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Abstract

In this article we describe a recursive structure for theslaf 4-connected triangula-
tions or — equivalently — cyclically 4-connected plane cugiaphs.
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I ntroduction

A recursive structure for a clags$ of graphs is a base s& C C of initial graphs together
with a set ofoperationson graphs that transform a graphhto another graph i’ so that
each graph irC’ can be constructed from a graphiihby a sequence of these operations.
An operationis typically the replacement of a finite substructure by haot- larger —
substructure. In the ideal case, the $etas well as the set of operations are finite and
small. All graphs discussed in this article are simple.

The two main applications for recursive structures arecsiire generation programs
and inductive proofs, where the recursive structures dest¢he induction step. In this
paper we discuss planar triangulations — that is plane graplere every face is a triangle.
For several classes of triangulations, recursive strasthave been published: for all tri-
angulations (that is: 3-connected triangulations) [6],Fa&onnected triangulations [1][5],
for triangulations with minimum degree 4 [2], for 3- and 4nhoected triangulations with
minimum degree 5 [3], and for Eulerian triangulations [2h the dual, these are con-
structions for 3-connected planar cubic graphs, cyclicaltonnected planar cubic graphs,
3-connected planar cubic graphs with girth 4, 3- resp. cattlf 4-connected planar cubic
graphs with girth 5 and 3-connected bipartite planar cutaphs.

In this article we will add the missing link between 3-cornteektriangulations and 5-
connected triangulations and give a recursive structuré-flnnected triangulations. The
operations necessary to construct all 4-connected triatigns are in fact the same as the
ones used in [4] to construct all triangulations with minimuaegreet — except for the
operation inducing separating triangles. While it is obgithat an operation introducing
separating triangles does not lead to 4-connected triatigos, it is not obvious that all
4-connected triangulations can be obtained with the reimgimvo operations.
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N

Figure 1: Two of the operations used by Eberhard [6] to ge¢aethtriangulations. Edges
and vertices outside of the bounding 4-, or 5-cycle in theré@re not drawn.
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Two of the operations given by Eberhard to construct alhtyidations are given in
Figure 1. We will show:

Theorem 1. The clas<’, of all 4-connected triangulations can be generated fronothe
tahedron graph (depicted in Figure 2) by operationsandOs.

Figure 2: The octahedron graph.

Proof. We will write C, for the clas<’, without the octahedron graph.

The operationg), andO; are in fact similar to special cases of the edge expansion
operation used by Batagelj in [2]. This can best be seen wbakirlg at the reduction —
that is the inverse of the construction operation. If one p@sses the edges marked with
anz (thatis: removes the edge and identifies the endpointsyiar€il, the resulting graph
is the same as after replacing the vertices and their adjadges by one, resp. two edges.

To prove this theorem, note first that in a triangulation gefrconnected is equivalent
to not having a separating — that is: non-facial — 3-cycle willesshow that for each element
of the clas<C, an inverse operation can be applied that does not introdeggarating 3-
cycles and therefore leads to an elemerd.of

This is the consequence of 3 observations;

(@) In a 4-connected triangulation no two edges in the samelfai@agle belong to the
same separating 4-cycle.

This follows immediately as in that case the other edges efsiétparating 4-cycle
together with the third edge of the triangle would form a sefiag 3-cycle.

(b) In a 4-connected triangulation that is not the octahedraplyrno two edges in the
same facial triangle with a common verte)of degree 4 belong to different sepa-
rating 4-cycle<C, C".

Suppose that this was the case. Then — due to (a) — the twoatiegad-cycles must
cross each other and there is an edgey; } belonging to (w.l.o.g.)C so that the next
edges{v, z1}, {v,z2} in counterclockwise, resp. clockwise direction arourielong to
the separating 4-cycl€” formed by the vertices:, v, z2, a. This situation is depicted in
Figure 3.



4 Ars Math. Contemp. x (xxxx) 1-x

a

Figure 3: Two separating 4-cycles crossing in a vertex ofeked.

From the previous observation it follows th@tcannot contair:; or x5, so the Jordan
curve theorem gives that it must contailand that the situation is as with the dotted edges
in Figure 3. This implies the presence of 8 triangles whiclstall be facial triangles — as
no non-facial triangles exist — and implies that there armpee edges than those depicted.
So the graph was the octahedron graph.

(c) Ina4-connected triangulation without vertices of degrefedeach edgév, «; } con-
taining a vertexv of degree 5 that belongs to a separating 4-cy¢|eeither the
previous or the next edge in the cyclic order arownadr both do not belong to a
separating 4-cycle.

By choosing the neighboring edge as the one that sharesgl&iaith both edges af’
containingu, we can follow the same line of arguments as before to get e aprhmetry —
the situation in Figure 4. In this case we don't have 8 triaagbut we do have the triangles
(a,y1,22), (z1,91,a), (v,y1,21) and (a2, y1,v) which must all be facial. This implies
that the degree af; is 4 — contradicting the assumption.

As in a 4-connected triangulation there are always vertigésdegree 4 or degree 5,
(a),(b),(c) together imply that a triangulationd@n contains an edge adjacent to a vertex of
degree 4 or 5 that does not lie on a separating 4-cycle. Ukiagetige as the edgein
Figure 1 we can reduce such a triangulation to a smaller otteut separating triangles.
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Figure 4: Two separating 4-cycles crossing in a vertex ofeke® in a triangulation with
minimum degreé.
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