Chapter 5: Logistic Regression-I

Dipankar Bandyopadhyay

Department of Biostatistics,
Virginia Commonwealth University

BIOS 625: Categorical Data & GLM

[Acknowledgements to Tim Hanson and Haitao Chu]
5.1.1 Model Interpretation

The logistic regression model is

\[Y_i \sim \text{bin}(n_i, \pi_i), \quad \pi_i = \frac{\exp(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_{p-1} x_{i,p-1})}{1 + \exp(\beta_0 + \beta_1 x_{i1} + \cdots + \beta_{p-1} x_{i,p-1})}. \]

- \(x_i = (1, x_{i1}, \ldots, x_{i,p-1}) \) is a \(p \)-dimensional vector of explanatory variables including a place holder for the intercept.
- \(\beta = (\beta_0, \ldots, \beta_{p-1}) \) is the \(p \)-dimensional vector of regression coefficients. These are the unknown population parameters.
- \(\eta_i = x_i'\beta \) is called the linear predictor.
- Many, many uses including credit scoring, genetics, disease monitoring, etc, etc...
- Many generalizations: ordinal data, complex random effects models, discrete choice models, etc.
Let's start with simple logistic regression:

\[Y_i \sim \text{bin} \left(n_i, \frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}} \right). \]

An odds ratio: let's look at how the odds of success changes when we increase \(x \) by one unit:

\[
\frac{\pi(x + 1)}{\pi(x)} = \frac{\pi(x + 1)/[1 - \pi(x + 1)]}{\pi(x)/[1 - \pi(x)]} = \frac{\frac{e^{\alpha + \beta x + \beta}}{1 + e^{\alpha + \beta x + \beta}}}{\frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}} = \frac{1}{1 + e^{\alpha + \beta}} \frac{1 + e^{\alpha + \beta}}{1 + e^{\alpha + \beta}} = e^{\beta}.
\]

When we increase \(x \) by one unit, the odds of an event occurring increases by a factor of \(e^{\beta} \), regardless of the value of \(x \).
So e^β is an odds ratio. We also have

$$\frac{\partial \pi(x)}{\partial x} = \beta \pi(x)[1 - \pi(x)].$$

Note that $\pi(x)$ changes more when $\pi(x)$ is away from zero or one than when $\pi(x)$ is near 0.5.

This gives us *approximately* how $\pi(x)$ changes when x increases by a unit. This increase depends on x, unlike the odds ratio.
5.1.3 Horseshoe Crab Data

Let’s look at $Y_i = 1$ if a female crab has one or more satellites, and $Y_i = 0$ if not. So

$$
\pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}},
$$

is the probability of a female having more than her nest-mate around as a function of her width x.
We estimate the probability of a satellite as

\[\hat{\pi}(x) = \frac{e^{-12.35 + 0.50x}}{1 + e^{-12.35 + 0.50x}}. \]

The odds of having a satellite increases by a factor between 1.3 and 2.0 times for every cm increase in carapace width.

The coefficient table houses estimates \(\hat{\beta}_j \), se(\(\hat{\beta}_j \)), and the Wald statistic \(z_j^2 = \left(\frac{\hat{\beta}_j}{\text{se}(\hat{\beta}_j)} \right)^2 \) and \(p \)-value for testing \(H_0 : \beta_j = 0 \).

What do we conclude here?
5.1.2 Looking at data

- With a single predictor x, can plot $p_i = y_i/n_i$ versus x_i. This approach works well when $n_i \neq 1$. The plot should look like a “lazy s.”

- Alternatively, the sample logits $\log p_i/(1 - p_i) = \log y_i/(n_i - y_i)$ versus x_i should be approximately straight.

- If some categories have all successes or failures, an ad hoc adjustment is $\log\{(y_i + 0.5)/(n_i - y_i + 0.5)\}$.

- When many n_i are small, you can group the data yourself into, say, 10-20 like categories and plot them.

For the horseshoe crab data let’s use the categories defined in Chapter 4. A new variable w is created that is the midpoint of the width categories:
data crab1; input color spine width satell weight;
 weight=weight/1000; color=color-1;
y=0; n=1; if satell >0 then y=1; w=22.75;
 if width>23.25 then w=23.75;
 if width>24.25 then w=24.75;
 if width>25.25 then w=25.75;
 if width>26.25 then w=26.75;
 if width>27.25 then w=27.75;
 if width>28.25 then w=28.75;
 if width>29.25 then w=29.75;
run;
proc sort data=crab1; by w;
proc means data=crab1 noprint; by w; var y n;
 output out=crabs2 sum=sumy sumn;
data crabs3; set crabs2; p=sumy/sumn;
 logit =log((sumy+0.5)/(sumn−sumy+0.5));
proc gplot; plot p*w; plot logit *w; run;
Figure: Sample P & logit(P) versus width; Is it "lazy s" or "straight?"
5.1.4 Retrospective sampling & logistic regression

- In case-control studies the number of cases and the number of controls are set ahead of time. It is not possible to estimate the probability of being a case from the general population for these types of data, but just as with a 2×2 table, we can still estimate an odds ratio e^β.

- Let Z indicate whether a subject is sampled (1=yes, 0=no). Let $P_1 = P(Z = 1|y = 1)$ be the probability that a case is sampled and let $P_0 = P(Z = 1|y = 0)$ be the probability that a control is sampled.

- In a simple random sample, $P_1 = P(Y = 1)$ and $P_0 = P(Y = 0) = 1 - P_1$.

- Assume the logistic regression model

$$
\pi(x) = P(Y = 1|x) = \frac{e^{\alpha+\beta x}}{1 + e^{\alpha+\beta x}}.
$$
Assume that the probability of choosing a case is independent of x, $P(Z = 1|y = 1, x) = P(Z = 1|y = 1)$ and the same for a control $P(Z = 1|y = 0, x) = P(Z = 1|y = 0)$. This is the case, for instance, when a fixed number of cases and controls are sampled retrospectively, regardless of their x values.

Bayes’ rule gives us

$$P(Y = 1|z = 1, x) = \frac{P_1 \pi(x)}{P_1 \pi(x) + P_0 (1 - \pi(x))} = \frac{e^{\alpha^* + \beta x}}{1 + e^{\alpha^* + \beta x}},$$

where $\alpha^* = \alpha + \log(\frac{P_1}{P_0})$.

The parameter β has the same interpretation in terms of odds ratios as with simple random sampling.
Comments:

- This is very powerful & another reason why logistic regression is widely used.
- Other links (e.g. identity, probit) do not have this property.
- *Matched* case/controls studies require more thought; Chapter 11.2.5.
Chapter 5

5.2 Inferences for Logistic Regression

5.2.1 Inference about Model Parameters and Probabilities

Consider the full model

$$\text{logit}\{\pi(x)\} = \beta_0 + \beta_1 x_1 + \cdots + \beta_{p-1} x_{p-1} = x'\beta.$$

Most types of inferences are functions of \(\beta\), say \(g(\beta)\). Some examples:

- \(g(\beta) = \beta_j\), \(j^{th}\) regression coefficient.
- \(g(\beta) = e^{\beta_j}\), \(j^{th}\) odds ratio.
- \(g(\beta) = e^{x'\beta}/(1 + e^{x'\beta})\), probability \(\pi(x)\).

If \(\hat{\beta}\) is the MLE of \(\beta\), then \(g(\hat{\beta})\) is the MLE of \(g(\beta)\). This provides an estimate. The *delta method* is an all-purpose method for obtaining a standard error for \(g(\hat{\beta})\).
We know

\[\hat{\beta} \sim N_p(\beta, \text{cov}(\hat{\beta})) . \]

Let \(g(\beta) \) be a function from \(\mathbb{R}^p \) to \(\mathbb{R} \). Taylor’s theorem implies, as long as the MLE \(\hat{\beta} \) is somewhat close to the true value \(\beta \), that

\[g(\beta) \approx g(\hat{\beta}) + [Dg(\hat{\beta})](\beta - \hat{\beta}) , \]

where \([Dg(\beta)]\) is the vector of first partial derivatives

\[Dg(\beta) = \begin{bmatrix}
\frac{\partial g(\beta)}{\partial \beta_1} \\
\frac{\partial g(\beta)}{\partial \beta_2} \\
\vdots \\
\frac{\partial g(\beta)}{\partial \beta_p}
\end{bmatrix} . \]
Then

\[(\hat{\beta} - \beta) \sim N_p(0, \hat{\text{cov}}(\hat{\beta})) , \]

implies

\[[Dg(\beta)]'(\hat{\beta} - \beta) \sim N(0, [Dg(\beta)]'\hat{\text{cov}}(\hat{\beta})[Dg(\beta)]) , \]

and finally

\[g(\hat{\beta}) \sim N(g(\beta), [Dg(\hat{\beta})]'\hat{\text{cov}}(\hat{\beta})[Dg(\hat{\beta})]) . \]

So

\[\text{se}\{g(\hat{\beta})\} = \sqrt{[Dg(\hat{\beta})]'\hat{\text{cov}}(\hat{\beta})[Dg(\hat{\beta})]} . \]

This can be used to get confidence intervals for probabilities, etc.
proc logistic data=crabs1 descending;
 model y = width; output out=crabs2 pred=p lower=l upper=u;
proc sort data=crabs2; by width;
proc gplot data=crabs2;
 title "Estimated probabilities with pointwise 95% CI's";
 symbol1 i=join color=black; symbol2 i=join color=red line=3;
 symbol3 i=join color=black; axis1 label =('');
 plot (l p u)*width / overlay vaxis=axis1;
run;
Figure: Fitted probability of satellite as a function of width & 95% CIs.
5.2.3 & 5.2.4 Goodness of fit

The deviance GOF statistic is defined to be

\[D = 2 \sum_{i=1}^{s} \left\{ y_i \log \left(\frac{y_i}{n_i \hat{\pi}_i} \right) + (n_i - y_i) \log \left(\frac{n_i - y_i}{n_i - n_i \hat{\pi}_i} \right) \right\}, \]

where \(\hat{\pi}_i = \frac{e^{x_i' \beta}}{1 + e^{x_i' \beta}} \) are fitted values.

Pearson’s GOF statistic is

\[X^2 = \sum_{i=1}^{s} \frac{(y_i - n_i \hat{\pi}_i)^2}{n_i \hat{\pi}_i (1 - \hat{\pi}_i)}. \]

Both statistics are approximately \(\chi^2_{s-p} \) in large samples assuming that the number of trials \(n = \sum_{i=1}^{s} n_i \) increases in such a way that each \(n_i \) increases.
5.2.5 Group your data

Binomial data is often recorded as individual (Bernoulli) records:

<table>
<thead>
<tr>
<th>i</th>
<th>y_i</th>
<th>n_i</th>
<th>x_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

Grouping the data yields an identical model:

<table>
<thead>
<tr>
<th>i</th>
<th>y_i</th>
<th>n_i</th>
<th>x_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>
\[\hat{\beta}, \text{se}(\hat{\beta}_j), \text{ and } L(\hat{\beta}) \text{ don’t care if data are grouped.} \]

The quality of residuals and GOF statistics depend on how data are grouped. \(D \) and Pearson’s \(X^2 \) will change!

In PROC LOGISTIC type AGGREGATE and SCALE=NONE after the MODEL statement to get \(D \) and \(X^2 \) based on grouped data. This option does not compute residuals based on the grouped data. You can aggregate over all variables or a subset, e.g. AGGREGATE=(width).
The Hosmer and Lemeshow test statistic orders observations \((x_i, Y_i)\) by fitted probabilities \(\hat{\pi}(x_i)\) from smallest to largest and divides them into (typically) \(g = 10\) groups of roughly the same size. A Pearson test statistic is computed from these \(g\) groups.

The statistic would have a \(\chi^2_{g-p}\) distribution if each group had exactly the same predictor \(x\) for all observations (but the observations in a group do not have the same predictor \(x\) and they do not share a common success probability). In general, the null distribution is approximately \(\chi^2_{g-2}\) when the number of distinct patterns of covariate values equals the sample size (see text). Termed a “near-replicate GOF test” (Hosmer and Lemeshow 1980). The LACKFIT option in PROC LOGISTIC gives this statistic.

Can also test logit\[\{\pi(x)\} = \beta_0 + \beta_1 x\] versus more general model

\[
\text{logit}\{\pi(x)\} = \beta_0 + \beta_1 x + \beta_2 x^2 \text{ via } H_0 : \beta_2 = 0.
\]
Raw (Bernoulli) data with aggregate scale=none lackfit;

Deviance and Pearson Goodness-of-Fit Statistics

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Value</th>
<th>DF</th>
<th>Value/DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviance</td>
<td>69.7260</td>
<td>64</td>
<td>1.0895</td>
<td>0.2911</td>
</tr>
<tr>
<td>Pearson</td>
<td>55.1779</td>
<td>64</td>
<td>0.8622</td>
<td>0.7761</td>
</tr>
</tbody>
</table>

Number of unique profiles: 66

Partition for the Hosmer and Lemeshow Test

<table>
<thead>
<tr>
<th>Group</th>
<th>Total</th>
<th>Observed</th>
<th>Expected</th>
<th>y = 1</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>5</td>
<td>5.39</td>
<td>14</td>
<td>13.61</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>8</td>
<td>7.62</td>
<td>10</td>
<td>10.38</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>11</td>
<td>8.62</td>
<td>6</td>
<td>8.38</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>8</td>
<td>9.92</td>
<td>9</td>
<td>7.08</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>11</td>
<td>10.10</td>
<td>5</td>
<td>5.90</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>11</td>
<td>12.30</td>
<td>7</td>
<td>5.70</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>12</td>
<td>12.06</td>
<td>4</td>
<td>3.94</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>12</td>
<td>12.90</td>
<td>4</td>
<td>3.10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>16</td>
<td>13</td>
<td>13.69</td>
<td>3</td>
<td>2.31</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>20</td>
<td>18.41</td>
<td>0</td>
<td>1.59</td>
<td></td>
</tr>
</tbody>
</table>

Hosmer and Lemeshow Goodness-of-Fit Test

<table>
<thead>
<tr>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2465</td>
<td>8</td>
<td>0.7309</td>
</tr>
</tbody>
</table>
Comments:

- There are 66 distinct widths \(\{x_i\} \) out of \(N = 173 \) crabs. For \(\chi^2_{66-2} \) to hold, we must keep sampling crabs that only have one of the 66 fixed number of widths! Does that make sense here?
- The Hosmer and Lemeshow test gives a \(p \)-value of 0.73 based on \(g = 10 \) groups. Are assumptions going into this \(p \)-value met?
- None of the GOF tests have assumptions that are met in practice for continuous predictors. Are they still useful?
- The raw statistics do not tell you where lack of fit occurs. Deviance and Pearson residuals do tell you this (later). Also, the table provided by the H-L tells you which groups are ill-fit should you reject \(H_0 : \) logistic model holds.
- GOF tests are meant to detect gross deviations from model assumptions. No model ever truly fits data except hypothetically.
5.3.1 Categorical predictors

Let’s say we wish to include variable X, a categorical variable that takes on values $x \in \{1, 2, \ldots, I\}$. We need to allow each level of $X = x$ to affect $\pi(x)$ differently. This is accomplished by the use of dummy variables. This is typically done one of two ways.

Define $z_1, z_2, \ldots, z_{I-1}$ as follows:

$$ z_j = \begin{cases}
1 & X = j \\
-1 & X \neq j
\end{cases} $$

This is the default in PROC LOGISTIC with a CLASS X statement. Say $I = 3$, then the model is

$$ \logit \pi(x) = \beta_0 + \beta_1 z_1 + \beta_2 z_2. $$

which gives

$$ \begin{align*}
\logit \pi(x) &= \beta_0 + \beta_1 - \beta_2 & \text{when } X = 1 \\
\logit \pi(x) &= \beta_0 - \beta_1 + \beta_2 & \text{when } X = 2 \\
\logit \pi(x) &= \beta_0 - \beta_1 - \beta_2 & \text{when } X = 3
\end{align*} $$
At alternative method uses “zero/one” dummies instead:

\[z_j = \begin{cases}
1 & X = j \\
0 & X \neq j
\end{cases} \]

This is the default if PROC GENMOD with a CLASS X statement. This can also be obtained in PROC LOGISTIC with the PARAM=REF option. This sets class \(X = l \) as baseline. Say \(l = 3 \), then the model is

\[
\logit \pi(x) = \beta_0 + \beta_1 z_1 + \beta_2 z_2.
\]

which gives

\[
\begin{align*}
\logit \pi(x) &= \beta_0 + \beta_1 & \text{when} & \quad X = 1 \\
\logit \pi(x) &= \beta_0 + \beta_2 & \text{when} & \quad X = 2 \\
\logit \pi(x) &= \beta_0 & \text{when} & \quad X = 3
\end{align*}
\]
I prefer the latter method because it’s easier to think about for me. You can choose a different baseline category with REF=FIRST next to the variable name in the CLASS statement. Table 3.7 (p. 89):

<table>
<thead>
<tr>
<th>Malformation</th>
<th>Drinks per day</th>
<th>0</th>
<th>< 1</th>
<th>1 – 2</th>
<th>3 – 5</th>
<th>≥ 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td>17,066</td>
<td>14,464</td>
<td>788</td>
<td>126</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>48</td>
<td>38</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

data mal;
input cons present absent score @@;
total = present + absent;
datalines;
1 48 17066 0 2 38 14464 0.5 3 5 788 1.5 4 1 126 4.0 5 1 37 7.0;
run;
proc logistic data=mal;
 class cons / param=ref ref=last;
 model present/total = cons;
run;
5.3 Categorical Predictors

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>6.2020</td>
<td>4</td>
<td>0.1846</td>
</tr>
<tr>
<td>Score</td>
<td>12.0821</td>
<td>4</td>
<td>0.0168</td>
</tr>
<tr>
<td>Wald</td>
<td>9.2811</td>
<td>4</td>
<td>0.0544</td>
</tr>
</tbody>
</table>

Type 3 Analysis of Effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>DF</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons</td>
<td>4</td>
<td>9.2811</td>
<td>0.0544</td>
</tr>
</tbody>
</table>

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-3.6109</td>
<td>1.0134</td>
<td>12.6956</td>
<td>0.0004</td>
</tr>
<tr>
<td>cons</td>
<td>1</td>
<td>-2.2627</td>
<td>1.0237</td>
<td>4.8858</td>
<td>0.0271</td>
</tr>
<tr>
<td>cons</td>
<td>2</td>
<td>-2.3309</td>
<td>1.0264</td>
<td>5.1577</td>
<td>0.0231</td>
</tr>
<tr>
<td>cons</td>
<td>3</td>
<td>-1.4491</td>
<td>1.1083</td>
<td>1.7097</td>
<td>0.1910</td>
</tr>
<tr>
<td>cons</td>
<td>4</td>
<td>-1.2251</td>
<td>1.4264</td>
<td>0.7377</td>
<td>0.3904</td>
</tr>
</tbody>
</table>

Odds Ratio Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Estimate</th>
<th>95% Wald Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons 1 vs 5</td>
<td>0.104</td>
<td>0.014 0.774</td>
</tr>
<tr>
<td>cons 2 vs 5</td>
<td>0.097</td>
<td>0.013 0.727</td>
</tr>
<tr>
<td>cons 3 vs 5</td>
<td>0.235</td>
<td>0.027 2.061</td>
</tr>
<tr>
<td>cons 4 vs 5</td>
<td>0.294</td>
<td>0.018 4.810</td>
</tr>
</tbody>
</table>
The model is

\[\text{logit } \pi(X) = \beta_0 + \beta_1 I\{X = 1\} + \beta_2 I\{X = 2\} + \beta_3 I\{X = 3\} + \beta_4 I\{X = 4\} \]

where \(X \) denotes alcohol consumption \(X = 1, 2, 3, 4, 5 \).

- Type 3 analyses test whether all dummy variables associated with a categorical predictor are simultaneously zero, here \(H_0 : \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0 \). If we accept this then the categorical predictor is not needed in the model.

- PROC LOGISTIC gives estimates and CIs for \(e^{\beta_j} \) for \(j = 1, 2, 3, 4 \). Here, these are interpreted as the odds of developing malformation when \(X = 1, 2, 3, \) or 4 versus the odds when \(X = 5 \).

- We are not as interested in the individual Wald tests \(H_0 : \beta_j = 0 \) for a categorical predictor. Why is that? Because they only compare a level \(X = 1, 2, 3, 4 \) to baseline \(X = 5 \), not to each other.
The Testing Global Null Hypothesis: BETA=0 are three tests that no predictor is needed; \(H_0 : \text{logit}\{\pi(x)\} = \beta_0 \) versus \(H_1 : \text{logit}\{\pi(x)\} = x'\beta \).

Anything wrong here? 1) p-values = 0.18, 0.02, 0.05 from LR, Score and Wald tests respectively; 2) the p-values using the exact conditional distribution of \(X^2 \) and \(G^2 \) are 0.03 and 0.13, providing mixed signals. The table 3.7 has a mixture of very small, moderate, and extremely large counts, even though \(n=32,574 \), the null distributions of \(X^2 \) and \(G^2 \) may not be close to chi-squared. In any case, these statistics ignore the ordinality of alcohol consumption.
Note that the Wald test for $H_0 : \beta = 0$ is the same as the Type III test that consumption is not important. Why is that?

Let $Y = 1$ denote malformation for a randomly sampled individual. To get an odds ratio for malformation from increasing from, say, $X = 2$ to $X = 4$, note that

$$\frac{P(Y = 1|X = 2)/P(Y = 0|X = 2)}{P(Y = 1|X = 4)/P(Y = 0|X = 4)} = e^{\beta_2 - \beta_4}.$$

This is estimated with the CONTRAST command.