Chapter 4: Generalized Linear Models-I

Dipankar Bandyopadhyay

Department of Biostatistics,
Virginia Commonwealth University

BIOS 625: Categorical Data & GLM

[Acknowledgements to Tim Hanson and Haitao Chu]
The Blind Men and The Elephant

A group of blind men gathered around an elephant, trying to find out what elephant look like.

- The 1^{st} one touched the tusk, and said: ‘It is just like a spear.’
- The 2^{nd} one touched the ear, and said: ‘It is just like a big fan.’
- The 3^{rd} one touched the knee, and said: ‘It is just like a tree.’
- The 4^{th} one touched the body, and said: ‘It is just like a wall.’
- The 5^{th} one touched the trunk, and said: ‘It is just like a snake.’
- The last one touched the tail, and said: ‘It is just like a rope.’
Generalized linear models (GLMs) form a very large class that include many highly used models as special cases: ANOVA, ANCOVA, regression, logistic regression, Poisson regression, log-linear models, etc.

By developing the GLM in the abstract, we can consider many components that are similar across models (fitting techniques, deviance, residuals, etc).

Each GLM is completely specified by three components:

(a) the distribution of the outcome Y_i,
(b) the linear predictor η_i, and
(c) the link function $g(\cdot)$.
4.1.1 Model components

Random component is response Y with independent realizations $Y = (Y_1, \ldots, Y_N)$ from a distribution in a (one parameter) exponential family:

$$f(y_i|\theta_i) = a(\theta_i)b(y_i)\exp[y_iQ(\theta_i)].$$

- Members include chi-square, binomial, Poisson, and geometric distributions.
- $Q(\theta_i)$ is called the natural parameter.
- θ_i may depend on explanatory variables $x_i = (x_{i1}, \ldots, x_{ip})$.

Two parameter exponential families include gamma, Weibull, normal, beta, and negative binomial distributions.
The systematic components are $\eta = (\eta_1, \ldots, \eta_N)$ where
$$\eta_i = \sum_{j=1}^{p} \beta_j x_{ij} = \beta' x_i.$$
- Called the *linear predictor*.
- Relates x_i to θ_i via link function.
- Most models have an intercept and so often $x_{i1} = 1$ and there are $p - 1$ actual predictors.

The *link function* $g(\cdot)$ connects the random Y_i and systemic η_i components. Let $\mu_i = E(Y_i)$. Then $\eta_i = x_i' \beta = g(\mu_i)$.
- $g(\cdot)$ is monotone and smooth.
- $g(m) = m$ is “identity link.”
- The $g(\cdot)$ such that $g(\mu_i) = Q(\theta_i)$ is called the *canonical link*.
The model is

\[E(Y_i) = g^{-1}(x_{i1}\beta_1 + x_{i2}\beta_2 + \cdots + x_{ip}\beta_p), \]

for \(i = 1, \ldots, N \), where \(Y_i \) is distributed according to a 1-parameter exponential family (for now).

\(g^{-1}(\cdot) \) is called the *inverse link function*. Common choices are

1. \(g(x) = x \) so \(g^{-1}(x) = x \) (identity link)
2. \(g(x) = \log x \) so \(g^{-1}(x) = e^x \) (log-link)
3. \(g(x) = \log\{x/(1-x)\} \) so \(g^{-1}(x) = e^x/(1 + e^x) \) (logit link)
4. \(g(x) = F^{-1}(x) \) so \(g^{-1}(x) = F(x) \) where \(F(\cdot) \) is a CDF (inverse-CDF link)
4.1.2 Bernoulli response

- Let $Y \sim \text{Bern}(\pi) = \text{bin}(1, \pi)$. Then

$$p(y) = \pi^y (1 - \pi)^{1-y} = (1 - \pi) \exp\{y \log(\pi/(1 - \pi))\}.$$

- So $a(\pi) = 1 - \pi$, $b(y) = 1$, $Q(\pi) = \log \left(\frac{\pi}{1-\pi} \right)$.

- So $g(\pi) = \log \left(\frac{\pi}{1-\pi} \right)$ is the canonical link.

- $g(\pi)$ is the log-odds of $Y_i = 1$, also called the logit of π:

$$\text{logit}(\pi) = \log \left(\frac{\pi}{1-\pi} \right).$$

- Using the canonical link we have the GLM relating Y_i to $x_i = (1, x_{i1}, \ldots, x_{i,p-1})$:

$$Y_i \sim \text{Bern}(\pi_i), \quad \log \left(\frac{\pi_i}{1-\pi_i} \right) = \beta_0 + x_{i1}\beta_1 + \cdots + x_{i,p-1}\beta_{p-1} = x_i'\beta,$$

the logistic regression model.
Let $Y_i \sim \text{Pois}(\mu_i)$. Then

$$p(y) = e^{-\mu} \mu^y / y! = e^{-\mu} (1/y!) e^y \log \mu.$$

So $a(\mu) = e^{-\mu}$, $b(y) = 1/y!$, $Q(\mu) = \log \mu$.

So $g(\mu) = \log \mu$ is the canonical link.

Using the canonical link we have the GLM relating Y_i to x_i:

$$Y_i \sim \text{Pois}(\mu_i), \quad \log \mu_i = \beta_0 + x_{i1}\beta_1 + \cdots + x_{i,p-1}\beta_{p-1},$$

the **Poisson regression** model.
4.1.5 Deviance

- For a GLM, let $\mu_i = E(Y_i)$ for $i = 1, \ldots, N$. The GLM places structure on the means $\mu = (\mu_1, \ldots, \mu_N)$; instead of N parameters in μ we really only have p: β_1, \ldots, β_p determines μ and data reduction is obtained. So really, $\mu = \mu(\beta)$ in a GLM through $\mu_i = g^{-1}(x_i\beta)$.

- Here’s the log likelihood in terms of (μ_1, \ldots, μ_N):

$$L(\mu; y) = \sum_{i=1}^{N} \log p(y_i; \mu_i).$$

- If we forget about the model (with parameter β) and just “fit” $\hat{\mu}_i = y_i$, the observed data, we obtain the largest the likelihood can be when the μ have no structure at all; we get $L(\hat{\mu}; y) = L(y; y)$. This is the largest the log-likelihood can be, when μ is unstructured and estimated by plugging in y.
This terrible “model,” called the *saturated* model, is not useful for succinctly explaining data or prediction, but rather serves as a reference point for real models with \(\mu_i = g^{-1}(\beta'x_i) \).

We can compare the fit of a real GLM to the saturated model, or to other GLMs with additional or fewer predictors, through the *drop in deviance*.

Let \(L(\mu(\hat{\beta}); y) \) be the log likelihood evaluated at the MLE of \(\beta \). The *deviance* of the model is \(D = -2[L(\mu(\hat{\beta}); y) - L(y; y)] \).

Here we are plugging in \(\hat{\mu}_i = g^{-1}(\hat{\beta}'x_i) \) for the first part and \(\hat{\mu}_i = y_i \) for the second.
Using D for goodness-of-fit

- If the sample size N is fixed, but the data are recorded in such a way that each y_i gets more observations (this can happen with Poisson and binomial data), then $D \sim \chi^2_{N-p}$ tests $H_0: \mu_i = g^{-1}(\beta'x_i)$ versus $H_1: \mu_i$ arbitrary. GOF statistic.

- For example, let Y_i is the number of diabetics y_i out of n_i at three different BMI levels. A more realistic scenario is that as more data are collected, N increases. In this case, a rule-of-thumb is to look at $D/(N-p)$; $D/(N-p) > 2$ indicates some lack-of-fit.

- Then, we can try modeling the mean more flexibly. If this does not help, then including random effects or the use of quasi-likelihood (a variance fix) can help.

- Alternatively, one can resort to a different sampling model, i.e., negative binomial instead of Poisson.
4.2 Binary response regression

- Let $Y_i \sim \text{Bern}(\pi_i)$. Y_i might indicate the presence/absence of a disease, whether someone has obtained their drivers license or not, etc.

- Through a GLM we wish to relate the probability of “success” to explanatory covariates $x_i = (x_{i1}, \ldots, x_{ip})$ through $\pi_i = \pi(x_i) = g^{-1}(x_i' \beta)$.

- So then,

$$Y_i \sim \text{Bern}(\pi(x_i)),$$

and $E(Y_i) = \pi(x_i)$ and $\text{var}(Y_i) = \pi(x_i)[1 - \pi(x_i)]$.

4.2.1 Simplest link, $g(x) = x$

When $g(x) = x$, the identity link, we have $\pi(x_i) = \beta'x_i$. When $x_i = x_i$ is one-dimensional, this reduces to

$$Y_i \sim \text{Bern} (\alpha + \beta x_i).$$

- When x_i large or small, $\pi(x_i)$ can be less than zero or greater than one.
- Appropriate for a restricted range of x_i values.
- Can of course be extended to $\pi(x_i) = \beta'x_i$ where $x_i = (1, x_{i1}, \ldots, x_{ip})$.
- Can be fit in SAS proc genmod.
Example

Association between snoring (as measured by a snoring score) and heart disease. Let s be someone’s snoring score, $s \in \{0, 2, 4, 5\}$ (see text, p. 118).

<table>
<thead>
<tr>
<th>Snoring</th>
<th>Heart disease</th>
<th>Proportion</th>
<th>Linear fit</th>
<th>Logit fit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s yes no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>0 24 1355</td>
<td>0.017</td>
<td>0.017</td>
<td>0.021</td>
</tr>
<tr>
<td>Occasionally</td>
<td>2 35 603</td>
<td>0.055</td>
<td>0.057</td>
<td>0.044</td>
</tr>
<tr>
<td>Nearly every night</td>
<td>4 21 192</td>
<td>0.099</td>
<td>0.096</td>
<td>0.093</td>
</tr>
<tr>
<td>Every night</td>
<td>5 30 224</td>
<td>0.118</td>
<td>0.116</td>
<td>0.132</td>
</tr>
</tbody>
</table>
This is fit in proc genmod:

data glm;
 input snoring disease total @@;
 datalines ;
 0 24 1379 2 35 638 4 21 213 5 30 254;
 proc genmod;
 model disease/total = snoring / dist=bin link=identity;
run;
The GENMOD Procedure

Model Information
Number of Observations Read 4
Number of Observations Used 4
Number of Events 110
Number of Trials 2484

Response Profile
Ordered Binary Total
Value Outcome Frequency
1 Event 110
2 Nonevent 2374

Criteria For Assessing Goodness Of Fit

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DF</th>
<th>Value</th>
<th>Value /DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviance</td>
<td>2</td>
<td>0.0692</td>
<td>0.0346</td>
</tr>
<tr>
<td>Scaled Deviance</td>
<td>2</td>
<td>0.0692</td>
<td>0.0346</td>
</tr>
<tr>
<td>Pearson Chi–Square</td>
<td>2</td>
<td>0.0688</td>
<td>0.0344</td>
</tr>
<tr>
<td>Scaled Pearson X2</td>
<td>2</td>
<td>0.0688</td>
<td>0.0344</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td></td>
<td>−417.4960</td>
<td></td>
</tr>
<tr>
<td>Full Log Likelihood</td>
<td></td>
<td>−10.1609</td>
<td></td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
<td></td>
<td>24.3217</td>
<td></td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
<td></td>
<td>36.3217</td>
<td></td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
<td></td>
<td>23.0943</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald 95% Confidence Limits</th>
<th>Wald Chi–Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>.0172466</td>
<td>.0034369</td>
<td>.0105104 - .0239829</td>
<td>25.18</td>
<td><.0001</td>
</tr>
<tr>
<td>snoring</td>
<td>1</td>
<td>.0197778</td>
<td>.0027978</td>
<td>.0142942 - .0252615</td>
<td>49.97</td>
<td><.0001</td>
</tr>
<tr>
<td>Scale</td>
<td>0</td>
<td>1.000000</td>
<td>.0000000</td>
<td>1.000000 - 1.000000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The scale parameter was held fixed.
Interpretation?

- The fitted model is
 \[\hat{\pi}(s) = 0.0172 + 0.0198s. \]

- For every unit increase in snoring score \(s \), the probability of heart disease increases by about 2%.

- The \(p \)-values test \(H_0 : \alpha = 0 \) and \(H_0 : \beta = 0 \). The latter is more interesting and we reject at the \(\alpha = 0.001 \) level. The probability of heart disease is strongly, \textit{linearly} related to the snoring score.

- What do you think that SCALE term is in the output? Note: \(P(\chi^2_2 > 0.0692) \approx 0.966 \).
4.2.3 Logistic regression

- Often a fixed change in x has less impact when $\pi(x)$ is near zero or one.

Example: Let $\pi(x)$ be probability of getting an A in a statistics class and x is the number of hours a week you work on homework. When $x = 0$, increasing x by 1 will change your (very small) probability of an A very little. When $x = 4$, adding an hour will change your probability quite a bit. When $x = 20$, that additional hour probably won’t improve your chances of getting an A much. You were at essentially $\pi(x) \approx 1$ at $x = 10$. Of course, this is a mean model. Individuals will vary.
The most widely used nonlinear function to model probabilities is the canonical, logit link:

\[\text{logit}(\pi_i) = \alpha + \beta x_i. \]

Solving for \(\pi_i \) and then dropping the subscripts we get the probability of success (\(Y = 1 \)) as a function of \(x \):

\[\pi(x) = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)}. \]

When \(\beta > 0 \) the function increases from 0 to 1; when \(\beta < 0 \) it decreases. When \(\beta = 0 \) the function is constant for all values of \(x \) and \(Y \) is unrelated to \(x \).

The logistic (or anti-logit) function is \(\text{logit}^{-1}(x) = e^x/(1 + e^x) \).

To fit the snoring data to the logistic regression model we use the same SAS code as before (\texttt{proc genmod}) except specify LINK=LOGIT and obtain \(\hat{\alpha} = -3.87 \) and \(\hat{\beta} = 0.40 \) as maximum likelihood estimates.
Figure: Logistic curves \(\pi(x) = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}} \) with \((\alpha, \beta) = (0, 1), (0, 0.4), (-2, 0.4), (-3, -1)\). What about \((\alpha, \beta) = (\log 2, 0)\)?
4.2 GLMs for Binary Response Data

Criteria for Assessing Goodness of Fit

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DF</th>
<th>Value</th>
<th>Value/DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviance</td>
<td>2</td>
<td>2.8089</td>
<td>1.4045</td>
</tr>
<tr>
<td>Scaled Deviance</td>
<td>2</td>
<td>2.8089</td>
<td>1.4045</td>
</tr>
<tr>
<td>Pearson Chi–Square</td>
<td>2</td>
<td>2.8743</td>
<td>1.4372</td>
</tr>
<tr>
<td>Scaled Pearson X2</td>
<td>2</td>
<td>2.8743</td>
<td>1.4372</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td></td>
<td>−418.8658</td>
<td></td>
</tr>
<tr>
<td>Full Log Likelihood</td>
<td></td>
<td>−11.5307</td>
<td></td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
<td></td>
<td>27.0615</td>
<td></td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
<td></td>
<td>39.0615</td>
<td></td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
<td></td>
<td>25.8341</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm converged.

Analysis of Maximum Likelihood Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald 95% Confidence Limits</th>
<th>Wald Chi–Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>−3.86625</td>
<td>.1662144</td>
<td>−4.19202 −3.54047</td>
<td>541.06</td>
<td><.0001</td>
</tr>
<tr>
<td>snoring</td>
<td>1</td>
<td>.3973366</td>
<td>.0500107</td>
<td>.2993175 −.4953557</td>
<td>63.12</td>
<td><.0001</td>
</tr>
<tr>
<td>Scale</td>
<td>0</td>
<td>1.000000</td>
<td>.0000000</td>
<td>1.000000 1.000000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The scale parameter was held fixed.

You can also use proc logistic to fit binary regression models.

```plaintext
proc logistic; model disease/total = snoring; run;
```
Chapter 4 4.2 GLMS for Binary Response Data

The LOGISTIC Procedure
Model Information

Data Set WORK.GLM
Response Variable (Events) disease
Response Variable (Trials) total
Model binary logit
Optimization Technique Fisher's scoring

Number of Observations Read 4
Number of Observations Used 4
Sum of Frequencies Read 2484
Sum of Frequencies Used 2484

Response Profile

Ordered Binary Total
Value Outcome Frequency
1 Event 110
2 Nonevent 2374

Model Convergence Status
Convergence criterion (GCONV=1E−8) satisfied.

Model Fit Statistics

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Intercept Only</th>
<th>Intercept and Covariates</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>902.827</td>
<td>841.732</td>
</tr>
<tr>
<td>SC</td>
<td>908.645</td>
<td>853.367</td>
</tr>
<tr>
<td>−2 Log L</td>
<td>900.827</td>
<td>837.732</td>
</tr>
</tbody>
</table>

Testing Global Null Hypothesis: BETA=0

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-Square</th>
<th>DF</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood Ratio</td>
<td>63.0956</td>
<td>1</td>
<td><.0001</td>
</tr>
<tr>
<td>Score</td>
<td>72.6881</td>
<td>1</td>
<td><.0001</td>
</tr>
<tr>
<td>Wald</td>
<td>63.1238</td>
<td>1</td>
<td><.0001</td>
</tr>
</tbody>
</table>
4.2 GLMs for Binary Response Data

The LOGISTIC Procedure

Analysis of Maximum Likelihood Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald Chi-Square</th>
<th>Pr > ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>-3.8662</td>
<td>0.1662</td>
<td>541.0562</td>
<td><.0001</td>
</tr>
<tr>
<td>snoring</td>
<td>1</td>
<td>0.3973</td>
<td>0.0500</td>
<td>63.1238</td>
<td><.0001</td>
</tr>
</tbody>
</table>

Odds Ratio Estimates

<table>
<thead>
<tr>
<th>Effect</th>
<th>Point Estimate</th>
<th>95% Wald Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>snoring</td>
<td>1.488</td>
<td>1.349</td>
</tr>
</tbody>
</table>

Association of Predicted Probabilities and Observed Responses

Percent Concordant	58.6	Somers’ D	0.419
Percent Discordant	16.7	Gamma	0.556
Percent Tied	24.7	Tau—a	0.035
Pairs	261140	c	0.709
The fitted model is then

\[\hat{\pi}(x) = \frac{\exp(-3.87 + 0.40x)}{1 + \exp(-3.87 + 0.40x)}. \]

As before, we reject \(H_0 : \beta = 0 \); there is a strong, positive association between snoring score and developing heart disease.

Which model provides better fit? (Fits at the 4 s values are in the original data table with raw proportions.)

Note: \(P(\chi^2_2 > 2.8089) \approx 0.246. \)
4.2.4 What is β when $x = 0$ or 1?

Consider a general link $g\{\pi(x)\} = \alpha + \beta x$.

Say $x = 0, 1$. Then we have a 2×2 contingency table:

<table>
<thead>
<tr>
<th></th>
<th>$Y = 1$</th>
<th>$Y = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X = 1$</td>
<td>$\pi(1)$</td>
<td>$1 - \pi(1)$</td>
</tr>
<tr>
<td>$X = 0$</td>
<td>$\pi(0)$</td>
<td>$1 - \pi(0)$</td>
</tr>
</tbody>
</table>

- **Identity link**, $\pi(x) = \alpha + \beta x$: $\beta = \pi(1) - \pi(0)$, the difference in proportions.
- **Log link**, $\pi(x) = e^{\alpha + \beta x}$: $e^{\beta} = \pi(1)/\pi(0)$ is the relative risk.
- **Logit link**, $\pi(x) = e^{\alpha + \beta x}/(1 + e^{\alpha + \beta x})$: $e^{\beta} = [\pi(1)/(1 - \pi(1))]/[\pi(0)/(1 - \pi(0))]$ is the odds ratio.
4.2.5 Inverse CDF links*

- The logistic regression model can be rewritten as
 \[\pi(x) = F(\alpha + \beta x), \]

 where \(F(x) = e^x/(1 + e^x) \) is the CDF of a standard logistic random variable \(L \) with PDF
 \[L \sim f(x) = e^x/(1 + e^x)^2. \]

- In practice, any CDF \(F(\cdot) \) can be used as \(g^{-1}(\cdot) \). Common choices are \(g^{-1}(x) = \Phi(x) = \int_{-\infty}^{x} (2\pi)^{-0.5} e^{-0.5z^2} dz \), yielding a probit regression model (LINK=PROBIT) and \(g^{-1}(x) = 1 - \exp(-\exp(x)) \) (LINK=CLL), the complimentary log-log link.

- Alternatively, \(F(\cdot) \) may be left unspecified and estimated from data using nonparametric methods. Bayesian approaches include using the Dirichlet process and Polya trees. Q: How is \(\beta \) interpreted?
Figure: Predicted probabilities from 5 regression models
Comments:

- There’s several links we can consider; we can also toss in quadratic terms in x_i, etc. How to choose? Diagnostics? Model fit statistics?
- We haven’t discussed much of the output from PROC LOGISTIC; what do you think those statistics are? Gamma? AIC?
- For snoring data, $D = 0.07$ for identity versus $D = 2.81$ for logit links. Which model fits better? The $df = 4 - 2 = 2$ here. What is the 4? What is the 2? The corresponding p-values are 0.97 and 0.25.
- The log link yields $D = 3.21$ and $p = 0.2$, the probit link yields $D = 1.87$ and $p = 0.4$, and CLL link yields $D = 3.01$ and $p = 0.22$. Which link would you pick?
- How would you interpret β? Are any links significantly inadequate?
Comments (continued):

- Identity, Logit and Log links give nice interpretations, i.e. regression coefficients correspond to RD, log(OR) and log(RR);
- Predicted probabilities and 95% CI from Logit, Probit and C-log-log links are within the natural boundary of [0, 1].
- When using Identity and Log Links, one may consider Bayesian approaches to incorporate the natural boundary constraints, particularly if maximum likelihood methods fails to converge or if the predicted probabilities or confidence limits are outside the natural boundary (See Chu and Cole 2010, Epidemiology, 21(6), 855-862)
4.3.1 Poisson loglinear model

- We have

\[Y_i \sim \text{Pois}(\mu_i). \]

The log link \(\log(\mu_i) = x'_i\beta \) is most common, with one predictor \(x \) we have

\[Y_i \sim \text{Pois}(\mu_i), \quad \mu_i = e^{\alpha + \beta x_i}, \]

or simply \(Y_i \sim \text{Pois}(e^{\alpha + \beta x_i}) \).

- The mean satisfies

\[\mu(x) = e^{\alpha + \beta x}. \]

Then

\[\mu(x + 1) = e^{\alpha + \beta (x+1)} = e^{\alpha + \beta x} e^\beta = \mu(x) e^\beta. \]

- Increasing \(x \) by one increases the mean by a factor of \(e^\beta \).

- Note that the log maps the positive rate \(\mu \) into the real numbers \(\mathbb{R} \), where \(\alpha + \beta x \) lives. This is also the case for the logit link for binary regression, which maps \(\pi \) into the real numbers \(\mathbb{R} \).
Example: Crab mating

Table 4.3 (p. 123) has data on 173 female horseshoe crabs.

- **C** = color (1,2,3,4=light medium, medium, dark medium, dark).
- **S** = spine condition (1,2,3=both good, one worn or broken, both worn or broken).
- **W** = carapace width (cm).
- **Wt** = weight (kg).
- **Sa** = number of satellites (additional male crabs besides her nest-mate husband) nearby.
We initially examine width as a predictor for the number of satellites. Figure 4.3 doesn’t tell us much. Aggregating over width categories in Figure 4.4 helps & shows an approximately linear trend. We’ll fit three models using \texttt{proc genmod}.

\[
Sa_i \sim \text{Pois}(e^{\alpha + \beta W_i}),
\]

\[
Sa_i \sim \text{Pois}(\alpha + \beta W_i),
\]

and

\[
Sa_i \sim \text{Pois}(e^{\alpha + \beta_1 W_i + \beta_2 W_i^2}).
\]
SAS code:

```sas
data crab; input color spine width satell weight;
    weight=weight/1000; color=color-1;
    width_sq=width*width;
datalines;
3 3 28.3 8 3050
4 3 22.5 0 1550
... et cetera ...
5 3 27.0 0 2625
3 2 24.5 0 2000
;
proc genmod;
    model satell = width / dist=poi link=log ;
proc genmod;
    model satell = width / dist=poi link=identity ;
proc genmod;
    model satell = width width_sq / dist=poi link=log ;
run;
```
Output from 3 models

```
The GENMOD Procedure
Model Information
Data Set WORK.CRAB
Distribution Poisson
Link Function Log
Dependent Variable satell
Number of Observations Read 173
Number of Observations Used 173

Criteria For Assessing Goodness Of Fit

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DF</th>
<th>Value</th>
<th>Value/DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviance</td>
<td>171</td>
<td>567.8786</td>
<td>3.3209</td>
</tr>
<tr>
<td>Scaled Deviance</td>
<td>171</td>
<td>567.8786</td>
<td>3.3209</td>
</tr>
<tr>
<td>Pearson Chi−Square</td>
<td>171</td>
<td>544.1570</td>
<td>3.1822</td>
</tr>
<tr>
<td>Scaled Pearson X2</td>
<td>171</td>
<td>544.1570</td>
<td>3.1822</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td></td>
<td>68.4463</td>
<td></td>
</tr>
<tr>
<td>Full Log Likelihood</td>
<td></td>
<td>−461.5881</td>
<td></td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
<td></td>
<td>927.1762</td>
<td></td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
<td></td>
<td>927.2468</td>
<td></td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
<td></td>
<td>933.4828</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald 95% Confidence Limits</th>
<th>Wald Chi−Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>−3.30476</td>
<td>.5422416</td>
<td>−4.36753 to −2.24198</td>
<td>37.14</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>width</td>
<td>1</td>
<td>.1640451</td>
<td>.0199653</td>
<td>.1249137 to .2031764</td>
<td>67.51</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>Scale</td>
<td>0</td>
<td>1.000000</td>
<td>.0000000</td>
<td>1.000000 to 1.000000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The scale parameter was held fixed.
### 4.3 Generalized Linear Models for Counts

#### The GENMOD Procedure

**Model Information**

- **Data Set**: WORK.CRAB
- **Distribution**: Poisson
- **Link Function**: Identity
- **Dependent Variable**: satell

**Number of Observations**

- **Read**: 173
- **Used**: 173

### Criteria for Assessing Goodness of Fit

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DF</th>
<th>Value</th>
<th>Value/DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviance</td>
<td>171</td>
<td>557.7083</td>
<td>3.2615</td>
</tr>
<tr>
<td>Scaled Deviance</td>
<td>171</td>
<td>557.7083</td>
<td>3.2615</td>
</tr>
<tr>
<td>Pearson Chi–Square</td>
<td>171</td>
<td>542.4854</td>
<td>3.1724</td>
</tr>
<tr>
<td>Scaled Pearson X2</td>
<td>171</td>
<td>542.4854</td>
<td>3.1724</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td></td>
<td>73.5314</td>
<td></td>
</tr>
<tr>
<td>Full Log Likelihood</td>
<td></td>
<td>−456.5030</td>
<td></td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
<td></td>
<td>917.0060</td>
<td></td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
<td></td>
<td>917.0766</td>
<td></td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
<td></td>
<td>923.3126</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm converged.

#### Analysis Of Maximum Likelihood Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald 95% Confidence Limits</th>
<th>Chi−Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>−11.5321</td>
<td>1.510400</td>
<td>−14.4924</td>
<td>−8.57173</td>
<td>&lt;.0001</td>
</tr>
<tr>
<td>width</td>
<td>1</td>
<td>0.5494968</td>
<td>0.0592926</td>
<td>0.4332855</td>
<td>0.6657082</td>
<td>85.89</td>
</tr>
<tr>
<td>Scale</td>
<td>0</td>
<td>1.000000</td>
<td>0.000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td></td>
</tr>
</tbody>
</table>

**NOTE**: The scale parameter was held fixed.
The GENMOD Procedure

Model Information

Data Set WORK.CRAB
Distribution Poisson
Link Function Log
Dependent Variable satell

Number of Observations Read 173
Number of Observations Used 173

Criteria For Assessing Goodness Of Fit

<table>
<thead>
<tr>
<th>Criterion</th>
<th>DF</th>
<th>Value</th>
<th>Value/DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deviance</td>
<td>170</td>
<td>558.2359</td>
<td>3.2837</td>
</tr>
<tr>
<td>Scaled Deviance</td>
<td>170</td>
<td>558.2359</td>
<td>3.2837</td>
</tr>
<tr>
<td>Pearson Chi–Square</td>
<td>170</td>
<td>539.1413</td>
<td>3.1714</td>
</tr>
<tr>
<td>Scaled Pearson X2</td>
<td>170</td>
<td>539.1413</td>
<td>3.1714</td>
</tr>
<tr>
<td>Log Likelihood</td>
<td></td>
<td>73.2676</td>
<td></td>
</tr>
<tr>
<td>Full Log Likelihood</td>
<td></td>
<td>−456.7668</td>
<td></td>
</tr>
<tr>
<td>AIC (smaller is better)</td>
<td></td>
<td>919.5336</td>
<td></td>
</tr>
<tr>
<td>AICC (smaller is better)</td>
<td></td>
<td>919.6756</td>
<td></td>
</tr>
<tr>
<td>BIC (smaller is better)</td>
<td></td>
<td>928.9935</td>
<td></td>
</tr>
</tbody>
</table>

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Estimate</th>
<th>Standard Error</th>
<th>Wald 95% Confidence Limits</th>
<th>Wald Chi–Square</th>
<th>Pr &gt; ChiSq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>−19.6525</td>
<td>5.637435</td>
<td>−30.7017</td>
<td>−8.60335</td>
<td>12.15</td>
</tr>
<tr>
<td>width</td>
<td>1</td>
<td>1.365990</td>
<td>.4134378</td>
<td>.5556670</td>
<td>2.176313</td>
<td>10.92</td>
</tr>
<tr>
<td>width_sq</td>
<td>1</td>
<td>−.021958</td>
<td>.0075600</td>
<td>−.036776</td>
<td>−.007141</td>
<td>8.44</td>
</tr>
<tr>
<td>Scale</td>
<td>0</td>
<td>1.000000</td>
<td>.0000000</td>
<td>1.000000</td>
<td>1.000000</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The scale parameter was held fixed.
Write down the fitted equation for the Poisson mean from each model.

How are the regression effects interpreted in each case?

How would you pick among models?

Are there any potential problems with any of the models? How about prediction?