Measurement of a possible signal for nitrogen starvation in a cyanobacterium-plant symbiosis OUTLINE

- I. Introduction
 - A. Green Revolution saves lives at high cost
 - 1. Green Revolution Plants that can exploit higher nitrogenous fertilizer
 - 2. Great cost: making ammonia expensive
 - 3. Great cost: Ecological damage
 - B. Biological nitrogen fixation: Good but limited
 - 1. Legumes don't need nitrogenous fertilizers, fix N2
 - 2. Avoids costs of nitrogenous fertilizer
 - 3. N-fixation from symbioses with rhizobia
 - 4. N-fixation limited to legumes (Figure: world agriculture)
 - C. How to extend N-fixation to major crops?
 - 1. Extend rhizobial to cereals? Rhizobia too specific
 - 2. Alternative: Cyanobacterium Nostoc is a generalist
 - 3. Nostoc achieves generality through independence, heterocysts
 - D. N-fixation by Nostoc different inside plant vs outside
 - 1. Free-living Nostoc hordes N
 - 2. Symbiotic *Nostoc* shares N
 - 3. Symbiotic *Nostoc* fixes more N
 - 4. Host plant modifies Nostoc's perception of starvation?
 - E. Possible key to inside vs outside: α -ketoglutarate
 - 1. α -ketoglutarate central to N-metabolism (**Figure: pathway**)
 - 2. Explain central role
 - F. α -ketoglutarate might serve as signal of starvation
 - 1. Li et al (2003) test of α -ketoglutarate as signal for N-starvation
 - 2. Li et al (2003) experiment
 - 3. Li et al (2003) result
 - 4. Li et al (2003): high level of α -ketoglutarate fools *Nostoc*
 - G. Central question
 - 1. Maybe plants manipulate α -ketoglutarate in *Nostoc* to simulate starvation?
 - 2. Does the level of α -ketoglutarate change when *Nostoc* is grown without a source of nitrogen?

II. Experiment

- A. Overview of experiment
 - 1. Measure α -ketoglutarate in *Nostoc* with biosensor
 - 2. If α -ketoglutarate is a signal, expect higher level in *Nostoc* in plant
- B. How to measure α -ketoglutarate? Biosensors
 - 1. Principle of FRET biosensors (Figure: FRET cartoon)
 - 2. Increase of distance between components decreases fluorescence
 - 3. Presence of metabolite alters distance

- C. Example of FRET use (Hires et al, 2008)
 - 1. Scientific purpose: detect glutamate near neuron surface
 - 2. Construction of glutamate-specific FRET
 - 3. Test of FRET with glutamate (**Figure: fluorescence** +/- **glutamate**)
 - 4. Ratio of yellow:blue emission as a measure of glutamate
 - 5. Actual result: release of glutamate neurotransmitter alters ratio (**Figure: time course of emission ratio change**)
- D. Metabolite-specific biosensor for proposal
 - 1. α -ketoglutarate-specific biosensor doesn't exist
 - 2. Glutamate-specific biosensor
 - 3. Glutamine-specific biosensor instead.
- E. Introduction of biosensors into Nostoc and Nostoc into plant
 - 1. Cloning of biosensor into plasmid
 - 2. Introduction of plasmid into *Nostoc* by conjugation
 - 3. Growth of modified *Nostoc* in plant (*Anthoceros*)
 - 4. Measurement of glutamate and glutamine

III. Discussion

- A. Best possible results
 - 1. Need for fluorescence ratios to fall within useful ranges
 - 2. Even so, model predicts α -ketoglutarate levels, not glutamate and glutamine
- B. Possibility of α -ketoglutarate biosensor
 - 1. Three α -ketoglutarate-binding proteins known (α -ketoglutarate dehydrogenase, PII protein, NtcA)
 - 2. Using binding domains from PII or NtcA may perturb regulation
 - 3. α-ketoglutarate biosensor outside scope of proposal
- C. Problems interpreting results
 - 1. Cyanobacteria have endogenous fluorescence
 - 2. Biosensors may not sense biologically relevant levels
 - 3. Glutamate biosensor may be fooled by aspartate
 - 4. Calibration difficulties owing to unknown ionic strength in cell
- D. Inspirational final words