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Abstract

Computing the first derivatives of a discretized nonlinesatigl differen-
tial equation (PDE) can be made more efficient given colarimighe lattice
points of the plane, cylinder, or torus that assign diffeoeors to all vertices
within some specified stencil. Goldfarb and Toint showed kmefficiently
color the lattice points of the plane, but their results do exdend to the
cases of cylinders or toruses, as arise in the case of dBngePDES with
periodic boundary conditions on a Cartesian grid. We giveraugs for the
(4l — 3)-point star and thé x | square stencils (for al) in the plane, on the
cylinder, and on the torus. We also give colorings for tle— 5)-point star
in Z3 and for thel x | x | cube inZ2 with periodic boundary conditions in 0
and 1 dimensions. We show that all colorings are optimal ar-optimal.

Keywords: Jacobian, Hessian, automatic differentiation, finiteaddhces, graph
coloring

1 Introduction and Motivation

Many numerical methods require the evaluation of the JacobTheJacobianis
anM x N matrix J of partial derivatives of a vector-valued functien RN — RM.
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The Jacobian entry in roiand columnj is nonzero only if theth componenE (X)
depends ox;.

The Jacobian is frequently computed by using automatiemfftiation [4] or
approximated by using finite differences. These technicresoften necessary
because the functioR is available only in the form of a computer program. Both
approaches compute a set of directional derivatives.ofWhen we choose the
direction to be the unit vectag; in the jth coordinate direction, we compute the
jth column ofJ. By taking the directions to be the standard basi&df we can
computel usingN directional derivatives df .

In many cases, however, the Jacobian matrix is sparse. Wbesparsity pat-
tern is known, théth andjth columns of] can be computed simultaneously when-
ever they are structurally orthogonal. A pair of columraend j of a matrix are
structurally orthogonalif in each row of the matrix at most one of the columns
contains a nonzero entry.

If columnsi and j are structurally orthogonal, we compute them simultane-
ously by taking the derivative d¥ in the directiong +e;. Then for each row, at
most one ofl; andJi;j is nonzero. This nonzero entry is equal to kiiecomponent
of the derivative vector.

This idea can be extended to larger sets of pairwise stalttusrthogonal
columns. If columnsy, iy, ..., i are structurally orthogonal, we can compute them
simultaneously by taking the derivative Bfin the directiong, +&,+---+8.
Again, for each rovk, at most one column has a nonzero entry inkimerow. This
nonzero entry is equal to thkeh component of the derivative vector.

We are now interested in partitioning the columng @fto structurally orthog-
onal sets. All the columns in a set can be computed simultetheoTo minimize
the cost of computing, we must minimize the number of sets in the partition.

It turns out to be more useful (and to offer better intuitighjve view the
problem as points on a torus, rather than columns of a matix Rather than
partitioning the columns into structurally orthogonalssetre speak of coloring
the points on the torus so that no two points receive the saioe anless their
corresponding columns in the Jacobian are structurallyogdnal. If we take the
points of the torus as a vertex set and add an edge betweeroints pvhenever
their corresponding columns are not structurally orth@owe have a standard
graph coloring problem. Motivated by viewing the problempagts on a torus,
we also refer to the points by the more natuiaj) to denote the point in thigth
row andjth column.

Unfortunately, finding an optimal coloring of a general drap NP-complete.
Therefore, research has focused on approximation algusitor graphs with ran-
dom adjacency patterns [2, 1, 5] and optimal (or near-op}iaigorithms for struc-
tured graphs [3].



(@) (b)

Figure 1: (a) The 5-point star stencil on the B torus. Itis important to distinguish
between the torus and the Jacobian. The Jacobian will €335 since each point
on the torus corresponds to a column in the Jacobian. (b) & Square stencil
on the 5x 6 torus. The Jacobian for this torus will be 3@G0.

We now examine the problem more in detail. We want to find theevaliéve
of a function that maps the surface of a torus to itdelf,T — T. Since we don't
have an analytical form of the function, we approximate gelected points. We
selectmn points in the shape of am x n lattice on the surface of the torus. In the
Jacobian, each row and column corresponds to a sample pothedorus. (This
means that the Jacobian matrii,actually has dimensiomanx mn) We refer to
the point corresponding to column (and rovgs pointi. The derivative at a point
can be approximated by using the value of the function atgbait and at nearby
points.

We use the termstencilto specify those points near pointvhich our approx-
imation of the derivative atwill depend on. Because we use the same stencil for
every point on the torus, the sparsity pattern of the Jacokiaery structured. In
particular,J; is nonzero only if point lies within the stencil of poin{. Thus, two
columns are structurally orthogonal only if their corresgimg points never lie in
the same stencil. Thus, the number of structurally orthafyeats in the column
partition must be at least equal to the number of points irstbecil.

Goldfarb and Toint [3] give optimal colorings (a coloring aptimal if it is
uses a minimum number of colors) for a variety of sparsitygoas arising from
the stencil-based discretization of partial differengguations on Cartesian grids.
Goldfarb and Toint demonstrate that in many cases the stte@oloring need not
be any larger than the size of the stencil. However, all ofcses they consider
are in the plane. This significantly simplifies matters, lsesit avoids difficulties
with boundary conditions.



In this paper, we examine the problem {df — 3)-point star and square stencils
on both the torus and the cylinder. We use the tarmn torus (cylinder) to mean
the discrete torus (cylinder) with heigimtand widthn. For the cylinder, the height
is the dimension that does not wrap around.

In three dimensions, we look &l — 5)-point star and cube stencils. We con-
sider two cases. First, we color the pointsZdf the three-dimensional latice with-
out wrap-around in any dimension. Second, we color the §@hZ? x Z,, a
three-dimensional lattice with wrap-around in a single elsion of sizem.

In Section 2, we present a preliminary result that is helpfutonstructing
the colorings in Section 3. In Section 3, we present colarifoy (4 — 3)-point
and (6l — 5)-point star stencils and for square and cube stencils. Itidded, we
present lower bounds and show that in all cases they aredrghearly tight for
| x | square stencils an@ll — 3)-star stencils. We offer some concluding remarks
in Section 5.

2 Prdiminaries

To build all the colorings in this paper, we partition into afer rectangles the
region to be colored. We color each rectangle so that whendttangles are
reassembled into the initial region, the resulting colgrig valid. In general, the
rectangles have two different heights and two differenttgdh; x wi, hy x wy,

h; x w», andhy x ws. In addition to each coloring being valid for the specified
stencil, these colorings also have the property that if ®atangles with the same
height are placed side by side or if two rectangles with tmeesevidth are placed
one atop the other, the coloring of this new larger rectargyialid for the same
stencil. To color a torus with dimensioihs< w, we will write h as a honnegative
integer linear combination df, andh, and writew as a nonnegative integer linear
combination ofw; andws,. (Throughout this paper, the terimear combination
will mean linear combination with nonnegative integer ¢io&dnts.) We writea|b

to denote thah dividesb.

We want to know when an integercan be written as a linear combination of
two smaller integerp andg. Letr(p,q) be the smallest positive integer such that if
n>r(p,q), thenn can be written as a linear combinationpéndg. The following
result is known asylvester’s theorent-or a proof, see [7].

Lemma 1 (Sylvester's Theorem [7])If p and q are relatively prime positive inte-
gers, then (p,q) = (p—1)(a—1).

We say that a coloring (of a torus or the plane)laid for a given stencil
if, under that coloring, all points within each copy of thatreil receive distinct



T4 5 6 7 8 0 1 2 3
7 8012 3 45 6
1 23 456 7 80
45 6 780 1 2 3
7 801 2 3 45 6
1 23 456 7 80
456 780 1 2 3
7 801 2 3 45 6

|1 2 3 45 6 7 8 0

Figure 2: A coloring of the & 9 torus for the 3« 3 square stencil.

colors. We say that a valid coloring (for sten§)l of anh x w; torus and a valid
coloring (forS) of anh x ws torus arevertically compatiblef, when placed side
by side, the two form a valid coloring (for sten@) of the h x (w1 + w») torus.
Analogously, we defindorizontally compatiblecolorings ofh; x w andh, x w
tori. When the meaning is clear, we will refer to both vettic@ompatible and
horizontally compatible simply asompatible We also extend these definitions to
three dimensions in the obvious way.

3 Coloringsfor Square Stencils

The simplest coloring for the 8 3 square stencil, on amn x n torus with 3m and
3|n, is given byC(i, j) = (3i+ j) mod 9, as shown in Figure 2.

This coloring was given by Goldfarb and Toint [3] and can lgas¢ extended
to thel x | square stencil by lettin@(i, j) = (li 4+ j) modI?. If we are coloring
rectangles rather than tori, this coloring suffices formlandn. For the torus,
however, we requirég/m andl|n. So now we need to look for valid colorings for
thel x | square stencil in instances whiffmor | /n.

The colorings we use are similar to the coloring in Figure 2e tiéfine a
general family of colorings:

C(i, j,I,mn) = ((li modm-+ j) modn).

Each time we use colorinG, the parameters m, andn remain fixed, while the
parameters and j vary to indicate which entry is being colored. As we move to
the right in a row, each entry is larger than the previousydnyrl. Similarly, as we
move downward in a column, each entry is larger than the pusvéntry byl. As

a result, the period of the coloring in the rowsjsand the period in the columns is



gcd(l,m). For Theorem 2 through Lemma 5, we consider the case wheretgketh
and width of the torus are given lmg= 12+ b andn = 12 + ¢, whereb andc are at
mostl.

Theorem 2. If 12 <m<n<I?+1, then Qi, j,I,m,n) is a valid coloring of the
m x n torus for the Ix | square stencil.

Proof. Since the tiling is periodic in both directions, it sufficesghow that the
coloring is valid for the plane. If this coloring is invalithen there exist two entries
(i1, j1) and(iy, j2) that lie within the saméx | square and receive the same color,
that is,|i1 —i2| <1, |j1— j2| <, and(liy modm+ j1) = (li modm+ j2) modn.
Without loss of generality, assume tti, modm) > (li, modm). Let

T = (ligmodm)— (li, modm) + j1 — jo,
U = lig—li2+j1— ]2

Sincen|T and—n < T < 2n, we see thal € {0,n}. Clearlym|(T —U), and
by assumptionT > U. Sincelliy —liz| <]ig —iz| <12 <m, we see thal —U ¢
{O,m}. ThusU € {T,T —m}, and henc& € {O,—m,n,n—m}. Since|i; —iz| <|
and|j1— ]2| < |, we see thatU| < ||I1—|I2| + |j1— j2| = ||i1—i2| + |j1— ]2| <
I2<m<n;soU ¢ {—m,n}. SinceU = 0 implies that(iy, j1) = (i2, j2), we must
haveU = n—mandn # m. Thus(iy, j1) is one of(i;+ 1, j2), (i2, j2+n—m), or
(i24+1,j2+n—m—1). Both of the first two cases can be easily seen to assign
distinct colors t(i1, j1) and(iz, j2). We now show that the third case also assigns
distinct colors tq(i, j1) and(iz, j2).

The key is to determine the differendé; modm) — (li; modm). We consider
two possibilities: either there exists an integesuch thati, < gm<I(i+ 1) =
li1, or there does not exist suchga Let N = li, modm. If there exists such an
integerg, thenli; modm=N-+1—m. In this case|li1 modm+ j;) modn =
(N+I—=m+ j2+n—m—1) modn = (li, modm+ j2) modn = N+ j, modn.
After simplifying, this givesn —2m = 0 modn, which is impossible, sinck <
m<n<I24+I| andn #% m. Thus, there does not exist such an integerSince
no suchg exists,(li; modm) = (li, modm) + 1. By substituting this equality into
the congruencéli; modm+ j;) modn = (li; modm+ j») modn, we reach the
implicationm= n, which is a contradiction. Hence, the tiling of the planeatid;
and so is the tiling of the torus. O

Corallary 3. If I|m and In, then the coloring @, j,1,12,1?) is a valid >-coloring
of the plane and the m n torus for the Ix | square stencil.

Proof. Apply Theorem 2, withm = |2 andn = 12, Immediately, we see that the
coloring is valid for anl x | torus and thé x | square stencil. If a coloring is valid
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for a torus for a given stencil, then that coloring remainkdveor that stencil if
two copies of the torus are placed side by side or one atopthes. 0By placing
copies of thd x | torus next to and atop one another, we can construch am
torus. Thus, the given coloring is valid for tmex n torus and thd x | square
stencil. O

In the next two lemmas, we show that the colorings given fersimaller rect-
angles can indeed be assembled to give larger coloringarthaglid.

Lemmad. If12 <m<ng <ny <I?2+1, then colorings i, j,1,mny) and Q(i, j,1,m,ny)
are vertically compatible for thek | square stencil.

Proof. Lett; be anm x n; rectangle colored b (i, j,I,m,n;), and lett, be an
mx ny rectangle colored bg(i, j,I,m,ny). The entries in a row df are (beginning
from the first columnx modng, (Xx+ 1) modny, (x+2) modny,..., wherex < m.
The entries in the same row Bfarex modny, (X4 1) modny, (X+2) modny,....

As a result, the colors from a row ¢f appear in the same order within that row
of to. The difference is that sina® > n;, there may be additional colorsin So

in each row ofty, no color is closer to the edge tfthan it would be ift, were
replaced with a second copy @f Letvy, be an entry ity andv, be an entry irt,.

If vi andv, receive the same color and lie in the same row, then they deasitas
far apart as any two nearest entried;ithat receive the same color and lie in the
same row. Thus, the colorings are compatible. O

Lemmas. If12 <my <mp <n<I12+1, then colorings Gi, j,1,my,n) and (i, j,I,mp, n)
are horizontally compatible for thex | square stencil.

Proof. Sinceli < m <mp forall 0<i <, the firstl rows of the two colorings are
identical. Thus, the colorings are compatible for ithel square stencil. O

Finally, we put together all of the pieces we have proved. b/ show that
1. any sufficiently large torus can be partitioned into seraictangles,

2. those rectangles can be colored using few colors, and

3. the smaller colorings can be assembled to give a validiogldor the torus.

Theorem 6. For allm > (I — 1)I2 and n> 1%(12 + 1), there is an(I? 4 2)-coloring
of the mx n torus that is valid for the k | square stencil.



Proof. By using Sylvester’s theorem, we firag, az, b1, b, € N such thatm= ajl +
ax(I12+1) andn = by (12 + 1) + bp(1° 4 2). Using these linear combinations, we
partition them x ntorus into rectangles with heighttsc {I,124-1} and with widths

w e {17+ 1,12+ 2}. From Theorem 2, we get colorings of tori with these four
sizes. We then apply the appropriate coloring to each rglgdn the partition of
them x n torus. The resulting coloring uses at mtist- 2 colors and is valid for
themx ntorus as guaranteed by Lemmas 4 and 5. O

This technique used to prove Theorem 6 yields an even beaitardbfor col-
oring the cylinder. A coloring of a torus with any height cam lsed to color a
cylinder, since we need not worry about boundary conditiarthe height dimen-
sion. If we use the coloring for a torus with heidhthen we need to use only |
andl x (12 + 1) rectangles in our partition of the torus. This partitionulesin a
coloring with12 + 1 colors.

Theorem 7. There is an(I? 4- 1)-coloring of the mx n cylinder for the Ix | square
stencil when > (I — 1)I2.

4 Coloringsfor Star Stencils

Now we give colorings for the torus that are valid for tde— 3)-point star stencils.
To prove that our colorings are valid for the star stencilnged only show that the
colorings are valid for thex | square stencil, th@l — 1) x 1 rectangle stencil, and
the 1x (21 — 1) rectangle stencil, since any pair of points that lies {dla- 3)-point
star also lies in one of these three stencils.

If m>12(12+1) andn > (12 +1)(I2+2), then by Lemma 1 we can partition the
torus into rectangles with heightsc {1%+1,12+2} and widthsw € {1%+2,12+4-3}.
We use the colorings for each of the rectangles that arefealitiel x | stencil that
are given in Theorem 2. When the colorings for these rectsngle combined, we
get a coloring for the torus. Call this coloriﬁband call the patrtition into rectangles
P.

Lemma 8. The coloringC is valid for the Ix | square stencil.
Proof. This follows immediately from Theorem 2 and Lemmas 4 and 5. O
Lemma 9. The coloringC is valid for the(2l — 1) x 1 rectangle stencil.

Proof. If C were invalid for the(2l — 1) x 1 stencil, then there would exist two
points(i1, j) and(iz, j) in the same&?2l — 1) x 1 stencil that receive the same color.
We show that situation is impossible.
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Figure 3: The colorings of four rectangles used to constuagloring of the torus
for the (41 — 3)-point star stencil. The colorings shown are from Theorenwiien

=3.



We can assume that, j) and(iy, j) lie in different rectangles i, since it
is easy to see that different entries within the same colufranrectangle receive
different colors. We consider the entries of colufrmodulol. As we move down a
column, we encounter in succession all the entries than libé same equivalence
class moduld. Additionally, we encounter the entries in the same eqaived
class in increasing order. That is, as we move down a colurheighth > 1241,
we encountet blocks of entries, where each block consists of entrieslidan
the same equivalence class. Each block of entries is ofdrmtl + 1. The only
exception is that beginning at the top of a column, we may bavag through a
block. The preceding portion of this block will appear at tioétom of the column,
so that the block, when viewed as a torus, appears whole aordén.

The important insight is that for a fixed column, each redi&amg the parti-
tion P has the same fir$tentries in that column. As we move down the column,
we must cross a boundary between two rectangles. Both tkengge above the
boundary and the one below it have the same ffiretvs. Hence, as we cross the
boundary from one rectangle to another, all the blocks ar@enéind in order. The
column of each rectangle contaihg> 2 of these blocks (if = 1, the lemma is
trivial). If two entries receive the same color, they musirbdifferent blocks, and
there must be at least one additional block between themceadéime second entry
must appear at least positions after the first. O

Lemma 10. The coloringC is valid for thel x (2 — 1) rectangle stencil.

Proof. If C were invalid for the k (2| — 1) rectangle stencil, then there would exist
(i, j1) and(i, j2) that lie in the same % (2| — 1) rectangle. Either both points are
colored by using the same coloring (i.e., in the partitiogythie within rectangles
of the same size), or they are colored by using two differefdrings. First, we
assume they are colored by using the same coloring. Howeedmow that within

a row, each coloring is cyclic with periog > |2+ 2. In addition, we know that
each color appears only once evergntries. Thus, ifi, j1) and(i, j2) receive the
same color, then they must be at a distance of at least?+2> 20 —1.

Now consider the case whe(k j1) and (i, j2) are colored by using different
colorings; suppose thdt, j;) is colored byC; = C(i, j,I,w,1? 4 2), and (i, j2) is
colored byC, =C(i, j,I,w,1>43). Letd; be the color used ofi, j;). If both
points were colored with the same coloring, the next ocaeaf colord; to the
right of (i, j1) would be at(i, j; + w). However, the first appearance of a color in
each row of coloringC; is no closer to the boundary between coloriigsand
C, than if we were to continue using; (see Lemma 4). As a result, no color
can appear at two positions that are in the same row and d@encksless than
w>124+2> 2/ —1 apart. ]
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Theorem 11. If m >12(12+1) and n> (124 1)(1% + 2), then there is arfl? + 3)-
coloring of the mx n torus that is valid for thg4l — 3)-point star stencil.

Proof. This follows immediately from Lemmas 8, 9, and 10. O

5 Three-Dimensional Stencils

In this section, we consider the three-dimensional versfoour problem. In the
three-dimensional case, the lattices we studyZ¥randZ? x Z.,. We are moti-
vated to look at colorings of these lattices for thel x | cube. We also consider
colorings ofZ? for the (6] — 5)-point star. Apart from the 7-point star considered
by Goldfarb and Toint [3], we are unaware of any treatmenheé cases in the
literature.

The intution for Theorem 12 is as follows. We assume that twiotp receive
the same color under the specified coloring. We proceed tw #iat they cannot
lie inside the samé6l — 5)-point star stencil. Because we are giving a single
coloring for all of Z3 (and not considering boundary conditions for discreté) tori
there are no issues of compatibility between different iogs.

Theorem 12. Let M=1241+ 1, and define the coloring @ j,k,1) = (i +12j +
(12 +1)k) modM. Coloring (i, j,k,1) is a valid coloring ofZ?3 for the (6l — 5)-
point star and uses M colors.

Proof. If the coloring is invalid, then there are two poimis= (i1, j1,k1) andp, =
(i2, j2,k2) that receive the same color and lie within the same copy (@ & 5)-
point star stencil. Each point of a star differs in only onerciinate from the center
of the star, so ifp; and p, lie in the same star, thegm and p, agree in at least one
coordinate.

First, consider the case whepg and p, agree in two coordinates. We simplify
the expressiofliy +12j1 4+ (12 4+ 1)ky) = (i2 +12j2 + (12 + 1)k2) mod M by substi-
tuting in two of the three equalities; = i», j1 = j2, andk; = k. Depending on
which two of the three equalities we assume to be true, wergebbthree possibil-
ities: iy =ip modM, 12j; =12j, modM, or (124 1)k; = (1 + 1)k, mod M. Since
1,12, and(1? + 1) are all relatively prime td/, we see thaWl|(i; —i2), M|(j1— j2),
or M|(ky — ko). However, we know thafi; —iz| <2l — 1, |j1 — jo| <2 — 1, and
lk1 —ko| < 21 —1; sinceM > 2| — 1, we conclude thap; = p,, which is a contra-
diction. Thus, ifp; andp; lie inside the same star and receive the same color, then
they agree in exactly one coordinate.

Now consider the case whepe and p, agree in exactly one coordinate. We
must haveiis —iz| <1, |j1— j2| <, |ki — k| < I, and one of the following.

(i1+1%j1) = (i2+1%j2) modM

11



(i14+(124+1k)) = (i2+ (1?+1)kz) modM
(1Zji+(12+Dk) = (1%ja+ (1%2+1)kz) modM

We rewrite these as follows.
(i—(1+1)j1) = (i2—(1+1)j2) modM

(il—lkl) (ig—lkz) mod M
(—lj1+k) = (~lj2+k2) modM

The third equation follows by multiplying through B+ 1). Those equations then
imply (respectively) that one of the following is true.

M | (i1—i2—(+2)(j1—]j2))
M | (i1—i2—1(ki—kp))
M | (ki—ko—I(j1—j2))

In each case (making use pf —iz| <, |j1— jo| <, and|ks —ko| < 1), we see
that the quantity thatl is supposed to divide has absolute value less kafhis
implies that each quantity must be 0 and hencehat, ki) = (i2, j2, ko). This is
a contradiction. Hence, the coloring is valid. O

Now we turn our attention to tHex | x| cube stencil. Because we want to color
72 x Zm, we need to give a coloring for all of théx |3 x (13 +b) three-dimensional
cylinders (0< b < 1), rather than just the® x I3 x I3 three-dimensional torus. The
proof takes the same form as before. We assume that therevarpgoints that
lie within a cube and receive the same color; eventually vaehrea contradiction.
Define the coloring

C(i, j,k 1,b) = ((I% 4+ 1j) modI®+k) mod (I3 + b).

Theorem 13. If 0 < b <, then i, j,k,I,b) is a valid coloring of the ¥ x I x
(1% + b) three-dimensional cylinder for thed | x | cube. Qi, j,k,I,b) uses ¥ +b
colors.

Proof. If the coloring is invalid, then there are two poingg = (i1, j1,ki) and
p2 = (i2, j2, ko) that receive the same color and lie inside the saméx | cube.
As a result,p; andp; satisfy constraints (3.1) and (3.2) below:

lin—iol <1, [j1—J2f <1, |ki—ko| <1 1)
(((12ix+1j1) modI®) +kp) = ((1%ia+1j2) modI3+ko)(mod(I3+b)). (2)

12



Without loss of generality, assuni€i; +1j1) modI® > (1%i; +1j2) mod|3.
LetT = ((1%i1 +1j1) modI®— (1224 1j2) modI® + (k; — kp)). ThenT is divisible
by I?+band—(13+b) < T < 2(13+b). In particular,T € {0,13 +b}. LetU =
12(i1—i2) +1(j1— j2) + (ki — ko). ThenU € {0, —13,13+Db,b}. Making use of (3.1),
we see thatU| < I13. If U = 0, we immediately getiy, j1,k1) = (i2, j2,k2). This
leaves only the cadg = b. To have a solution other thdin, j1,k1) = (i, j2,k2),
we need O< b. Again using (3.1) and the fact thht< |, we see that the only
possible solutions are the following.

|2i1—|—|j1:|2i2—|—|j2 ki=ko+b (I)
12ip+1j1 =122+ 1j2+1 ki=ke+(b—1) (i)

We need to show that none of these pairs of points actualgivet¢he same
colors. Itis easy to see that no pair of points satisfyfingeceives the same color.

Consider pairs of points satisfyin@). The key is to determine the difference
(1%2ig+1j1) modI® — (1% +1j2) modI®. LetN = (1% +1j2) modI3. There are
two possibilities. Either there exists a positive integesuch thatlZi; +1j, <
dI® <1%i,+1j,+1, or there does not exist such dnlf there does not exist such
and, then (12iy +1j1) modI® = N +1. This leads to(N + kz) mod (I3 + b) =
(N+14k2+b—1) mod (I3 +b). This implies thab = 0 mod (I3 b). However,
since O< b <1, this is a contradiction. Hence, there must exist such agertd.

Consider(ii ) when there exists a positive integksuch that?i; +1j, < dI® <
12i1+1j1. Then(1%iy+1j1) modI®3 =N+ —13. This leads tqN +kp) = (N+1 —
124 ko +b—1) mod (1® 4 b). Simplifying, we get® = b mod (12 + b). However,
0< b<, sowe reach a contradiction. Hence, there are no pairs pfa@ceiving
the same color and also satisfying constrdint Thus, there is no pair of points
(i1, j1,K1), (i2, j2,k2) receiving the same color and also lying inside the same
| x 1 cube. As a result, the coloring is valid. O

Corollary 14. There exists a’coloring of Z3 that is valid for the Ix | x | cube.

Proof. C(i, j,k,I,0) is valid for al x | x | cube and uses colors. It is easy to see
that this coloring also works for the points 8. O

Lemma 15. Define the colorings €= C(i, j,k,1,b1) and G = C(i, j,k,1,by). If
0 < by < by then G and G are compatible.

Proof. Analogous to rows and columns, we define towers to be the dattmie
points for whichi, j are fixed and varies. UndelC,, ask increases in a tower,
we get the repeating sequencd@,...,13+b; —2,13+b; — 1. UnderC,, ask in-
creases in a tower, we get the repeating sequefic@,0..,13+by, — 2,13+ b, — 1.
The key insight is that in a tower, und€p, no color is closer to the boundary
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betweenC, andC, than if we were to continue using;. Suppose we have one
point (i1, j1,k1), colored byCy, and another poini», j2, k), colored byCy, which
make the colorings incompatible. Instead of changing f@no C, at the bound-
ary between them, we could continue ustgfor all the points and find a point
(i3, j3,k3), which make<C; incompatible with itself. Sinc€; is not incompatible
with itself, C; andC, must be compatible. O

Theorem 16. Suppose | and m are positive integers that satisfy i Define g to
be the least nonnegative integer for which m can be writtealamear combination
of 13,134+ 1,...,18+g— 1,13 +q. There is ar(I® + g)-coloring 0f Z? x Zpn, that is
valid for the Ix | x | cube.

Proof. Following the ideas of Theorem 6, we partitiif x Z, into copies of
72 x T, whereb; can differ in different copies bug < by < 124 q for all copies.
We color each copy o%? x Zy, using the coloring given by Theorem 13. By
Lemma 15, these colorings are compatible, so the total iogidés valid. O

Corollary 17. Let | and m be positive integers such thatm3(1° — 1). There is
an (13 + 1)-coloring of Z2 x Z, that is valid for the Ix | x | stencil.

Proof. This follows from Theorem 16 and Lemma 1 (settipe: 1). O

6 Lower Bounds

We give lower bounds that prove that our colorings for theasgand cube stencils
are either optimal or within one color of being optimal.

Theorem 18. Any valid coloring of the nx n torus for the Ix | square stencil
requires P+ 1 colors unless|im and In.

Proof. Consider amnx | subcylinder (the dimension of sineis the one that wraps
around). If our coloring uses at mdstcolors, then by the pigeon-hole principle
there is some color class of size at Ieh%{il = [T']. However, a color class can
have size at mos[t“?—é'j = | 1] (since two entries in the same color class must be
at least rows apart). Ifim, these quantities are equal. Otherwise, we need at least
12 +1 colors. An analagous argument shows that we hged O

Slight variations of this proof lead to the following theors.

Theorem 19. Any valid coloring of the nx n cylinder for the Ix | square stencil
requires + 1 colors unless|h.
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1 2 3 4 5

6 7 8 9 10 +
11 12 13 14 15+
16 17 18 19 20 +
21 22 23 24 25+

* * * *

Figure 4: The proof of Theorem 21 foe= 5.

Theorem 20. Any valid coloring ofZ? x Zn, for the | x | x | cube requires+ 1
colors unless|m.

Now we give a bound on the number of colors needed for stacitten

Theorem 21. If m > | and n> |, then we need at least k 1 colors to color an
m x n rectangle such that no two points with the same color lie {dla- 3)-point
star.

Proof. Itis easy to see that no vertices ihal square can receive the same color.
We begin by coloring these all differently. For ease of refiee, we will refer to
the vertices as entries ofnax n matrix, wherea;j denotes the vertex in théeh row
and jth column.

The only colors available to color entries of colurh# 1 are those used in
column 1. To color entrieay 1,841, ---, & +1, We must use each color in the
set{1+kl:0<k< |} exactly once. Sincé€l,1) =1, we see thatl,| + 1) # 1.
So there exists with 2 <i <1 and(i,| +1) = 1 (one of the entries denoted by
+ in the diagram). The only colors available to color rbw 1 are those used in
row 1. To color(l +1,2),(14+1,3),...,(I +1,1) (those entries denoted by * in the
diagram), we must use every color in the §213,...,1} exactly once. However,
this leaves no color fofl +1,1). Color 1 cannot be used becaudel) = 1 and
all other colors are already assigned to sgimg) with2<i<l+1and 1< j <lI.
Thus, we need an additional color fdr+ 1,1), so at leastl + 1)2+ 1 colors are
required. O

Theorem 22. The coloring given for thé6l — 5)-point star is asymptotically the
best possible.

Proof. Every (axis-aligned) cross-section of the coloring for (le- 5)-point star
must be a valid coloring for thedl — 3)-point star. Thus, we have a lower bound
of 12+ 1 colors. We usé(l + 1) + 1 colors. The ratio of upper and lower bound is
1+ ﬁ), which approaches 1 &gets large. O
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7 Conclusion

We have given colorings for the I(4 3)-point star and thé x | square stencils
(for all I) in the plane, on the cylinder, and on the torus. On the tomgshave
proved that the colorings for th@l — 3)-point star are within at most 2 colors of
optimality. On the cylinder, they are within at most 1 coldroptimality. In the
plane all star colorings are optimal. On the torus and thimdgt, our colorings
for the square stencils are within at most 1 color of optitgali he colorings for
square stencils in the plane are optimal.

We have given colorings for tHe<| x | cube stencils foZ? andZ? x Z,. Both
are optimal. We have also given coloringsZf for the (6] — 5)-point star, which
are asymptotically the best possible.
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