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Abstract

Computing the first derivatives of a discretized nonlinear partial differen-
tial equation (PDE) can be made more efficient given colorings of the lattice
points of the plane, cylinder, or torus that assign different colors to all vertices
within some specified stencil. Goldfarb and Toint showed howto efficiently
color the lattice points of the plane, but their results do not extend to the
cases of cylinders or toruses, as arise in the case of discretizing PDEs with
periodic boundary conditions on a Cartesian grid. We give colorings for the
(4l −3)-point star and thel × l square stencils (for alll ) in the plane, on the
cylinder, and on the torus. We also give colorings for the(6l −5)-point star
in Z

3 and for thel × l × l cube inZ
3 with periodic boundary conditions in 0

and 1 dimensions. We show that all colorings are optimal or near-optimal.

Keywords: Jacobian, Hessian, automatic differentiation, finite differences, graph
coloring

1 Introduction and Motivation

Many numerical methods require the evaluation of the Jacobian. TheJacobianis
anM×N matrix J of partial derivatives of a vector-valued functionF : R

N 7→ R
M.

∗This work was supported by the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357.

†Email address:dcransto@dimacs.rutgers.edu. Present address: DIMACS, Rutgers Univer-
sity, Piscataway, New Jersey.

‡Email address:hovland@mcs.anl.gov.

1



The Jacobian entry in rowi and columnj is nonzero only if theith componentF(x)
depends onx j .

The Jacobian is frequently computed by using automatic differentiation [4] or
approximated by using finite differences. These techniquesare often necessary
because the functionF is available only in the form of a computer program. Both
approaches compute a set of directional derivatives ofF. When we choose the
direction to be the unit vectorej in the jth coordinate direction, we compute the
jth column ofJ. By taking the directions to be the standard basis ofR

N, we can
computeJ usingN directional derivatives ofF .

In many cases, however, the Jacobian matrix is sparse. When the sparsity pat-
tern is known, theith and jth columns ofJ can be computed simultaneously when-
ever they are structurally orthogonal. A pair of columnsi and j of a matrix are
structurally orthogonalif in each row of the matrix at most one of the columns
contains a nonzero entry.

If columns i and j are structurally orthogonal, we compute them simultane-
ously by taking the derivative ofF in the directionei +ej . Then for each rowk, at
most one ofJki andJk j is nonzero. This nonzero entry is equal to thekth component
of the derivative vector.

This idea can be extended to larger sets of pairwise structurally orthogonal
columns. If columnsi1, i2, . . . , ip are structurally orthogonal, we can compute them
simultaneously by taking the derivative ofF in the directionei1 + ei2 + · · ·+ eip.
Again, for each rowk, at most one column has a nonzero entry in thekth row. This
nonzero entry is equal to thekth component of the derivative vector.

We are now interested in partitioning the columns ofJ into structurally orthog-
onal sets. All the columns in a set can be computed simultaneously. To minimize
the cost of computingJ, we must minimize the number of sets in the partition.

It turns out to be more useful (and to offer better intuition)if we view the
problem as points on a torus, rather than columns of a matrix [6]. Rather than
partitioning the columns into structurally orthogonal sets, we speak of coloring
the points on the torus so that no two points receive the same color unless their
corresponding columns in the Jacobian are structurally orthogonal. If we take the
points of the torus as a vertex set and add an edge between two points whenever
their corresponding columns are not structurally orthogonal, we have a standard
graph coloring problem. Motivated by viewing the problem aspoints on a torus,
we also refer to the points by the more natural(i, j) to denote the point in theith
row and jth column.

Unfortunately, finding an optimal coloring of a general graph is NP-complete.
Therefore, research has focused on approximation algorithms for graphs with ran-
dom adjacency patterns [2, 1, 5] and optimal (or near-optimal) algorithms for struc-
tured graphs [3].
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Figure 1: (a) The 5-point star stencil on the 5×7 torus. It is important to distinguish
between the torus and the Jacobian. The Jacobian will be 35×35, since each point
on the torus corresponds to a column in the Jacobian. (b) The 3×3 square stencil
on the 5×6 torus. The Jacobian for this torus will be 30×30.

We now examine the problem more in detail. We want to find the derivative
of a function that maps the surface of a torus to itself,F : T 7→ T. Since we don’t
have an analytical form of the function, we approximate it atselected points. We
selectmnpoints in the shape of anm×n lattice on the surface of the torus. In the
Jacobian, each row and column corresponds to a sample point on the torus. (This
means that the Jacobian matrix,J, actually has dimensionsmn×mn.) We refer to
the point corresponding to column (and row)i as pointi. The derivative at a point
can be approximated by using the value of the function at thatpoint and at nearby
points.

We use the termstencilto specify those points near pointi which our approx-
imation of the derivative ati will depend on. Because we use the same stencil for
every point on the torus, the sparsity pattern of the Jacobian is very structured. In
particular,Ji j is nonzero only if pointi lies within the stencil of pointj. Thus, two
columns are structurally orthogonal only if their corresponding points never lie in
the same stencil. Thus, the number of structurally orthogonal sets in the column
partition must be at least equal to the number of points in thestencil.

Goldfarb and Toint [3] give optimal colorings (a coloring isoptimal if it is
uses a minimum number of colors) for a variety of sparsity patterns arising from
the stencil-based discretization of partial differentialequations on Cartesian grids.
Goldfarb and Toint demonstrate that in many cases the size ofthe coloring need not
be any larger than the size of the stencil. However, all of thecases they consider
are in the plane. This significantly simplifies matters, because it avoids difficulties
with boundary conditions.
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In this paper, we examine the problem for(4l −3)-point star and square stencils
on both the torus and the cylinder. We use the termm×n torus (cylinder) to mean
the discrete torus (cylinder) with heightmand widthn. For the cylinder, the height
is the dimension that does not wrap around.

In three dimensions, we look at(6l −5)-point star and cube stencils. We con-
sider two cases. First, we color the points ofZ

3, the three-dimensional latice with-
out wrap-around in any dimension. Second, we color the points of Z

2 ×Zm, a
three-dimensional lattice with wrap-around in a single dimension of sizem.

In Section 2, we present a preliminary result that is helpfulin constructing
the colorings in Section 3. In Section 3, we present colorings for (4l − 3)-point
and(6l −5)-point star stencils and for square and cube stencils. In Section 4, we
present lower bounds and show that in all cases they are tightor nearly tight for
l × l square stencils and(4l −3)-star stencils. We offer some concluding remarks
in Section 5.

2 Preliminaries

To build all the colorings in this paper, we partition into smaller rectangles the
region to be colored. We color each rectangle so that when therectangles are
reassembled into the initial region, the resulting coloring is valid. In general, the
rectangles have two different heights and two different widths: h1 ×w1, h2×w1,
h1 ×w2, andh2 ×w2. In addition to each coloring being valid for the specified
stencil, these colorings also have the property that if two rectangles with the same
height are placed side by side or if two rectangles with the same width are placed
one atop the other, the coloring of this new larger rectangleis valid for the same
stencil. To color a torus with dimensionsh×w, we will write h as a nonnegative
integer linear combination ofh1 andh2 and writew as a nonnegative integer linear
combination ofw1 andw2. (Throughout this paper, the termlinear combination
will mean linear combination with nonnegative integer coefficients.) We writea|b
to denote thata dividesb.

We want to know when an integern can be written as a linear combination of
two smaller integersp andq. Let r(p,q) be the smallest positive integer such that if
n≥ r(p,q), thenn can be written as a linear combination ofp andq. The following
result is known asSylvester’s theorem. For a proof, see [7].

Lemma 1 (Sylvester’s Theorem [7]). If p and q are relatively prime positive inte-
gers, then r(p,q) = (p−1)(q−1).

We say that a coloring (of a torus or the plane) isvalid for a given stencil
if, under that coloring, all points within each copy of that stencil receive distinct
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7 8 0 1 2 3 4 5 6
1 2 3 4 5 6 7 8 0
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Figure 2: A coloring of the 9×9 torus for the 3×3 square stencil.

colors. We say that a valid coloring (for stencilS) of an h×w1 torus and a valid
coloring (for S) of an h×w2 torus arevertically compatibleif, when placed side
by side, the two form a valid coloring (for stencilS) of the h× (w1 + w2) torus.
Analogously, we definehorizontally compatiblecolorings ofh1 ×w and h2 ×w
tori. When the meaning is clear, we will refer to both vertically compatible and
horizontally compatible simply ascompatible. We also extend these definitions to
three dimensions in the obvious way.

3 Colorings for Square Stencils

The simplest coloring for the 3×3 square stencil, on anm×n torus with 3|m and
3|n, is given byC(i, j) = (3i + j) mod 9, as shown in Figure 2.

This coloring was given by Goldfarb and Toint [3] and can easily be extended
to the l × l square stencil by lettingC(i, j) = (li + j) mod l2. If we are coloring
rectangles rather than tori, this coloring suffices for allm and n. For the torus,
however, we requirel |m and l |n. So now we need to look for valid colorings for
the l × l square stencil in instances whenl6 |mor l6 |n.

The colorings we use are similar to the coloring in Figure 2. We define a
general family of colorings:

C(i, j, l ,m,n) = ((li modm+ j) modn).

Each time we use coloringC, the parametersl , m, andn remain fixed, while the
parametersi and j vary to indicate which entry is being colored. As we move to
the right in a row, each entry is larger than the previous entry by 1. Similarly, as we
move downward in a column, each entry is larger than the previous entry byl . As
a result, the period of the coloring in the rows isn, and the period in the columns is
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gcd(l ,m). For Theorem 2 through Lemma 5, we consider the case when the height
and width of the torus are given bym= l2 +b andn = l2 +c, whereb andc are at
mostl .

Theorem 2. If l 2 ≤ m≤ n ≤ l2 + l, then C(i, j, l ,m,n) is a valid coloring of the
m×n torus for the l× l square stencil.

Proof. Since the tiling is periodic in both directions, it suffices to show that the
coloring is valid for the plane. If this coloring is invalid,then there exist two entries
(i1, j1) and(i2, j2) that lie within the samel × l square and receive the same color,
that is,|i1− i2| < l , | j1− j2| < l , and(li1 modm+ j1) ≡ (li2 modm+ j2) modn.
Without loss of generality, assume that(li1 modm) ≥ (li2 modm). Let

T = (li1 modm)− (li2 modm)+ j1− j2,

U = li1− li2+ j1− j2.

Sincen|T and−n < T < 2n, we see thatT ∈ {0,n}. Clearlym|(T −U), and
by assumption,T ≥U . Since|li1− li2| ≤ l |i1− i2| < l2 ≤ m, we see thatT −U ∈
{0,m}. ThusU ∈ {T,T −m}, and henceU ∈ {0,−m,n,n−m}. Since|i1− i2| < l
and | j1− j2| < l , we see that|U | ≤ |li1− li2|+ | j1− j2| = l |i1− i2|+ | j1− j2| <
l2 ≤ m≤ n; soU /∈ {−m,n}. SinceU = 0 implies that(i1, j1) = (i2, j2), we must
haveU = n−m andn 6= m. Thus(i1, j1) is one of(i2 + 1, j2),(i2, j2 + n−m), or
(i2 + 1, j2 + n−m− l). Both of the first two cases can be easily seen to assign
distinct colors to(i1, j1) and(i2, j2). We now show that the third case also assigns
distinct colors to(i1, j1) and(i2, j2).

The key is to determine the difference(li1 modm)−(li2 modm). We consider
two possibilities: either there exists an integerg such thatli2 < gm≤ l(i2 + 1) =
li1, or there does not exist such ag. Let N = li2 modm. If there exists such an
integerg, then li1 modm = N + l −m. In this case,(li1 modm+ j1) modn =
(N + l −m+ j2 + n−m− l) modn = (li2 modm+ j2) modn = N + j2 modn.
After simplifying, this givesn− 2m≡ 0 modn, which is impossible, sincel2 ≤
m≤ n ≤ l2 + l and n 6= m. Thus, there does not exist such an integerg. Since
no suchg exists,(li1 modm) = (li2 modm)+ l . By substituting this equality into
the congruence(li1 modm+ j1) modn ≡ (li2 modm+ j2) modn, we reach the
implicationm= n, which is a contradiction. Hence, the tiling of the plane is valid,
and so is the tiling of the torus.

Corollary 3. If l |m and l|n, then the coloring C(i, j, l , l2, l2) is a valid l2-coloring
of the plane and the m×n torus for the l× l square stencil.

Proof. Apply Theorem 2, withm = l2 andn = l2. Immediately, we see that the
coloring is valid for anl × l torus and thel × l square stencil. If a coloring is valid
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for a torus for a given stencil, then that coloring remains valid for that stencil if
two copies of the torus are placed side by side or one atop the other. By placing
copies of thel × l torus next to and atop one another, we can construct anm× n
torus. Thus, the given coloring is valid for them× n torus and thel × l square
stencil.

In the next two lemmas, we show that the colorings given for the smaller rect-
angles can indeed be assembled to give larger colorings thatare valid.

Lemma 4. If l 2≤m≤ n1≤ n2 ≤ l2+ l, then colorings C(i, j, l ,m,n1) and C(i, j, l ,m,n2)
are vertically compatible for the l× l square stencil.

Proof. Let t1 be anm× n1 rectangle colored byC(i, j, l ,m,n1), and lett2 be an
m×n2 rectangle colored byC(i, j, l ,m,n2). The entries in a row oft1 are (beginning
from the first column)x modn1, (x+1) modn1, (x+2) modn1, . . ., wherex< m.
The entries in the same row oft2 arex modn2, (x+1) modn2, (x+2) modn2, . . ..
As a result, the colors from a row oft1 appear in the same order within that row
of t2. The difference is that sincen2 ≥ n1, there may be additional colors int2. So
in each row oft2, no color is closer to the edge oft1 than it would be ift2 were
replaced with a second copy oft1. Let v1 be an entry int1 andv2 be an entry int2.
If v1 andv2 receive the same color and lie in the same row, then they are atleast as
far apart as any two nearest entries int1 that receive the same color and lie in the
same row. Thus, the colorings are compatible.

Lemma 5. If l 2≤m1≤m2≤ n≤ l2+ l, then colorings C(i, j, l ,m1,n) andC(i, j, l ,m2,n)
are horizontally compatible for the l× l square stencil.

Proof. Sinceli < m1 ≤ m2 for all 0≤ i < l , the firstl rows of the two colorings are
identical. Thus, the colorings are compatible for thel × l square stencil.

Finally, we put together all of the pieces we have proved. We now show that

1. any sufficiently large torus can be partitioned into smaller rectangles,

2. those rectangles can be colored using few colors, and

3. the smaller colorings can be assembled to give a valid coloring for the torus.

Theorem 6. For all m≥ (l −1)l2 and n≥ l2(l2 +1), there is an(l2 +2)-coloring
of the m×n torus that is valid for the l× l square stencil.
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Proof. By using Sylvester’s theorem, we finda1,a2,b1,b2 ∈ N such thatm= a1l +
a2(l2 + 1) andn = b1(l2 + 1) + b2(l2 + 2). Using these linear combinations, we
partition them×n torus into rectangles with heightsh∈ {l , l2+1} and with widths
w ∈ {l2 + 1, l2 + 2}. From Theorem 2, we get colorings of tori with these four
sizes. We then apply the appropriate coloring to each rectangle in the partition of
them×n torus. The resulting coloring uses at mostl2 + 2 colors and is valid for
them×n torus as guaranteed by Lemmas 4 and 5.

This technique used to prove Theorem 6 yields an even better bound for col-
oring the cylinder. A coloring of a torus with any height can be used to color a
cylinder, since we need not worry about boundary conditionsin the height dimen-
sion. If we use the coloring for a torus with heightl , then we need to use onlyl × l
and l × (l2 + 1) rectangles in our partition of the torus. This partition results in a
coloring with l2 +1 colors.

Theorem 7. There is an(l2+1)-coloring of the m×n cylinder for the l× l square
stencil when n≥ (l −1)l2.

4 Colorings for Star Stencils

Now we give colorings for the torus that are valid for the(4l −3)-point star stencils.
To prove that our colorings are valid for the star stencil, weneed only show that the
colorings are valid for thel × l square stencil, the(2l −1)×1 rectangle stencil, and
the 1×(2l −1) rectangle stencil, since any pair of points that lies in a(4l −3)-point
star also lies in one of these three stencils.

If m≥ l2(l2+1) andn≥ (l2+1)(l2+2), then by Lemma 1 we can partition the
torus into rectangles with heightsh∈{l2+1, l2+2} and widthsw∈{l2+2, l2+3}.
We use the colorings for each of the rectangles that are validfor thel × l stencil that
are given in Theorem 2. When the colorings for these rectangles are combined, we
get a coloring for the torus. Call this colorinĝC and call the partition into rectangles
P.

Lemma 8. The coloringĈ is valid for the l× l square stencil.

Proof. This follows immediately from Theorem 2 and Lemmas 4 and 5.

Lemma 9. The coloringĈ is valid for the(2l −1)×1 rectangle stencil.

Proof. If Ĉ were invalid for the(2l − 1)× 1 stencil, then there would exist two
points(i1, j) and(i2, j) in the same(2l −1)×1 stencil that receive the same color.
We show that situation is impossible.
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4 5 6 7 8 9 A 0 1 2 3
7 8 9 A 0 1 2 3 4 5 6
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4 5 6 7 8 9 A B 0 1 2 3
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Figure 3: The colorings of four rectangles used to constructa coloring of the torus
for the(4l −3)-point star stencil. The colorings shown are from Theorem 11, when
l = 3.
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We can assume that(i1, j) and(i2, j) lie in different rectangles inP, since it
is easy to see that different entries within the same column of a rectangle receive
different colors. We consider the entries of columnj modulol . As we move down a
column, we encounter in succession all the entries that lie in the same equivalence
class modulol . Additionally, we encounter the entries in the same equivalence
class in increasing order. That is, as we move down a column ofheighth≥ l2 +1,
we encounterl blocks of entries, where each block consists of entries thatlie in
the same equivalence class. Each block of entries is of length l or l +1. The only
exception is that beginning at the top of a column, we may be partway through a
block. The preceding portion of this block will appear at thebottom of the column,
so that the block, when viewed as a torus, appears whole and inorder.

The important insight is that for a fixed column, each rectangle in the parti-
tion P has the same firstl entries in that column. As we move down the column,
we must cross a boundary between two rectangles. Both the rectangle above the
boundary and the one below it have the same firstl rows. Hence, as we cross the
boundary from one rectangle to another, all the blocks are whole and in order. The
column of each rectangle containsl ≥ 2 of these blocks (ifl = 1, the lemma is
trivial). If two entries receive the same color, they must bein different blocks, and
there must be at least one additional block between them. Hence, the second entry
must appear at least 2l positions after the first.

Lemma 10. The coloringĈ is valid for the1× (2l −1) rectangle stencil.

Proof. If Ĉ were invalid for the 1×(2l −1) rectangle stencil, then there would exist
(i, j1) and(i, j2) that lie in the same 1× (2l −1) rectangle. Either both points are
colored by using the same coloring (i.e., in the partition they lie within rectangles
of the same size), or they are colored by using two different colorings. First, we
assume they are colored by using the same coloring. However,we know that within
a row, each coloring is cyclic with periodw ≥ l2 + 2. In addition, we know that
each color appears only once everyw entries. Thus, if(i, j1) and(i, j2) receive the
same color, then they must be at a distance of at leastw≥ l2 +2 > 2l −1.

Now consider the case where(i, j1) and(i, j2) are colored by using different
colorings; suppose that(i, j1) is colored byC1 = C(i, j, l ,w, l2 +2), and(i, j2) is
colored byC2 = C(i, j, l ,w, l2 +3). Let d1 be the color used on(i, j1). If both
points were colored with the same coloring, the next occurence of colord1 to the
right of (i, j1) would be at(i, j1 + w). However, the first appearance of a color in
each row of coloringC2 is no closer to the boundary between coloringsC1 and
C2 than if we were to continue usingC1 (see Lemma 4). As a result, no color
can appear at two positions that are in the same row and are distance less than
w≥ l2 +2 > 2l −1 apart.
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Theorem 11. If m≥ l2(l2 +1) and n≥ (l2 +1)(l2 +2), then there is an(l2 +3)-
coloring of the m×n torus that is valid for the(4l −3)-point star stencil.

Proof. This follows immediately from Lemmas 8, 9, and 10.

5 Three-Dimensional Stencils

In this section, we consider the three-dimensional versionof our problem. In the
three-dimensional case, the lattices we study areZ

3 andZ
2 ×Zm. We are moti-

vated to look at colorings of these lattices for thel × l × l cube. We also consider
colorings ofZ3 for the (6l −5)-point star. Apart from the 7-point star considered
by Goldfarb and Toint [3], we are unaware of any treatment of these cases in the
literature.

The intution for Theorem 12 is as follows. We assume that two points receive
the same color under the specified coloring. We proceed to show that they cannot
lie inside the same(6l − 5)-point star stencil. Because we are giving a single
coloring for all ofZ3 (and not considering boundary conditions for discrete tori),
there are no issues of compatibility between different colorings.

Theorem 12. Let M = l2 + l + 1, and define the coloring C(i, j,k, l) = (i + l2 j +
(l2 + 1)k) modM. Coloring C(i, j,k, l) is a valid coloring ofZ3 for the (6l −5)-
point star and uses M colors.

Proof. If the coloring is invalid, then there are two pointsp1 = (i1, j1,k1) andp2 =
(i2, j2,k2) that receive the same color and lie within the same copy of a(6l −5)-
point star stencil. Each point of a star differs in only one coordinate from the center
of the star, so ifp1 andp2 lie in the same star, thenp1 andp2 agree in at least one
coordinate.

First, consider the case wherep1 andp2 agree in two coordinates. We simplify
the expression(i1 + l2 j1 +(l2 +1)k1) ≡ (i2 + l2 j2 +(l2 +1)k2) modM by substi-
tuting in two of the three equalities:i1 = i2, j1 = j2, andk1 = k2. Depending on
which two of the three equalities we assume to be true, we get one of three possibil-
ities: i1 ≡ i2 modM, l2 j1 ≡ l2 j2 modM, or (l2 +1)k1 ≡ (l2 +1)k2 modM. Since
1, l2, and(l2+1) are all relatively prime toM, we see thatM|(i1− i2), M|( j1− j2),
or M|(k1− k2). However, we know that|i1− i2| < 2l − 1, | j1− j2| < 2l − 1, and
|k1−k2| < 2l −1; sinceM > 2l −1, we conclude thatp1 = p2, which is a contra-
diction. Thus, ifp1 andp2 lie inside the same star and receive the same color, then
they agree in exactly one coordinate.

Now consider the case wherep1 and p2 agree in exactly one coordinate. We
must have|i1− i2| < l , | j1− j2| < l , |k1−k2| < l , and one of the following.

(i1 + l2 j1) ≡ (i2 + l2 j2) modM
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(i1 +(l2 +1)k1) ≡ (i2 +(l2+1)k2) modM

(l2 j1 +(l2 +1)k1) ≡ (l2 j2 +(l2+1)k2) modM

We rewrite these as follows.

(i1− (l +1) j1) ≡ (i2− (l +1) j2) modM

(i1− lk1) ≡ (i2− lk2) modM

(−l j1+k1) ≡ (−l j2 +k2) modM

The third equation follows by multiplying through by(l +1). Those equations then
imply (respectively) that one of the following is true.

M | (i1− i2− (l +1)( j1− j2))

M | (i1− i2− l(k1−k2))

M | (k1−k2− l( j1− j2))

In each case (making use of|i1− i2| < l , | j1− j2| < l , and|k1− k2| < l ), we see
that the quantity thatM is supposed to divide has absolute value less thanM. This
implies that each quantity must be 0 and hence that(i1, j1,k1) = (i2, j2,k2). This is
a contradiction. Hence, the coloring is valid.

Now we turn our attention to thel × l × l cube stencil. Because we want to color
Z

2×Zm, we need to give a coloring for all of thel3× l3×(l3+b) three-dimensional
cylinders (0≤ b≤ l ), rather than just thel3× l3× l3 three-dimensional torus. The
proof takes the same form as before. We assume that there are two points that
lie within a cube and receive the same color; eventually we reach a contradiction.
Define the coloring

C(i, j,k, l ,b) = ((l2i + l j ) mod l3 +k) mod(l3 +b).

Theorem 13. If 0 ≤ b ≤ l, then C(i, j,k, l ,b) is a valid coloring of the l3 × l3×
(l3 + b) three-dimensional cylinder for the l× l × l cube. C(i, j,k, l ,b) uses l3 + b
colors.

Proof. If the coloring is invalid, then there are two pointsp1 = (i1, j1,k1) and
p2 = (i2, j2,k2) that receive the same color and lie inside the samel × l × l cube.
As a result,p1 andp2 satisfy constraints (3.1) and (3.2) below:

|i1− i2| < l , | j1− j2| < l , |k1−k2| < l (1)

(((l2i1 + l j1) mod l3)+k1) ≡ ((l2i2 + l j2) mod l3+k2)(mod(l3 +b)). (2)
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Without loss of generality, assume(l2i1 + l j1) mod l3 ≥ (l2i2 + l j2) mod l3.
Let T = ((l2i1 + l j1) mod l3− (l2i2 + l j2) mod l3+(k1−k2)). ThenT is divisible
by l3 + b and−(l3 + b) < T < 2(l3 + b). In particular,T ∈ {0, l3 + b}. Let U =
l2(i1− i2)+ l( j1− j2)+(k1−k2). ThenU ∈{0,−l3, l3+b,b}. Making use of (3.1),
we see that|U | < l3. If U = 0, we immediately get(i1, j1,k1) = (i2, j2,k2). This
leaves only the caseU = b. To have a solution other than(i1, j1,k1) = (i2, j2,k2),
we need 0< b. Again using (3.1) and the fact thatb ≤ l , we see that the only
possible solutions are the following.

l2i1 + l j1 = l2i2 + l j2 k1 = k2 +b (i)
l2i1 + l j1 = l2i2 + l j2+ l k1 = k2 +(b− l) (ii)

We need to show that none of these pairs of points actually receive the same
colors. It is easy to see that no pair of points satisfying(i) receives the same color.

Consider pairs of points satisfying(ii). The key is to determine the difference
(l2i1 + l j1) mod l3− (l2i2 + l j2) mod l3. Let N = (l2i2 + l j2) mod l3. There are
two possibilities. Either there exists a positive integerd such thatl2i2 + l j2 <
dl3 ≤ l2i2 + l j2 + l , or there does not exist such and. If there does not exist such
an d, then (l2i1 + l j1) mod l3 = N + l . This leads to(N + k2) mod(l3 + b) =
(N + l +k2 +b− l) mod(l3 +b). This implies thatb≡ 0 mod(l3 +b). However,
since 0< b≤ l , this is a contradiction. Hence, there must exist such an integerd.

Consider(ii) when there exists a positive integerd such thatl2i2+ l j2 < dl3 ≤
l2i1+ l j1. Then(l2i1+ l j1) mod l3 = N+ l − l3. This leads to(N+k2) ≡ (N+ l −
l3 + k2 + b− l) mod(l3 + b). Simplifying, we getl3 ≡ b mod(l3 + b). However,
0< b≤ l , so we reach a contradiction. Hence, there are no pairs of points receiving
the same color and also satisfying constraint(ii). Thus, there is no pair of points
(i1, j1,k1),(i2, j2,k2) receiving the same color and also lying inside the samel ×
l × l cube. As a result, the coloring is valid.

Corollary 14. There exists a l3-coloring ofZ3 that is valid for the l× l × l cube.

Proof. C(i, j,k, l ,0) is valid for al × l × l cube and usesl3 colors. It is easy to see
that this coloring also works for the points ofZ

3.

Lemma 15. Define the colorings C1 = C(i, j,k, l ,b1) and C2 = C(i, j,k, l ,b2). If
0≤ b1 ≤ b2 then C1 and C2 are compatible.

Proof. Analogous to rows and columns, we define towers to be the set oflattice
points for whichi, j are fixed andk varies. UnderC1, ask increases in a tower,
we get the repeating sequence 0,1,2, . . . , l3+b1−2, l3+b1−1. UnderC2, ask in-
creases in a tower, we get the repeating sequence 0,1,2, . . . , l3+b2−2, l3+b2−1.
The key insight is that in a tower, underC2, no color is closer to the boundary
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betweenC1 andC2 than if we were to continue usingC1. Suppose we have one
point (i1, j1,k1), colored byC1, and another point(i2, j2,k2), colored byC2, which
make the colorings incompatible. Instead of changing fromC1 to C2 at the bound-
ary between them, we could continue usingC1 for all the points and find a point
(i3, j3,k3), which makesC1 incompatible with itself. SinceC1 is not incompatible
with itself,C1 andC2 must be compatible.

Theorem 16. Suppose l and m are positive integers that satisfy m≥ l3. Define q to
be the least nonnegative integer for which m can be written asa linear combination
of l3, l3 +1, . . . , l3 +q−1, l3 +q. There is an(l3 +q)-coloring ofZ2×Zm, that is
valid for the l× l × l cube.

Proof. Following the ideas of Theorem 6, we partitionZ2 ×Zm into copies of
Z

2×Zbi , wherebi can differ in different copies butl3 ≤ bi ≤ l3 +q for all copies.
We color each copy ofZ2 ×Zbi using the coloring given by Theorem 13. By
Lemma 15, these colorings are compatible, so the total coloring is valid.

Corollary 17. Let l and m be positive integers such that m≥ l3(l3−1). There is
an (l3 +1)-coloring ofZ2×Zm, that is valid for the l× l × l stencil.

Proof. This follows from Theorem 16 and Lemma 1 (settingq = 1).

6 Lower Bounds

We give lower bounds that prove that our colorings for the square and cube stencils
are either optimal or within one color of being optimal.

Theorem 18. Any valid coloring of the m× n torus for the l× l square stencil
requires l2 +1 colors unless l|m and l|n.

Proof. Consider anm× l subcylinder (the dimension of sizem is the one that wraps
around). If our coloring uses at mostl2 colors, then by the pigeon-hole principle
there is some color class of size at least⌈m×l

l2 ⌉ = ⌈m
l ⌉. However, a color class can

have size at most⌊m×l
l2 ⌋ = ⌊m

l ⌋ (since two entries in the same color class must be
at leastl rows apart). Ifl |m, these quantities are equal. Otherwise, we need at least
l2 +1 colors. An analagous argument shows that we needl |n.

Slight variations of this proof lead to the following theorems.

Theorem 19. Any valid coloring of the m×n cylinder for the l× l square stencil
requires l2 +1 colors unless l|n.
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Figure 4: The proof of Theorem 21 forl = 5.

Theorem 20. Any valid coloring ofZ2×Zm for the l× l × l cube requires l3 + 1
colors unless l|m.

Now we give a bound on the number of colors needed for star stencils.

Theorem 21. If m > l and n> l, then we need at least l2 + 1 colors to color an
m×n rectangle such that no two points with the same color lie in a(4l −3)-point
star.

Proof. It is easy to see that no vertices in al × l square can receive the same color.
We begin by coloring these all differently. For ease of reference, we will refer to
the vertices as entries of am×n matrix, whereai j denotes the vertex in theith row
and jth column.

The only colors available to color entries of columnl + 1 are those used in
column 1. To color entriesa1,l+1,a2,l+1, . . . ,al ,l+1, we must use each color in the
set{1+ kl : 0≤ k < l} exactly once. Since(1,1) = 1, we see that(1, l + 1) 6= 1.
So there existsi with 2 ≤ i ≤ l and (i, l + 1) = 1 (one of the entries denoted by
+ in the diagram). The only colors available to color rowl + 1 are those used in
row 1. To color(l +1,2),(l +1,3), . . . ,(l +1, l) (those entries denoted by * in the
diagram), we must use every color in the set{2,3, . . . , l} exactly once. However,
this leaves no color for(l + 1,1). Color 1 cannot be used because(1,1) = 1 and
all other colors are already assigned to some(i, j) with 2≤ i ≤ l +1 and 1≤ j ≤ l .
Thus, we need an additional color for(l + 1,1), so at least(l + 1)2 + 1 colors are
required.

Theorem 22. The coloring given for the(6l −5)-point star is asymptotically the
best possible.

Proof. Every (axis-aligned) cross-section of the coloring for the(6l −5)-point star
must be a valid coloring for the(4l −3)-point star. Thus, we have a lower bound
of l2 +1 colors. We usel(l +1)+1 colors. The ratio of upper and lower bound is
(1+ 1

l−1), which approaches 1 asl gets large.
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7 Conclusion

We have given colorings for the (4l − 3)-point star and thel × l square stencils
(for all l ) in the plane, on the cylinder, and on the torus. On the torus,we have
proved that the colorings for the(4l −3)-point star are within at most 2 colors of
optimality. On the cylinder, they are within at most 1 color of optimality. In the
plane all star colorings are optimal. On the torus and the cylinder, our colorings
for the square stencils are within at most 1 color of optimality. The colorings for
square stencils in the plane are optimal.

We have given colorings for thel × l × l cube stencils forZ3 andZ
2×Zm. Both

are optimal. We have also given colorings ofZ
3 for the (6l −5)-point star, which

are asymptotically the best possible.
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