dependent on one another,

and term generation may be best analyzed based on its impact to these downstream

tasks.

Term Filtering: As with term generation, term filtering is a binary classifica-

tion task. Each term input from the term generation step is labeled as a true or false

future discovery. Again, there is often a severe class imbalance so we use PR curves

for evaluation, and the area under the curve for a single number quantification.

Target Term Ranking: Term ranking takes a list of terms as input and ranks
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them by some measure of interestingness, but most often by how likely they are to be

a true discovery. Since only a relatively small number of terms can be analyzed by a

user, the correctness of the top few terms, and therefore the ability of the method to

rank is critical. PR curves do not explicitly take rank into account. A system that

incorrectly classifies the first 100 terms, and correctly classifies the next 5000 may

have better precision than a system that correctly ranks the first 100 and incorrectly

ranks the next 5000, but that system makes a bad ranking method for LBD. We

use precision at K graphs to evaluate the target term ranking step, and the average

precision at K to quantify performance with a single value.

Hypothesis Generation: The hypothesis generation step is a product of its

three subsets, and can be evaluated in its entirety by the final output of it. We can

use average precision at K graphs to evaluate the entire hypothesis generation step.

Good term generation methods will produce a list of mainly true terms, good term

filtering steps will remove most of these false terms, and good term ranking steps will

then rank the true terms before any remaining false terms. The interaction of these

components produces this final precision at K graph.

Hypothesis Explanation: User studies are the best method for evaluating

hypothesis explanation because it is inherently human-oriented and subjective. What

is understandable to one user may not be for another. For more complex methods,

steps within hypothesis explanation may independently evaluated, but this is often

system specific. For instance, Cameron, et al. [10] generate explanatory subgraphs,

and develops a quantitative evaluation of the graph’s complexity, and Cohen, et al. [90]

use a method to compare the explanatory power of their vector spaces.
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6.4 Results

In this section, we evaluate our indirect relatedness measures of linking term

association (LTA), minimum weight association (MWA), shared B to C association

(SBC), and linking set association (LSA) against the baselines of concept embeddings

cosine (Emb Cos), direct co-occurrence vector cosine (Dir Cos) and linking term count

(LTC). We evaluate the term filtering and term ranking components of LBD on our

hybrid dataset reporting PR curves and Precision at K graphs. We use the same

experimental details as described in Section 5 except a cutoff date of January 1, 2010

is used instead of January 1, 2000. That is, co-occurrence matrices and concept

embeddings are generated using data published from January 1, 1975 to December

31, 2009 as a training dataset. Additionally, a frequency cutoff of 0 instead of 5 was

used for concept embeddings cosine to ensure vectors were created for all terms in

the vocabulary.

6.4.1 Results: Term Filtering

Figure 30 shows the PR curves of each indirect relatedness measure on our hybrid

dataset. As expected, results are similar to those of the ROC curve analysis shown

in Figure 28. All methods perform poorly, but the order of performance is different.

Using the AUC as an indicator the order of performance from best to worst is: MWA,

LTC, LTA, SBC and LSA are tied, Emb Cos, and Dir Cos. Again, we tried ranking in

both descending and ascending order, and again the best results were achieved using

ascending order for LTA, MWA, LSA, Emb Cos, and Dir Cos, which are sorted in

ascending order in Figure 28. LTC and SBC achieved the best results with and are

displayed in descending order. Again, Dir Cos performs on par with random.

Using a PR curve rather than ROC curve we can see finer details into each
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Fig. 30. Precision and recall of indirect relatedness measures on our hybrid dataset.

Each measure’s AUC is shown in parentheses.

indirect relatedness measure’s performance. All measures converge to 9.35% precision,

which is the percentage of true to false samples in the hybrid dataset. MWA performs

noticeably better than other measures at low levels of recall, and Dir Cos performs

worse than random at low levels of recall. All measures perform similarly as recall

increases.

6.4.2 Results: Term Ranking

Figure 31 shows the precision at K graphs of each indirect relatedness measure

on our hybrid dataset. These results show LTC as the best performing term ranking

method; it achieves the highest average precision at K and much higher average

precision for the first one hundred ranked terms. MWA is the next best performing

measure achieving the second highest average precision at K, and performs visibly

better for the first 25 ranked terms. Dir Cos and SBC performs the worst. They
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Fig. 31. Precision at K graphs of indirect relatedness measures on our hybrid dataset.

Each measure’s average precision at K is shown in parentheses.

have the same average precision at K, but Dir Cos performs worse than random for

the top ranked samples, and SBC performs better than random for the top ranked

samples. The other methods have similar performance. The order of performance

based on average precision at K is LTC, MWA, LSA, LTA, Emb Cos, SBC, and Dir

Cos.

The evaluation methods of PR curves and Precision at K graphs measure different

properties of term filtering and ranking methods, and therefore show different results.

MWA is the best performing method for term filtering, and LTC is the best performing

method for term ranking. These could therefore be used in together for the term

filtering and term ranking tasks of LBD. All methods perform poorly for both term

filtering and term ranking which leaves room for improvement with future work in

this area.
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6.5 Conclusions

In this chapter, we developed a hybrid evaluation dataset and assigned evalua-

tion methods for each component of LBD. We compared a MEDLINE co-occurrence-

based dataset, a SemMedDB relationship-based dataset, and our newly created hy-

brid dataset using ROC curves. This revealed biases in both our co-occurrence, and

Sybrandt, et al.’s evaluation datasets which we corrected in our hybrid dataset. The

results with our hybrid dataset indicate that relatedness may not be the best indicator

of future discoveries, but instead surprising or unexpected relationships may be bet-

ter predictors. Using this knowledge, we can reverse the sorting order of our indirect

relatedness measures, or use them in conjunction with other measures. We proposed

using PR curves, precision at K graphs, and user-studies for LBD evaluation, and

evaluated the indirect relatedness measures for the term filtering and term ranking

steps of LBD. No evaluated method performed well for either task, however MWA

performed the best for term filtering, and LTC performed the best for term ranking,

indicating that these can be used together to create an effective LBD system.
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CHAPTER 7

VISUALIZATION

In this chapter, we address our third critical problem of LBD, difficulty interpreting

LBD output. We propose a method of visually summarizing LBD target term list

output. We create an interactive graphical environment that allows a user to explore

LBD output in its entirety. Our system is concerned primarily with visualizing the

output of the open-discovery portion of LBD, which relates the hypothesis generation

step in our framework (Section 3.2). We take as input an LBD target term list and

output a weighted hierarchical cluster tree. The clustering algorithm groups the most

semantically related terms first, resulting in a tree, where the leaf nodes are individual

terms, and ascendant nodes are sets of increasingly less related terms. This produces

a tree in which the nodes near the root consist of broad groupings of LBD output

that identify thematic sets of related terms, and nodes near the leaves consist of sets

of closely related terms that indicate potential discoveries. Displaying results in this

manner means that the number of terms that need to be analyzed simultaneously

is greatly reduced, promoting a comprehensive understanding of LBD output as a

whole. The tree structure allows the user to ignore uninteresting, too obvious, or

too unlikely branches of the tree entirely, and the interactive interface encourages the

user to explore branches of the hierarchy they find most interesting or surprising.

To help in the user’s exploration, we weight the tree using our indirect relatedness

measure, linking set association (LSA). Specifically, we scale the thickness of edges,

scale the size of nodes, and color-code edges to identify and distinguish the most

interesting paths and sets of terms. This method of displaying and interacting with
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data is intuitive, and facilitates a greater comprehension of LBD output as a whole,

helping a user to quickly identify the most promising discoveries. The development

of this system yields the following novel contributions:

1. Automatic Functional Group Discovery - we apply hierarchical clustering algo-

rithms to an LBD target term list to automatically identify groups of closely

related terms at varying levels of specificity. In effect, this automatically iden-

tifies functional groups in an LBD target term list.

2. Functional Group Ranking - we estimate the interestingness of the functional

groups using indirect relatedness measures.

3. Comprehensive LBD Visualization - we develop a visualization system that

combines these contributions to create an interactive user interface in which

LBD target term output is displayed.

We begin the chapter by describing the overall architecture of the system, then by

describing hierarchical clustering and visualization. This is followed by experimental

details and results of replicating the historic Raynaud’s Disease - Fish Oil Discovery.

Lastly, conclusions, limitations, and future work are presented.

7.1 Contributions

In this section, we describe the novel contributions of this chapter, and how they

are integrated into a comprehensive LBD visualization system. First, we briefly de-

scribe the architecture of our overall system. Then, we discuss each novel contribution

in detail.

Figure 32 shows the overall architecture of our system. We use our ABC co-

occurrence based LBD system (described in section 7.2) to generate a set of target
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Fig. 32. An overview of the system presented in this work. Processes are in white,

and data is in darker gray. Stars indicate areas where novel contributions are

integrated.

terms. These target terms are input into our visualization system which contains a

clustering and a visualization component. The clustering system performs automatic

functional group discovery and finds and organizes functional groups of varying speci-

ficity into a hierarchical cluster tree. Each node of the tree contains a set of terms

indicating a functional group. The hierarchical cluster tree is input into our visualiza-

tion system, where each functional group is ranked in the cluster ranking step using

LSA, and lastly the tree is displayed in an interactive visualization. We describe the

automatic functional group discovery and visualization systems in the next sections.

7.1.1 Automatic Functional Group Discovery

We input an LBD target term list into a hierarchical clustering algorithm to

automatically identify functional groups. The algorithm constructs a binary hierar-

chical cluster tree, for which each target term is a leaf node, and the root is a cluster

containing all target terms. Intermediate nodes represent functional groups and are

sets that contain all descendant target term leaf nodes. In the hierarchical tree, the
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most related terms and clusters are grouped first, as the node’s depth increases, so

does its specificity. Similarly, as the depth of a cluster increases, the number of terms

in the cluster decreases. This means that nodes containing a few highly related terms

are near the leaves, and nodes containing many, more loosely related terms are near

the root. Figure 33 shows an example. Each node in the tree is a cluster. Single

term clusters are at the leaf nodes, and are indicated by an asterisk. All other nodes

contain the set of all descendant leaf node terms. For instance, the “fish oil related

terms” node contains all terms indicated by asterisks. Descendant from that is the

“fish oils” node, which contains the terms cod liver oil, menhaden oil, and fish oil.

Fig. 33. An example of hierarchical clustering, in which the root node is all supple-

ments, single terms are leaf nodes and are indicated by asterisks.

In our method, we use pre-existing hierarchical clustering algorithms for the fol-

lowing reasons: (1) Hierarchical clustering methods avoid the problem of defining

the “number of clusters”, or a cluster stopping metric; both of which are difficult

to define and are often subjective. Hierarchical clustering finds clusters of varying

specificity automatically, by effectively finding clustering solutions at every possible

“number of clusters”. (2) Using hierarchical clustering produces the unique opportu-

nity to display the hierarchical cluster tree to the user. This cluster tree allows the

user to visually explore the target terms output by an LBD system in a structured

and meaningful manner. (3) Many pre-existing clustering techniques are designed for
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large, high dimensional datasets, and are therefore scalable and efficient. (4) Most

pre-existing clustering techniques allow any distance metric to be defined, meaning

we can use distance metrics that are effective for this task, and we can redefine the

distance metric as more advanced methods are developed.

7.1.2 Comprehensive Visualization

The entire hierarchical cluster tree of LBD target terms is displayed at once in

an interactive environment that allows a user to explore branches of the tree they

find interesting. Our intended use case is for the user to begin exploration at the

root node, and descend the tree by following paths they find most interesting or

surprising. In this scenario, the user first encounters broad groups of loosely related

terms, and as they descend the tree, they discover sets of increasingly specific sets of

closely related terms, until arriving at single term leaf nodes. The hierarchical tree is a

binary tree, meaning that at each node, the user may select one of two different paths.

While backtracking, and exploring multiple paths is possible and encouraged, the size

of the tree makes exploring all possible paths or leaf nodes impractical. Therefore,

our goal is to help the user find the most specific and most interesting terms while

examining as few nodes as possible. We do this by visually indicating our estimates

of interestingness of individual paths and nodes to guide the user down the hierarchy.

The interestingness of nodes is estimated by the our indirect relatedness measure,

LSA (see Chapter 5) between the terms of that cluster and the starting term set. We

scale the size of the displayed nodes, such that more interesting nodes are larger, and

less interesting nodes are smaller. Nodes are labeled to give an estimate of the types

of terms descendant from it at a glance. The label is generated by selecting the term

in that cluster whose vector cosine distance is closest to the cluster centroid. The

interestingness of edges, and therefore paths is estimated as the sum of all descendant
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nodes’ estimated interestingness. We scale the thickness of edges such that more

interesting edges are thicker, and less interesting edges are thinner. This indicates

the amount of interestingness a user may encounter by following that path. Since it

may be difficult to distinguish between edges with similar thicknesses, and at each

node a user may choose between two possible paths, we color the thinner edge red,

and the thicker edge blue.

7.2 Experimental Details

We use our own implementations and several pre-existing components to form a

complete LBD system, and evaluate its performance via open discovery replication

of Swanson’s Raynaud’s Disease - Fish Oil Discovery. As shown in Figure 32, the

system architecture consists of a data source, and three primary components, the

LBD system, the clustering system, and the visualization system. Details for the

results shown are described here.

Data Source: As a data source, we use titles and abstracts published between

January 1, 1983 to December 31, 1985 [80] from the 2015 MetaMapped MEDLINE

baseline1.

LBD System: We collect co-occurrence count using UMLS::Association ver-

sion 1.3’s CUI Collector tool2 with a window size of 8. These counts are used later to

rank clusters, and here as input to Association Literature Based Discovery (ALBD)

version 0.053. ALBD is a Perl implementation of an ABC co-occurrence model of

LBD. We use the UMLS concepts of Raynaud’s Disease (C0034734) and Raynaud’s

Phenomenon (C0034735) as A terms, since they are listed as synonyms within the

1https://ii.nlm.nih.gov/MMBaseline/index.shtml
2https://metacpan.org/release/UMLS-Association
3https://metacpan.org/release/ALBD
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UMLS [75]. We apply a semantic type filter at both the A to B and the B to C

linking steps. The filters are purposefully broad to avoid overfitting [62], specifi-

cally: B terms are restricted to the UMLS semantic groups (using UMLS 2016AA)

of “Chemicals and Drugs (CHEM)”, “Disorders (DISO)”, “Genes and Molecular Se-

quence (GENE)”, “Physiology (PHYS)”, and “Anatomy (ANAT)”, and C terms are

restricted to semantic groups of “Chemicals and Drugs (CHEM)” and “Genes and

Molecular Sequence (GENE)”. We apply a linking term count (LTC) threshold to

the target term list output by the LBD system to limit the number of target terms

to 3000, however the terms ranked 2995 through 3016 were tied, resulting in a total

of 3016 to be clustered. This threshold is applied due to memory constraints of the

current implementation of clustering algorithms.

Clustering System: We perform clustering on word embeddings of the target

terms output by the LBD system. We generate UMLS concept embeddings using co-

occurrences information between UMLS concepts rather than individual terms [117]

using word2vec-interface version 0.034, a Perl interface to the word2vec package [23].

Continuous bag of words (CBOW) embedding model, a window size of 8, a frequency

cutoff of 5, and default settings for all other parameters are used. Hierarchical clus-

tering is performed using CLUTO version 2.1.1 [122], a clustering software package

designed for large sample size, high dimensionality datasets. The vcluster function

with repeated bisection clustering algorithm with the Full Tree option enabled, and

default settings for all other parameters are used.

Visualization System: The hierarchical cluster tree of target terms is input

into the visualization system. We use our implementation of LSA in UMLS::Association

version 1.7 using Pearson’s Chi-Squared, and all other settings as default to compute

4http://search.cpan.org/dist/Word2vec-Interface/

157

http://search.cpan.org/dist/Word2vec-Interface/


the association scores between each cluster and the start term set. The visualiza-

tion is generated by yEd Graph Editor5, a graph visualization program using the

tree-balloon layout. Nodes sizes are displayed as their set-association score linearly

scaled, relative to all other nodes to a value between 1 and 100, and edge widths as

log(1 + weight)3 of the edge. These scalings are used (rather than linear) to better

display the range of values generated by our system.

7.3 Results

In this section, we describe the results of replication of Swanson’s Raynaud’s

Disease - Fish Oil Discovery. We use the system described in section 7.2 to generate

the system output shown in Figure 34. Figure 34 shows our generated hierarchical

cluster tree in its entirety. The labels tell us the types of nodes we can expect to see

descendant from that branch. By clicking on a few nodes, and visually inspecting

the tree, we quickly get a general idea of the tree’s overall structure. Exploring the

tree in more detail, and starting at the root node, marked by a star, there are two

edges. The edges appear to be similar widths, but the blue edge leads to far fewer

nodes. This is significant, and tells us that the nodes in the direction of the blue path

are much more interesting, since their sum of interestingness is similar to a much

larger set of nodes. The target nodes of these two edges are labeled “Enzymes” and

“Clonidine”. This indicates that the red edge likely leads to terms loosely related

to “Enzymes” (but due to the label’s generality and number of descendant nodes

may contain several different categories of terms), and the blue edge leads to terms

associated with “Clonidine”, a drug used to treat hypertension, indicating that the

descendant terms are likely associated with effects on blood. This is exciting, since

5https://www.yworks.com/products/yed
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Fig. 34. Fully zoomed out visualization of the Raynaud’s Disease - Fish Oil Discovery

replication. Labels were manually added, because at this zoom level nodes

must be manually inspected to show labels. Figure 35 shows a zoomed in

version of the dotted rectangle.
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fish oil’s effects on blood viscosity, platelet aggregation, and vascular reactivity have

been identified as the primary functional pathways for which fish oil treats Raynaud’s

Disease [59].

Descending the tree in the blue edge direction, we reach the next junction. Here,

the edge weights appear similar, and the descendant tree appears more balanced,

with similar numbers of nodes in either direction. The red edge leads to a node

labeled “ACTH and synthetic analog preparations”, and the blue path to a different

node, labeled once again “Clonidine”. ACTH can induce hypertension and Raynaud’s

disease is often associated with hypertension, but since the path to Clonidine is blue

we choose to descend the tree in the blue direction. In a real-world environment

though, at this point, we have reduced the number of terms to a manageable level,

where a user could further explore both paths in more detail. Following the blue path,

at our next junction, we must decide between two paths, one leading to “aspirins”

and one to “morphines”. The blue path leads to “aspirins”, and its descendant tree

is shown in Figure 35.

The tree in Figure 35 is sufficiently small to explore the branches in more detail.

By clicking on each node we see its label, or we can zoom in even further to see

sets of labels next to the nodes. This manual analysis shows that these terms are

mostly calcium channel blockers and anti-hypertensive drugs, listed among them are

Felodipine and Nisoldipine. Interestingly, present-day recommended pharmacological

treatments for Raynaud’s Disease are calcium channel blockers and anti-hypertensive

drugs, and two of the recommended drugs are Felodipine and Nisoldipine (although

these were unknown within our time-sliced dataset). Eicosapentaenoic acid, the active

ingredient in fish oil is also found in this sub-tree.

By following the most interesting path indicated by our system, we immediately

eliminated about two-thirds of the LBD system output. This narrowed our discovery
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Fig. 35. Portion of Figure 34 found by following blue paths. Labels were manually

added, because at this zoom level nodes must be manually inspected to show

labels. The top tree shows a sub-tree of general DNA related terms, which

our system deemed less interesting. “ACTH and ...” abbreviates “ACTH and

synthetic analog preparations”
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search to drugs and compounds that are related by their effects on blood, specifically

hypertension. Further descending the path in the recommended directions, we arrive

at calcium channel blockers and anti-hypertensive drugs, which are a class of drugs

that are the present-day recommended treatment for Raynaud’s Disease. Our system

gives the user an overall understanding of the LBD output, and using linking set

association to estimate interestingness, we lead the user directly to treatments for

Raynaud’s Disease, including present-day drugs used to treat the disease, Eicosapen-

taenoic Acid, the primary active ingredient in fish oil.

7.4 Conclusions

In this chapter, we presented a novel method of visualizing and understanding

LBD target term output. This method required the novel application of hierarchical

cluster algorithms to LBD target term output, the use of indirect relatedness mea-

sures, and their integration novel LBD visualization system. We showed the efficacy

of our visualization system by replicating the historic Raynaud’s Disease - Fish Oil

Discovery. Doing so, we found that our system quickly eliminates the majority of

the target terms, and leads the user to blood-related terms, the primary pathway in

which fish oil can treat Raynaud’s Disease. Descending the tree, our system leads

the user to a class of drugs used in present day to treat Raynaud’s Disease, and to

Eicosapentaenoic Acid, the active ingredient in fish oil.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions:

In this dissertation, we presented our work at developing more effective LBD sys-

tems. We identified and addressed three areas of LBD in critical need of improvement,

these include:

Problem 1: Over-generation of knowledge - LBD systems tend to create too many

hypotheses, causing promising and meaningful hypotheses to be buried within

false, uninteresting, or too obvious ones.

Problem 2: Lack of meaningful evaluation methods - LBD is difficult to evaluate,

and evaluation methods are often ad-hoc and system specific. Without standard

evaluation methods, LBD systems and components cannot be quantitatively

compared or objectively improved.

Problem 3: Difficulty interpreting output - LBD systems often output hypotheses

as a simple list of terms. This combined with their over-generation of knowledge

means a user is presented with a list of hundreds or thousands of often unrelated

terms, which are meaningless without extensive manual review.

We addressed Problem 1, the over-generation of knowledge by developing indirect

association measures for hypothesis ranking and filtering in LBD. Indirect relatedness

is not a well studied field, so to develop indirect relatedness measures, we first studied

methods to estimate direct relatedness. Estimating direct relatedness is a well estab-

lished field, but not directly applicable to LBD, since terms in LBD hypotheses are
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not directly related. We present our study of direct relatedness in Chapter 4, where

we presented the following contributions:

1. Concept Association and Expansion - we use association measures between con-

cepts to estimate direct relatedness, and introduce concept expansion, which in

combination with concept associations is a novel methodology that accounts for

lexical variation at both the synonymous and hyponymous levels.

2. Set Associations - we extend association measures to quantify relatedness be-

tween sets of terms rather than individual term-term pairs.

3. An analysis of association measures for direct relatedness, for which we achieve

state of the art results.

4. An analysis of vector measures for direct relatedness, for which we achieve state

of the art results.

This study on direct relatedness informed our development of indirect related-

ness measures by indicating that both association measures and vector measures were

good candidates for application to indirect relatedness, and provided an understand-

ing of how parameters affect their performance. In Chapter 5, we develop indirect

association measures and apply vector measures to estimating indirect relatedness.

Specific contributions are:

1. Indirect Association Measures - we develop four indirect association measures,

including linking term association (LTA), minimum weight association (MWA),

shared B to C association (SBC), and linking set association (LSA).

2. The development of a dataset and method for evaluating the ability to estimate

future relatedness.
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3. An analysis of indirect association measures and vector-based measures on their

ability to estimate direct and future relatedness.

In Chapter 6 we addressed Problem 2, the lack of meaningful evaluation meth-

ods. We developed a standard evaluation dataset and methods for evaluating each

component of the LBD process. Specific contributions included:

1. Development of a standard evaluation dataset (our hybrid dataset).

2. Assignment of evaluation methods for LBD components in isolation and in

combination.

3. Evaluation of indirect relatedness measures for term filtering and term rankings

steps of LBD.

Using these standard evaluation methods and dataset, we evaluated indirect related-

ness measures on the tasks of the term filtering and term ranking for LBD. The results

indicated that unlikely or surprising future associations may be better indicators of

future discoveries than highly likely future associations. This finding is exciting for

future research, but does not reduce the usefulness of our indirect relatedness mea-

sures, which can be used on conjunction with measures of surprise, or be used as an

indicator of unlikeliness (by reversing the rankings).

In chapter 7 we addressed Problem 3, the difficulty in interpreting LBD output

by developing an interactive visualization environment to explore LBD output. This

visual environment displays LBD system output as an interactive hierarchical cluster

tree of automatically discovered functional groups. Visual cues are added to aid in

interpretation. Its development required the following contributions:

1. Automatic Functional Group Discovery - we apply hierarchical clustering algo-

rithms to automatically find functional groups in the LBD output.
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2. Functional Group Ranking - we estimate the interestingness of the functional

groups using indirect relatedness measures.

3. Interactive Visualization - we use the clustering hierarchy and cluster rankings

to create an interactive visualization of our system’s LBD output. We use visual

cues to aid the user in exploring cluster tree interactively.

We showed the effectiveness of the visual cues and hierarchical structure of our visu-

alization by re-discovering present day treatments for Raynaud’s disease.

In addition to the contributions listed above, we broke the LBD process into a

series of discrete components, where each component has well defined inputs, out-

puts, and goals. We developed an evaluation framework which combines our new

evaluation dataset with evaluation methods for each of the components. With these

evaluation methods, we created quantifiable and comparable evaluation standards

and techniques. This make it possible for individual components to be developed and

compared in isolation from, and used interchangeably with different LBD systems and

paradigms. This reduces the complexity of developing an entire LBD system. It allows

researchers to focus on smaller, well defined tasks for which measurable improvements

can be definitively made. Just as many complex natural language processing systems

are broken into well defined, compartmentalized pipelines, and systems are built from

publicly available components, we hope the same for LBD. We hope these smaller,

quantifiable goals lead to an increased interest and advancement of the field, and that

application specific LBD systems can be made largely from pre-existing components,

rather than by writing all the code from scratch.

166



8.1.1 Future Work

This dissertation creates several immediate areas of future work and research

opportunities. Our visualization system has several limitations which could be ad-

dressed in future research. These include:

1. Visualization limitations - thickness of the edges is difficult to distinguish, and

labels are only displayed when zoomed in. Better visualization software which

allows dynamic edge thickness and flexibility when displaying labels could be

developed.

2. Evaluation - an evaluation of our visualization system with user studies would

provide insights into how it is used and what improvements could be made.

3. Develop more efficient clustering methods - the clustering algorithms imple-

mented in CLUTO cannot produce hierarchical cluster trees with all terms out-

put by LBD. This is caused by memory constraints; developing more efficient

clustering algorithms could alleviate this.

4. Cluster naming and summarization - naming clusters as their cluster centroid

is simplistic. A better method assign a cluster label, set of labels, or even a

cluster summary could be developed.

We applied our set associations measures to LBD, but we believe they are appli-

cable to a variety of problems, such as: (1) sentence or phrase similarity, where the set

similarity between all terms of two sentences could be calculated to quantify the two

sentence’s similarity; (2) automatic keyword identification, where the set similarity

of all terms in an abstract to a list of keywords could be used to automatically assign

keywords to documents; (3) word sense disambiguation, where the set association
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between an ambiguous term and the terms of its surrounding context could indicate

its sense.

Our indirect association measures performed well, but we believe this perfor-

mance could be improved by “cleaning” the linking term sets. Term that don’t con-

tribute valuable information relative to the context in which the terms are linked may

decrease performance. By using only informative terms in SBC or LSA, we believe

their performance would increase. Elimination of terms could be performed as simply

as applying occurrence count filters, information content, or more complex methods

could be developed.

The work of this dissertation focused primarily on the open-discovery (one-node

search) model of LBD, which corresponds to the hypothesis generation step (Sec-

tion 3.2). A large area of work, that is largely untouched in this dissertation is hy-

pothesis explanation step of LBD. This step is similar to the closed discovery model

(two node search), which can help a user better understand how the start and target

terms of a hypothesis relate to one another. We envision a system in which hypothe-

ses are generated and visualized, and a user can select a node (corresponding to a

functional group) in our visualization tree. Next, hypothesis explanation is performed

for the selected functional group to explain how the terms in the group relate to the

start terms. Promising research in this domain includes Cameron, et al. [10], who

create visual explanatory subgraphs which connect the start and target terms. Their

system is impressive, but is computationally intensive and currently requires manual

intervention.

8.1.2 The Future of LBD

LBD is still primarily a theoretical field that is only being used in a handful of

laboratories. As the overwhelming number of publications continues to grow, LBD
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must make the jump from theory to application. However, most researchers aren’t

using LBD, and many aren’t even aware it exists. This is a major problem, and while

creating more effective LBD systems and components is necessary for creating useful

tools, we must also ask the question, what is the role of LBD in research?

LBD as a fully automated hypothesis generation system is still just science fiction,

and will likely remain so for the near future. Humans are an integral part of scientific

research. Machines don’t understand the documents they digest, and they can’t make

truly intelligent discoveries from them. Instead, machines extract information from

huge amounts of data. They assemble this information, display it, and can even infer

new information from it, but the ability to make an intelligent discovery still requires

a human. Machines cannot identify what is truly interesting, meaningful, or relevant.

They have no common sense, but more importantly, they have no real world context

in a discovery’s domain. Understanding context helps to understand the relevance

of information, and to decide if a hypothesis is too obvious, too far fetched, or if it

is actually novel and interesting. Integrating context into LBD systems, is therefore

necessary to create truly intelligent discoveries. We see a great opportunity to get

LBD into the hands of researchers, and a way to provide context by integrating LBD

systems into content management and recommendation systems.

Researchers read scientific publications on a regular basis, and there is a need to

manage the library of papers they have read, find new papers to read, and assemble

knowledge from those papers. This problem is shared across scientific disciplines,

and by creating a tool that is immediately useful for researchers, it will become an

integral part of the research process. This means we can get immediate feedback to

inform the development of new components, and as our system becomes an integral

part of their research process, the context in which they work can be estimated by the

publications they read, and by those that they publish. LBD was first proposed as
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a tool to bridge disciplines, and to break researchers out of their research silos. The

content researchers read and publish is what makes up their silo, and what better way

to understand a research silo, than to serve as the system that provides information

to the user.

We envision an LBD system that estimates a researcher’s knowledge and the

context in which they work, through their own publications, and the content they

read. Information extracted from these documents can be represented as a knowledge

graph, and gaps in this graph can be filled both by recommending papers to read,

and by offering information from papers outside of their discipline. This is similar

to link prediction, however the links are derived from information known to science,

but new to the scientist. Exposing users to information that is new to them, but not

necessarily new to science has been shown to be one of the most useful aspects of

LBD [123].

Collaboration is a vital part of scientific research, and by understanding a re-

searcher’s context a collaboration recommendation system could be implemented. In

this system, researchers with complementary knowledge and goals (estimated by the

papers they read and publish) can be automatically found and recommended (LBD

as a collaboration finding system has been proposed [124]).

Knowing a researcher’s context also helps in the discovery of new knowledge,

particularly in the hypothesis generation process. The context in which a researcher

works is a critical component in estimating interestingness of any automatically gen-

erated hypotheses. The problem of over-generation of knowledge during hypothesis

generation can be alleviated by presenting only hypotheses relevant to a researcher’s

context. By narrowing the context in which LBD is performed, LBD becomes a much

more tractable problem. Knowledge graphs can be built based on a researcher’s read-

ings, and new hypotheses can be suggested and offered for further research. This is
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personalized LBD; LBD tailored to the research of a specific scientist, and the context

in which they work.

To summarize, we see several immediate areas of future research that expand

upon the contributions presented in this paper, these include improvements to the

clustering and visualization components of our system, new applications of set asso-

ciation, and improvements to indirect association measures. Hypothesis explanation

is a field largely left untouched by this dissertation, but is critical for LBD, and de-

serves future research. Looking beyond these immediate improvements, we think the

next critical step in developing useful LBD systems is to get LBD into the hands of

scientists, and to integrate a scientist’s specific research context into the LBD pro-

cess. This context can be estimated by the articles a scientist reads and publishes,

and we can get our systems into their hands by producing tools that are immediately

useful to researchers; by integrating LBD systems with content management systems.

By understanding the context in which a researcher works, the scope of LBD is nar-

rowed, and only hypotheses relevant to their research are then generated. By getting

scientists to use our systems, we receive feedback into how to improve them, and

hypotheses can be presented within a framework already familiar to the user.
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Appendix A

ABBREVIATIONS

AMW average minimum weight

CBOW continuous bag of words

CRG cumulative relatedness graph

CUI Concept Unique Identifier

LBD literature based discovery

LSA linking set association

LTA linking term association

LTC linking term count

MAP mean average precision

MeSH Medical Subject Headings

MWA minimum weight association

PR precision and recall

ROC receiver operating characteristic

SBC shared B to C association

SG skip gram

SNOMED CT Systematized Nomenclature of Medicine - Clinical Terms

SVD singular value decomposition

UMLS Unified Medical Language System

WSD word sense disambiguation
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