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Abstract—Electric Vehicles (EVs) are being widely adopted
as a green alternative to fossil-based vehicles. However, the
current charging infrastructure for EVs is inadequate to meet the
growing charge demand. Vehicle-to-Vehicle (V2V) charging offers
a promising solution that enables a charge supplier EV to provide
charging services to a charge demander EV in a distributed
manner. Nevertheless, V2V matching and charge scheduling can
disclose sensitive location information about the drivers, such
as their whereabouts and driving patterns. In this paper, we
propose a privacy-preserving scheme for centralized optimal
matching of demander EVs with supplier EVs, while protecting
their sensitive information. In our scheme, charge demanders
report to a matching server their encrypted location information
and the requested energy quantities, whereas charge suppliers
report encrypted charge costs such that the matching server can
learn only the cost to match each demander to each supplier
without revealing any location information or the exchanged
charge amount. Then, the Hungarian algorithm is used to match
demanders to suppliers while minimizing the total cost. The
security analysis and simulation results show that our scheme can
achieve optimal V2V matching while preserving drivers’ privacy
with negligible computation overhead. Overall, our proposed
scheme provides an effective solution for V2V charging, while
maintaining privacy and confidentiality of sensitive drivers’
information.

I. INTRODUCTION

Due to the negative environmental impact of gas-powered or

internal combustion engine vehicles, Electric Vehicles (EVs)

have become a major focus for governments, the automotive

industry, and consumers. Several countries are not only em-

bracing EVs as a means of achieving zero-emission and all-

electric transportation systems [1], [2], but also implementing

strict regulations to mandate that all newly manufactured

vehicles be electric [3], [4]. A recent study predicts that EVs

will make up 60% of all vehicles sold worldwide by 2030,

indicating the widespread adoption of EVs [5].

One of the biggest obstacles hindering the widespread

adoption of EVs is the insufficient charging infrastructure,

particularly in suburban and rural areas [6]. Additionally,

long charging times and the need for frequent charging are

additional barriers faced by EV owners. As per a recent

study, there are approximately 16.5 million EVs globally,

whereas only about 1.8 million charging points are available

publicly [7]. With the current EV to Charging Stations (CS)

ratio standing at 11%, there is a pressing need for new and

innovative solutions that do not rely solely on public CS.

The limited availability of charging infrastructure has led to

an increased interest in Vehicle-to-Vehicle (V2V) charging as

a flexible and distributed alternative to traditional CS [8]. In

V2V charging, an EV with excess charge (the charge supplier)

can provide charging services to another EV in need of a

charge (the charge demander), regardless of location or time.

To effectively address the issue of inadequate CS, it is crucial

to develop optimal V2V charge coordination and scheduling

mechanisms [9].

However, to achieve optimal V2V charge coordination,

charge demanders and suppliers must disclose sensitive in-

formation, such as their location and the amount of energy

to be exchanged, to a scheduling server or other entity that

can compute the optimal demander-supplier match. Disclosing

such information raises serious privacy concerns that may

discourage both demanders and suppliers from participating

in the system [9]. As a result, it is essential to devise a

way to perform optimal demander-supplier matching while

safeguarding the privacy of all involved entities.

In this paper, we propose a novel privacy-preserving scheme

to achieve optimal V2V charge coordination. In our scheme,

each charge demander EV sends an encrypted charge request

containing encrypted location information and the requested

energy quantities to a matching server. Each charge supplier

EV, on the other hand, sends an encrypted charge offer that

includes the charging costs. By using these encrypted requests

and offers, the matching server can determine the cost to

match each demander to each supplier, without revealing

any sensitive information. The Hungarian algorithm [10] is

then used to obtain the optimal demander-supplier match that

minimizes the total cost.

The remaining sections of this paper are organized as

follows. Section II reviews related work in this research area.

Section III describes the system model and design goals. The

proposed scheme is presented in Section IV. The security anal-

ysis and performance evaluation are discussed in Section V.

Finally, Section VI concludes our work.
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Figure 1: System model

II. RELATED WORKS

Several V2V matching algorithms have been proposed in

[11]–[13]. In [11], [12] demanders and suppliers coopera-

tively provide a centralized matching server with sensitive

information such as location information and requested energy

amount. The server uses this information to build a demander-

supplier cost matrix and uses the Hungarian algorithm to find

the optimal demander-supplier match. Moreover, a compre-

hensive framework that considers cost optimization, system

energy efficiency, and user satisfaction is proposed in [13].

However, none of these works consider privacy protection of

sensitive information.

The authors in [14], [15] addressed the location pri-

vacy concerns by proposing Bichromatic Mutual Nearest

Neighbor (BMNN) assignments using partially homomorphic

encryption-based techniques in a decentralized network. The

Euclidean distance between a demander and a neighbor sup-

plier can be computed using the encrypted location informa-

tion and a distributed stable matching can be achieved in sev-

eral matching rounds. However, the assignment in [14], [15] is

determined based on the Euclidean distance between supplier

and demander only while neglecting other cost parameters

such as charge cost and amount of charge. Furthermore, the

coverage area for such a decentralized solution is limited to

neighboring suppliers. Extending the coverage area and of-

fering optimal V2V matching necessitate having a centralized

server that should find the optimum demander-supplier match.

Different from the existing literature, this paper proposes

a privacy-preserving centralized optimal demander-supplier

matching using realistic cost value while preventing any entity,

including the matching server, from learning any sensitive

information.

III. SYSTEM MODELS AND DESIGN GOALS

A. Network Model

As shown in Figure 1, the network model consists of a Key

Distribution Center (KDC), a Matching Server (MS), a group

of demanders, and a group of suppliers. The main notations

used in the paper are given in Table I. We use bold lowercase

Table I: Main notations

Notation Description

k No. of demanders = No. for suppliers = k

DS Set of demander DS = {Di, 1≤ i≤k}

SS Set of suppliers SS = {Sj , 1≤ j≤k}

MK Set of master keys MK = {M1,M2,N1, . . . ,N8}

DKi Secret key set for demander Di

SKj Secret key set for supplier Sj

costi,j Cost to match Di to Sj

Qi The quantity in KW that Di requests to charge

edi Encrypted charge request vector of demander Di

ecj Encrypted charge offer vector of supplier Sj

Pj A supplier Sj selling price per KW

m,n Number of rows and columns in the map, respectively

v Flattened map size=(n×m) + 1

di Charge request vector of demander Di

loci The location of Di

cj Charge offer vector of supplier Sj

cost
loci
j Cost for Sj to travel to the location of Di

X,Y Components of the server’s key

sp Splitting vector used during the encryption

notation, e.g. d, for vectors and bold uppercase notation, e.g.

M, for matrices. The entities’ roles are described as follows:

• Demanders: A set of demanders DS = {Di, 1 ≤ i ≤ k}
represents EV owners who demand some energy quantity

for their EVs to be charged at a specific location.

• Suppliers: A set of suppliers SS = {Sj , 1≤ j≤k}
consists of electric vehicles that offer charging as a

service.

• Key Distribution Center (KDC): The KDC is responsi-

ble for generating the master secret key set MK, a unique

demander secret key DKi for each demander Di, and a

unique supplier secret key SKj for each supplier Sj . The

KDC is needed only for system setup and will not be

involved in the demander-supplier matching process.

• Matching Server (MS): The MS collects the demanders’

encrypted charging requests and the suppliers’ encrypted

charging offers. Using the encrypted collected data and

without leaking any sensitive information, the server can

derive a cost matrix where each value in the cost matrix

costi,j represents the cost to match supplier Sj’s offer to

demander Di’s request. Then, the MS runs the Hungarian

algorithm to find the optimal V2V matching result while

minimizing the total cost.

B. Threat models and Design Goals

We consider a semi-honest model in which the server,

demanders, and suppliers are considered “honest but curious”,

i.e., they do not disrupt the proposed scheme’s proper op-

eration, but any entity is curious to learn sensitive location

information of the users. Based on the network and threat

models, the following goals should be met.

1) Optimal and realistic demander-supplier matching:

The matching server should be able to compute an

optimal demander-supplier matching result considering a

realistic cost that includes not only the cost to service
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Figure 2: Overview of the data representation and information flow with a sample representation for 5× 4 map

the requested energy quantity, but also the additional

cost needed for the supplier to travel to the demander’s

location.

2) Privacy protection of sensitive information: No entity

in the system should be able to extract the following sen-

sitive information: the demander’s location, the supplier’s

location, and the requested amount of energy.

Note that, during the V2V charging process, the demander

and supplier are physically located at the same location. With

the knowledge of the average V2V charge rate, revealing the

requested amount of energy would reveal not only the location

of the demander and supplier, but also the time period during

which both are physically located.

IV. THE PROPOSED SCHEME

A. Proposed Data Representation and Information flow

Figure 2 shows an overview of the proposed data repre-

sentation and secure information flow. First, a charge-as-a-

service area is divided into m × n cells where each cell has

a unique identifier, as shown in Figure 2a. All the demanders

and suppliers should represent their sensitive information in

the form of a vector of size v = m × n + 1, where the first

m× n elements in the vector represent the map cells.

As shown in Figure 2b,d, a demander Di builds a charge

request vector di that represents his sensitive location informa-

tion by setting the element corresponding to his location loci
to 1 and fill all the other elements by zeros. Additionally, Di

represents the requested charge amount Qi in the last element

in the di vector.

On the other hand, a supplier Sj builds his charge offer

vector cj by reporting the price per unit charge Pj at the last

element in cj, as shown in Figure 2e. Additionally, Figure 2c

depicts an additional cost that the supplier Sj incurs to reach

every location in the map. For instance, cost1j represents an

additional cost by Sj to reach cell (C1) in the service area.

The dot product between di and cj would result in a realistic

cost value costi,j = QiPj + costlocij , where costi,j includes

the cost on Di to charge a quantity Qi from Sj plus the cost

required by Sj to travel to Di’s location loci.

Note that, the vectors di and cj leak sensitive information

including the demander’s location, the supplier’s location, and

the requested charge quantity, which can reveal the charging

time during which both demander and supplier EVs will be at

the same location that violates users’ privacy. Therefore, both

Di and Sj encrypt di and cj , respectively before sending them

to the MS as shown in Figure 2f. In this way, the MS can use

the encrypted vectors to generate the cost matrix to match

each demander to each supplier while preventing the leakage

of sensitive information. The final step by the server is to run

the Hungarian Algorithm to generate the optimal demander-

supplier matching result and return the result to demanders

and suppliers.

B. System Setup

The KDC generates two invertible matrices of random

numbers, X and Y, and sets the server’s key as X−1Y−1.

In addition, the KDC generates a master key set MK =
{M1,M2,N1, . . . ,N8}, where X, Y, and each element in

MK is v× v invertible matrix of random numbers. The KDC

also generates a splitting vector sp of size 1×v that is shared

with all the demanders and suppliers.
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The KDC uses MK, X, and Y to generate unique secret

keys for each demander/supplier in the system. For a demander

Di, the KDC generates DKi as:

DKi =

{

AiN1X , AiN2X , BiN3X , BiN4X ,

CiN5X , CiN6X , DiN7X , DiN8X

}

, where Ai,Bi,Ci, and Di are v × v matrices of random

numbers such that Ai + Bi = M1 and Ci + Di = M2.

Similarly, for each supplier Sj , the KDC generates SKj as:

SKj =

{

YN−1

1
Ej , YN−1

2
Fj , YN−1

3
Ej , YN−1

4
Fj ,

YN−1

5
Gj , YN−1

6
Hj , YN−1

7
Gj , YN−1

8
Hj

}

, where Ej ,Fj ,Gj , and Hj are v × v matrices of random

numbers, such that Ej + Fj = M−1

1
and Gj +Hj = M−1

2
.

Note that, an EV owner who joins the system as a demander

and supplier receives a demander key DK and a supplier key

SK.

C. Demanders: Encrypted Charging Requests

A demander Di, requesting to charge his/her EV during an

assignment round r, should send the matching server a V2V

charging request that includes his encrypted location vector

edi. Di can generate edi as follows:

1) Di builds di, as shown in Figure 2.

2) Di splits di into two random vectors d′

i and d′′

i using the

splitting indicator sp. For the k-th element in di, splitting

is done as follows:

d′

i(k) = d′′

i (k) = di(k) if sp(k) = 1

d′

i(k) = wk , d′′

i (k) = di(k)− d′

i(k) if sp(k) = 0

, where wk is a random number.

3) Di uses d′

i, d′′

i and his/her demander’s key DKi to

generate his/her encrypted location vector edi as:

edi =





d′

iAiN1X , d′

iAiN2X , d′

iBiN3X ,

d′

iBiN4X , d′′

i CiN5X , d′′

i CiN6X ,

d′′

i DiN7X , d′′

i DiN8X





, where edi is a row vector of size 1× (8v).
4) Di sends edi to the MS.

D. Suppliers: Encrypted Charging Offers

A supplier Sj , joining the same assignment round r should

send MS a V2V charge-sharing offer that includes the en-

crypted cost vector ecj . Sj can generate ecj as follows:

1) Sj builds the cost vector cj , as shown in Figure 2.

2) Sj splits cj into two random vectors c′j and c′′j using the

splitting indicator sp. For the k-th element in cj , splitting

is done as follows:

c′j(k) = c′′j (k) = cj(k) if sp(k) = 0

c′j(k) = zk , c′′j (k) = cj(k)− c′j(k) if sp(k) = 1

, where zk is a random number.

3) Sj uses c′j , c′′i and his/her supplier’s key SKj to generate

his/her encrypted cost vector ecj as

ecj =





YN−1

1
Ejc

′

j , YN−1

2
Fjc

′

j , YN−1

3
Ejc

′

j ,

YN−1

4
Fjc

′

j , YN−1

5
Gjc

′′

j , YN−1

6
Hjc

′′

j ,

YN−1

7
Gjc

′′

j , YN−1

8
Hjc

′′

j





T

, where esj is a column vector of size 1× (8v).
4) Sj sends ecj to the MS.

E. Server: Privacy-Preserving Assignment

The matching server performs the following steps to find

the best-matched demander-supplier pairs such that the cost

of the demanders’ EVs is minimized while preserving the

demanders’ and suppliers’ locations.

1) The server builds the cost matrix by computing the

matching cost between each Di and each Sj as:

costij = edi X
−1 Y−1 ecj (1)

2) The server executes the Hungarian Algorithm, which

matches demanders and suppliers so that each individual

is satisfied by generating the optimal demander-supplier

assignment and returning the assignment results to the

demander and suppliers so that they can proceed with

the energy sharing process.

Note that, the Hungarian algorithm requires the existence

of the same number of charging offers and requests in

order to return the optimal matching result. To overcome

this limitation, we operate in a specific round r on

the minimum of the number of suppliers’ offers and

the number of demanders’ request. Let kd represents

the number of the received charging requests from the

demanders and ks represents the number of the received

charging offers from the suppliers. In each assignment

round, the server will use k = min(kd, ks), and one of

the following three scenarios will happen:

a) If kd = ks, then a normal operation is achieved such

that all the kd charging requests can be served by the

existing charging ks offers.

b) If kd < ks, then, k = kd and thus the firstly

submitted k suppliers’ offers will be used to serve all

the submitted kd requests and the remaining ks − kd
charging offers will not be used.

c) If kd > ks, then k = ks which indicated that only ks
out of kd requests can be served. In this case, the firstly

submitted k request will be served by the ks offers

and the remaining kd − ks charging requests cannot

be served during this assignment round and will be

considered in the next round.

V. DISCUSSION AND EVALUATIONS

A. Privacy Protection of Sensitive Information

As discussed in subsection IV-A, the sensitive information

represented in di and cj should not be accessed by external

adversaries, the server, or any other user in the system. In

our scheme, we utilize a modified version of the encryption

scheme presented in [16], [17]. The security of this technique

has been formally proven in the known ciphertext model

[16]. Therefore, without the knowledge of the master key set

MK, the sensitive information cannot be extracted from the

encrypted vectors by any entity in the system. In addition,

each user can join the system as a demander and supplier
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(a) Server execution time with privacy (b) Server execution time without privacy
(c) Server execution time overhead per-
centage

Figure 3: Server execution times

Table II: Demanders and suppliers execution time in seconds

with privacy scheme implemented

Map Size 400 900 1600 2500 3600 4900

Demander 0.006 0.028 0.088 0.212 0.440 0.820

Supplier 0.002 0.006 0.017 0.041 0.083 0.144

and receives a demander key DK and a supplier key SK.

A misbehaving user may eavesdrop a demander’s encrypted

vector and tries to use his supplier’s key to obtain the sensi-

tive information represented in the victim’s encrypted vector.

However, as shown in subsection IV-B, the mismatch between

X in DK and Y in SK would thwart this attack and thus, a

user cannot infer any sensitive information regarding any other

user.

B. Evaluation

This subsection presents the simulation results, which

demonstrate the effectiveness of our system and the negligi-

ble overhead added by implementing the privacy-preserving

scheme described in Section IV. In our simulations, we con-

sidered the number of users (demanders or suppliers) ranging

from 20 to 220 in a bipartite graph region divided into cells

ranging from 10 × 10 cells to 80 × 80 cells. The following

metrics are used in our evaluation:

1) Demander/Supplier Execution Time: The time it takes

each demander/supplier to encrypt their messages before

sending them to the server.

2) Server Execution Time with/without Privacy: The

time it takes the server to compute the cost to match

all demander-supplier pairs. This is composed of two

different times: (1) the time needed to extract the cost

value from the reported information, and (2) the time

needed to run the Hungarian algorithm to obtain the

optimal matching result. Note that with achieving privacy,

our scheme adds an overhead to the first component in

the server execution time.

3) Overhead percentage: The percentage increase in the

server’s execution time due to implementing the proposed

privacy-preserving scheme.

Table III: System execution times in seconds

Server Execution Time Overhead

No.
Users

Map

Size
with

Privacy
without
Privacy Time Percentage

20 100 0.019 0.017 0.002 9.5%

1600 0.019 0.017 0.002 13.3%

6400 0.100 0.095 0.005 5.3%

100 100 2.988 2.950 0.038 1.3%

1600 2.135 2.082 0.053 2.6%

6400 1.610 1.496 0.114 7.6%

220 1600 14.933 14.659 0.274 1.9%

6400 19.049 18.468 0.581 3.1%

The experiments were carried out on a machine equipped

with an Intel core I7 processor running at 2.5 GHz and 16

GB of RAM. The experiment was repeated fifty times, and

average values were reported.

Table II depicts demanders’ and suppliers’ execution times

when the privacy-preserving scheme is implemented. Without

implementing our scheme, the time taken by the demanders

and suppliers to prepare the messages without considering

location privacy can be considered as zero. In this case, all

the sensitive information is reported to the server without any

processing time required for encryption. When the privacy-

preserving scheme is integrated, both the demander and the

supplier encrypt the sensitive information as illustrated in

subsection IV-C and subsection IV-D. The execution times in

Table II are in the range of milliseconds indicating that our

scheme can achieve the privacy protection of sensitive infor-

mation at a negligible computation overhead on the demander

and supplier sides.

Figure 3a depicts the server’s execution time with our

privacy scheme, Figure 3b presents the execution time without

privacy, and Figure 3c shows the time overhead percentage.

In addition, Table III shows some sample points from the

aforementioned figures. For a small number of users, although

the overhead percentage seems high (e.g., 13.3%), the actual

overhead to achieve privacy is extremely low (2 ms). For

larger number of users, e.g. 220, the overhead to achieve

privacy is around 500 ms which is negligible when compared
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to the server execution time of 18s (3% overhead). In fact, the

Hungarian Algorithm is the most time-consuming operation

by the server with a worst case run-time complexity of

O(k3), where k is the number of users. This is confirmed

by Figure 3c, which shows that for a large number of users,

the overhead percentage is around 3% to 5%, which is an

acceptable cost to achieve the privacy protection of user’s

sensitive information.

VI. CONCLUSIONS

In this paper, we proposed a novel privacy-preserving V2V

charging scheme for EVs that utilizes a centralized server to

match charge requests and offers while protecting users’ sensi-

tive information. The proposed scheme employs the Hungarian

algorithm based on a realistic cost function to ensure efficient

and secure matching, which can encourage wider participation

from EV owners and support the existing charging infras-

tructure. Our security analysis demonstrates that the proposed

scheme can effectively protect users’ privacy, requests, and

offers, even in cases of repeated requests or assignments.

Furthermore, our experiments show that the computational

overhead of the proposed scheme is negligible compared to

its benefits in preserving users’ privacy. Overall, our proposed

scheme provides an effective solution to the challenge of V2V

charging while safeguarding users’ privacy.

ACKNOWLEDGMENT

This work is supported by US National Science Foundation

under the grant number 2244371. The statements made herein

are solely the responsibility of the authors.

REFERENCES

[1] F. Lambert, “Countries and automakers agree to go all-
electric by 2040.” [Online]. Available: https://electrek.co/2021/11/10/
countries-automakers-agree-go-all-electric-by-2040-weak-new-goal-cop26/

[2] The California Air Resources Board (CARB), “California
moves to accelerate to 100% new zero-emission vehicle
sales by 2035.” [Online]. Available: https://ww2.arb.ca.gov/news/
california-moves-accelerate-100-new-zero-emission-vehicle-sales-2035

[3] Norwegian Electric Vehicle Association, “Norway is leading the way
for a transition to zero emission in transport.” [Online]. Available:
https://elbil.no/english/norwegian-ev-policy/

[4] F. Lambert, “The dutch government confirms plan to ban new petrol
and diesel cars by 2030.” [Online]. Available: https://electrek.co/2017/
10/10/netherlands-dutch-ban-petrol-diesel-cars-2030-electric-cars/

[5] IEA, “By 2030 EVs represent more than 60% of vehicles
sold globally.” [Online]. Available: https://www.iea.org/reports/
by-2030-evs-represent-more-than-60-of-vehicles-sold-globally-and-/
require-an-adequate-surge-in-chargers-installed-in-buildings

[6] J. Kester, B. K. Sovacool, L. Noel, and G. Zarazua de Rubens, “Re-
thinking the spatiality of nordic electric vehicles and their popularity
in urban environments: Moving beyond the city?” Journal of Transport

Geography, vol. 82, p. 102557, 2020.

[7] IEA, “Global EV Outlook 2022: Trends in Charging
Infrastructure.” [Online]. Available: https://www.iea.org/reports/
global-ev-outlook-2022/trends-in-charging-infrastructure

[8] H. S. Das, M. M. Rahman, S. Li, and C. Tan, “Electric vehicles
standards, charging infrastructure, and impact on grid integration: A
technological review,” Renewable and Sustainable Energy Reviews, vol.
120, p. 109618, 2020.

[9] E. Bulut, M. C. Kisacikoglu, and K. Akkaya, “Spatio-Temporal non-
Intrusive Direct V2V Charge Sharing Coordination,” IEEE Transactions

on Vehicular Technology, vol. 68, no. 10, pp. 9385–9398, 2019.

[10] G. A. Mills-Tettey, A. Stentz, and M. B. Dias, “The Dynamic Hungarian
Algorithm for the Assignment Problem with Changing Costs,” Robotics

Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-07-27, 2007.
[11] S. Hosseini and A. Yassine, “A Novel V2V Charging Scheme to

Optimize Cost and Alleviate Range Anxiety,” in 2022 IEEE Electrical

Power and Energy Conference (EPEC), 2022, pp. 354–359.
[12] R. Zhang, X. Cheng, and L. Yang, “Flexible Energy Management

Protocol for Cooperative EV-to-EV Charging,” IEEE Transactions on

Intelligent Transportation Systems, vol. 20, no. 1, pp. 172–184, 2019.
[13] M. Shurrab, S. Singh, H. Otrok, R. Mizouni, V. Khadkikar, and

H. Zeineldin, “A Stable Matching Game for V2V Energy Sharing–A
User Satisfaction Framework,” IEEE Transactions on Intelligent Trans-

portation Systems, vol. 23, no. 7, pp. 7601–7613, 2022.
[14] F. Yucel, E. Bulut, and K. Akkaya, “Privacy Preserving Distributed

Stable Matching of Electric Vehicles and Charge Suppliers,” in 2018

IEEE 88th Vehicular Technology Conference (VTC-Fall), 2018.
[15] F. Yucel, K. Akkaya, and E. Bulut, “Efficient and Privacy Preserving

Supplier Matching for Electric Vehicle Charging,” Ad Hoc Networks,
vol. 90, p. 101730, 2019.

[16] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure kNN
Computation on Encrypted Databases,” in Proceedings of the 2009 ACM

SIGMOD International Conference on Management of data, 2009, pp.
139–152.

[17] A. Alsharif, M. Nabil, A. Sherif, M. Mahmoud, and M. Song, “MDMS:
Efficient and Privacy-Preserving Multidimension and Multisubset Data
Collection for AMI Networks,” IEEE Internet of Things Journal, vol. 6,
no. 6, pp. 10 363–10 374, 2019.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on September 09,2023 at 21:02:17 UTC from IEEE Xplore.  Restrictions apply. 


