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Abstract

All published research on automated mathematical conjecture-making
is surveyed, and the ideas underlying the successful programs in this area
are outlined. One particularly successful—and little known—program is
comprehensively described for the first time. The fundamental principle
underlying this program can be simply stated: make the strongest con-
jecture for which no counterexample is known. Conjecture-making may
be key to building machines with a wide variety of intelligent behaviors.
If so, this principle should prove exceptionally useful.

1 Introduction

In the early 1980’s Edward Fredkin, an engineer and entrepreneur who had once
headed M.I.T.’s Laboratory of Computer Science, offered a prize of $100,000 to
the researcher that first constructed a machine that made an important mathe-
matical discovery. This problem belongs to the roughly half-century old field of
Artificial Intelligence (AI), a branch of computer science. Fredkin’s prize hadn’t
been awarded by 1995 when Raj Reddy included automated mathematical dis-
covery among the “Grand Challenges of AL.” Reddy, it is worth noting, is a
recipient of the Turing Award, essentially the Nobel Prize for computer science.
He wrote:

Several exciting problems in AI are seemingly reasonable and yet
currently unsolvable. Solutions to these problems will require major
new insights and fundamental advances in computer science and
artificial intelligence. Such problems include ...the discovery of a
major mathematical result by a computer ...[37, p. 301]

Fredkin’s prize remains unrewarded. !

1Fredkin’s prize is administered by Carnegie Melon University.



Surprisingly, back in 1956, two of the “founding fathers” of AI, Herbert Si-
mon and Allen Newell—also Turing Award winners—predicted “[tJhat within
ten years a digital computer will discover and prove an important new math-
ematical theorem.” [40, p. 7] What has been achieved in automating mathe-
matical discovery? Why has success been so long in coming? In this paper I
will survey the research that has been done towards endowing machines with the
ability to make mathematical conjectures. It isn’t always clear what is meant by
a machine that makes mathematical discoveries but, under any interpretation,
such a machine would make conjectures.

There are at least four reasons one may be interested in a survey of the
research on automated mathematical conjecture-making. One obvious reason
is mathematical: one may be interested in knowing how machines can be used
to advance certain mathematical goals. Another reason is historical: one may
be interested to know dates of various advances, who achieved them, and how
quickly research is progressing, among other things. A third reason is that suc-
cess in constructing a machine with a certain ability may lead to advances in con-
structing machines with relevantly similar abilities—the survey provides a ve-
hicle to transmit ideas to researchers working outside mathematical conjecture-
making but whose problems may be relevantly similar. Lastly, it can help
all researchers working to construct machines with abilities exhibiting intel-
ligence identify successful and unsuccessful methodologies—as all researchers
must choose how to pursue their goals. Some surveyed research was successful,
while some was not. Can anything be said about what the successful researchers
did right, or what the unsuccessful ones did wrong?

Mathematics comprises various activities. The end products are familiar:
things like calculus books used to train engineers in various abilities useful in
their work. The fundamental results in any mathematical text include its the-
orems, mathematical propositions that have been proved. The existence of a
theorem rarely begins as the last line of a proof. Rather a mathematician con-
jectures that some mathematical proposition is true or it is not. He, or other
mathematicians, may try and prove or disprove the proposition. In working on
a proof, a mathematician may introduce a new concept in the belief that it will
assist his work. Conjecture-making, theorem-proving, and concept formation
are three of the central activities in mathematics and the ones researchers have
attempted to automate. In order to win Fredkin’s prize, the successful machine
may require all three of these abilities. By far the most research has been con-
ducted in automated theorem-proving. This work was also the first to begin—in
the mid-1950’s—and is the only one able to support a journal. Much less work
exists in the other two areas.

In automated conjecture-making, perhaps two dozen papers have been pub-
lished. Researchers in this field have written the following programs. (The
researcher’s name is followed by the name of the program and then by the year
of its first published description.)

D. Lenat, AM, 1975.

D. Lenat, Eurisko, 1977.

K. Haase, Cyrano, 1986.



S. Fajtlowicz, Graffiti, 1986.

S. Epstein, GT, 1987.

R. Bagai et al., unnamed, 1993.
S. Colton et al., HR, 1998.

2 Lenat’s AM

In the mid-1970’s Douglas Lenat published the first research on automated
mathematical conjecture-making: he reported on his work with his program
AM (originally an acronym for “Automated Mathematician” [39, p. 229]) and
then a successor in roughly a dozen papers between 1975 and 1984. [26, 28, 29,
30, 31, 32, 30, 34, 33, 35

[AM] is a computer program which defines new concepts, investigates
them, notices regularities in the data about them, and conjectures
relationships between them. [28, p. 288]

The word “conjecture” admits various uses: a teacher might call a stu-
dent’s guess that there is a ruler-and-compass construction of the trisection of
an angle a “conjecture,” even though he knows it is false; a mathematician
who proposes some non-novel proposition may be credited with having made
a “conjecture,” for instance if evidence suggests that he couldn’t have known
that it had already been advanced previously; the term can also be used to ap-
ply unqualifiedly to certain of a mathematician’s genuinely novel mathematical
advances—henceforth the term “research conjecture” will be used to distinguish
such genuinely novel mathematical advances. Clearly, when Fredkin offered his
prize, when Reddy made his challenge, when Simon and Newell made their pre-
diction, what they had in mind was a machine that could advance mathematics,
a machine that could make research conjectures.

That Lenat intended AM to make (research) conjectures is clear. He wrote,

To demonstrate the efficacy of its methods to practitioners of the
fields it works in (e.g., mathematicians) and to practitioners of Al,
any program claiming to be a “discovery program” should aspire to
... make at least a few genuinely new (to mankind) useful discoveries.
[30, p. 73]

Applied to his own program his statement says: To demonstrate the efficacy
of its methods to practitioners of AI, AM should make some mathematical
(research) conjectures. Lenat reported that AM failed to do this: “AM was not
able to discover any ‘new-to-mankind’ mathematics purely on its own ....” [26,
p. 6] AM did output mathematical propositions, including some very well-known
theorems and conjectures, such as the Fundamental Theorem of Arithmetic and
Goldbach’s Conjecture. AM may be said to have made conjectures—depending
on how one uses that term—but what it certainly did not do is make any research
conjectures.



AM has been widely acclaimed—in 1977 Lenat received the Computers and
Thought Award for “the most impressive contribution to the subject [of AI}”
in the two years preceding. [35, p. 257n] This acclaim, obviously, was not
for writing a program which makes (research) conjectures; he had other aims in
writing his program, not relevant to the current discussion, which it presumably
accomplished and for which he was recognized. Was his work on automated
conjecture-making of any value to future research on the subject?

Consider the claim that Lenat showed that machines could be endowed with
the ability to make (research) conjectures, as a biographical sketch from a 1995
issue of Scientific American suggests:

He received his Ph.D. in computer science in 1976 from Stanford Uni-
versity with a demonstration that computers could be programmed
to propose original mathematical theorems. [27, p. 82]

Under what circumstances can such a claim be made? Obviously, if the program
had, in fact, made (research) conjectures. When else? Perhaps retrospectively,
in case the ideas underlying his work were subsequently used in constructing
a machine that made (research) conjectures. Were they? Almost a quarter-
century has passed since his ideas were first published and, in that time, there
have been attempts to implement his ideas in other programs. Lenat himself
wrote one, Eurisko, a successor to AM. Lenat did not report any (research)
conjectures it made, nor did he claim that it made any. He did not attempt
any further conjecture-making programs. (In 1984, while the ideas behind the
program that led to his fame remained unproven, he obtained massive funding
over multiple years to pursue a new idea—and he has not returned to research
on conjecture-making programs.) In the mid-1980’s Ken Haase, a student of
Marvin Minsky (another “founding father” of AI and Turing Award winner)
who had access to Lenat, made another attempt to implement the ideas of AM.
Haase described his program Cyrano as follows:

Cyrano is a thoughtful reimplementation of Lenat’s controversial Eu-
risko program, designed to perform automated discovery and con-
cept formation in a variety of technical fields. [24, p. 1]

Haase did not report that Cyrano made any mathematical conjectures—and
there is no reason to believe that it did. Given this record of failure, it is hard
to imagine grounds for saying that Lenat proved the possibility of automated
mathematical conjecture-making.

There are practical questions that every researcher in automated conjecture-
making faces: should I try to implement any of Lenat’s ideas in my own pro-
gram? Is my program more likely to be successful if I do this or if I try some
other approach? What reasons are there to choose one approach or the other?
G.D. Ritchie and F. K. Hanna, in their 1984 critique of Lenat’s AM research
concluded “that it would be extremely difficult to base further research in this
area on AM.” [38, p. 266] AM’s failure and Ritchie and Hanna’s critique provide
a researcher with reasons to ignore Lenat’s ideas. What reasons are there to do
otherwise?



AM is an example of a “rediscovery” program, a program that outputs
known propositions of science or mathematics, but does not contribute any
new propositions of value to research. (A program that does is called a “discov-
ery” program.) There has been a relative explosion of rediscovery programs in
the twenty-odd years since AM first appeared. The question every researcher
in automated mathematical conjecture-making must address can be generalized
to a question every researcher trying to construct a program that makes scien-
tific discoveries must address: should I try and implement the ideas of a given
program that never made a discovery, and whose ideas have never been proved,
or should I try some other approach?

3 Graffiti

Graffiti, a program conceived by Siemion Fajtlowicz at the University of Houston
(and developed, since 1990, with Ermelinda DeLaVina), was the first program
to have actually made (research) conjectures. While the first paper on the pro-
gram appeared more than a dozen years ago, Graffiti still seems to be virtually
unknown except among mathematicians (particularly graph theorists)—there
does not seem to have been any attempts to implement its ideas in another
program. Fajtlowicz’s program was first described in his series of papers, “On
Conjectures of Graffiti.” This survey contains the first self-contained description
of the program.

On what grounds can it be said that the propositions Graffiti has advanced
are (research) conjectures? In the first place, many, many of these propositions
are new. This is a necessary condition. Nevertheless, it is trivial to write a
program that forms statements never before considered by anyone: consider a
program that outputs statements of the form “n is prime,” where n is a randomly
chosen thousand digit number. What is a sufficient condition that a new math-
ematical proposition be a (research) conjecture? One might think it is sufficient
that a mathematician does, in fact, investigate it. But a mathematician may
investigate a mathematical proposition on a whim—for no better reason than
that for attempting a crossword puzzle. Furthermore, the fact that no math-
ematician has investigated a proposition may be only because none who could
recognize its value ever encountered it. One might think that it is sufficient that
research inspired by the proposition is published. Publication is certainly strong
circumstantial evidence that the proposition is different in character from one
asserting the primality of a thousand digit number—nevertheless it is possible
that publication was due more to an editor’s whimsy than any other reason. The
two criteria just considered are matters of mere historical fact: when Fredkin
offered his prize, when Reddy proposed his “grand challenge,” and when Si-
mon and Newell made their prediction, their aims could not have been that the
construction of a machine would lead a human to act in a specified way—their
aim was for a machine that contributes to the advancement of mathematics.
Many researchers, Fajtlowicz included, have stated that their own aim is that
the machine produce “interesting” propositions. What is meant, though, by



“interesting”—if it means that it produces a certain emotion in one or more
mathematicians, then the fact that a mathematical proposition is interesting
cannot be a sufficient condition that it be a (research) conjecture. The most
clearcut way in which the proposal of a new mathematical proposition advances
mathematics is when it can (if true) help in achieving some existing mathemati-
cal aim: for instance, if it contributes an essential step in a proof. I won’t claim
that this condition is either a necessary or a sufficient one for a proposition to
be a (research) conjecture, only that it is the best existing measure with which
to judge this question. Consider the statement that a certain huge number is
prime. If this proposition does not advance some existing mathematical aim
then, on the proposed measure, it is not a (research) conjecture. To return
now to our question regarding the value of the propositions advanced by Graf-
fiti, many of its propositions involve bounds for certain numbers which cannot
be efficiently computed. These propositions advance the aim of finding better
bounds than currently known. These are undoubtedly (research) conjectures.

Graffiti’s conjectures have, in fact, instigated mathematical research— cir-
cumstantial evidence that the propositions are both new and significant. There
are now numerous papers, theses, and dissertations in which these conjectures
(or related weaker and stronger propositions) are proved, or for which coun-
terexamples are found.? Graffiti has proved to be a genuine contributor to
the advance of mathematics: its collaborators include students as well as the
best-known graph theorists—including Noga Alon, Bela Bollobas, Fan Chung,
Paul Erdés, Jerry Griggs, Daniel Kleitman, Laszlo Lovasz, Paul Seymour and
Joel Spencer [2, 6, 11, 12, 23, 25, among others|—who hail from the most
renowned centers of learning in the world to its most obscure—from Cambridge
and Princeton Universities to the Heilongiang Water Conservancy College and
the Lianzhou Railway Institute. [36]

Graffiti’s first (research) conjectures were in the field of graph theory. Its
underlying ideas, as described in Fajtlowicz’s papers [16, 18, 20, in particular],
apply not just to graphs: Graffiti has also made conjectures in geometry, num-
ber theory, and even chemistry®—conjectures about the structure of fullerenes
(as represented by their graphs) have already led to at least one paper by the
fullerene expert Patrick Fowler. [22, 13] Graffiti’s underlying ideas can be ap-
plied to any objects, mathematical or otherwise, that can be represented by a
computer—that is, its fundamental ideas are domain independent. What fol-
lows is a description of Graffiti’s operation sufficiently fine so that researchers
in other areas should be able to apply its ideas and test their usefulness.

Suppose conjectures about objects of a given type are desired, and that repre-
sentations of some number of these objects (call them O1, O, ..., 0,,) are stored
in the computer’s memory. An invariant of this type of object is a property of
the objects which is independent of the representation of the objects. Some

invariants correspond to numbers. Let a1, as, ..., a, be computable numerical
invariants (for a given object O, a; = a;(0)). Let f1, fa, ..., fs represent proce-
2A partial list can be found on the WWW at:

cms.dt.uh.edu/faculty/delavinae/wowref.html.
3The entire list of conjectures is available on the WWW at: math.uh.edu/"clarson.



dures instantiating the operations of the algebraic system (these might include,
for instance, “plus,” “times,” &c.) Any term, like f(ai,as)—or concretely,
a1 + as—represents a new numerical invariant. Statements can then be formed
from relations of these terms. If ¢ and s are two such terms, the expression
t < s—which should be interpreted as the statement, “For every object O (of
the type of object under consideration), t(0) < s(0)”—is a candidate for a
conjecture.

A computer can produce an endless stream of such expressions. The idea
of Graffiti is to cull conjectures from this stream. Suppose conjectures about
the upper bound of the invariant ¢ are desired, that is, conjectures of the form
t < s. They are to be culled from the stream of relations ¢t < s1, t < s2, t < s3,
&c. Two heuristics are typically used in this task.

Dalmatian is Fajtlowicz’s name for Graffiti’s main heuristic for culling the
stream of possible conjectures. [20, pp. 370-371] Given a statement of the form
t < s and a (possibly empty) database of pre-existing conjectures of similar form,
t <wug, t <ug, ..., t < u—the Dalmatian heuristic checks if the statement
“s(0) < u1(0) and s(0) < uz(0) and ...and s(0) < u(0O)” is true for at least
one of the objects O from the set Oy, ...,0,. If it is then, with respect to the
objects stored in memory, the relation ¢t < s says something informative—that is,
the relation says something that was not implied by the totality of the previous
conjectures of that form that had been kept in the program’s database—so the
relation remains a candidate for Graffiti to add to the database of conjectures.
Otherwise, Graffiti rejects the relation as a possible conjecture—with respect to
the databases of objects and pre-existing conjectures it is uninformative.

The second heuristic, applied to those relations which survive the Dalmatian
heuristic, is to test for the truth of the relation with respect to the stored objects.
If the relation is true of all of these objects then it is added to the database
of conjectures; and if the relation is false for any of these objects then the
general statement that the relation of term functions (the relation of invariants)
represents is false—and the relation is not accepted as a conjecture. These first
two heuristics are the heart of the program and express the following principle
of Fajtlowicz: make the strongest conjecture for which a counterexample is not
known.

There are two other heuristics which Graffiti can also employ. One is appli-
cable only when objects of a proper superclass of objects are already stored in
the computers memory, the Echo heuristic. [17, p. 190] Suppose the database
of objects includes O1,...,0n, Omnt1,-..,0, of a type A and conjectures are
desired of a type B, a subclass of A. Suppose the objects of type B are the ob-
jects O1,...,0p. The Echo heuristic is used to cull those possible conjectures
which are true of each of the objects Op41, . .., On: conjectures which could be
true of all objects of type A—when what is desired are conjectures about its
proper subclass B—are not specific enough and are rejected.

Graffiti’s Beagle heuristic was central to early versions of the program. [18,
p- 23-24] Its function was largely superseded with the introduction of the Dalma-
tian heuristic. The Beagle heuristic was designed to avoid the endless numbers
of conjectures like @ < a + 1 where the relation is true but uninformative.



The Beagle heuristic accomplished this by rejecting relations where the related
terms (in our example, o and « + 1) are very "close” to each other in the tree
representing all possible terms: technically, the possible terms form a rooted
tree and a distance can be defined on this tree—if the distance between two
terms is too small, the Beagle heuristic rejects their relation as a possible con-
jecture. The Dalmatian heuristic rejects some but not all of these relations: it
rejects those relations that are uninformative with respect to the existing con-
jectures and database of objects, but it makes allowances for certain relations
the Beagle heuristic would have rejected—it will accept those relations that are
informative, regardless of the closeness of its terms.

It is of the essence of a conjecture that it may be false and so it may be
with the statements that Graffiti produces. These can be removed by informing
the program of a counterexample, that is, by adding a new representation to
the program’s database of objects. Counterexamples can be found automati-
cally, by producing representations of objects of the given type and testing the
stored conjectures against them, or counterexamples can be provided by another
intelligent agent—whether human or another computer.

Graffiti employs various techniques to speed it along. One is to keep the
database of objects relatively small—in fact it only stores (representations of)
objects which it has found informative, that is, which have served as a counterex-
ample to a conjecture. Another is to keep the database of conjectures relatively
small. Whenever a new relation is added to the database of conjectures, it is
possible that one or more pre-existing relations are no longer informative (with
respect to the objects stored in the computer). These may be moved to a sec-
ondary database. If a counterexample is later found for one of the relations
in the primary database of conjectures, then those relations in the secondary
database are the first to be reconsidered as candidates for conjectures (that is,
as candidates for the primary database) rather than arbitrarily formed relations.

We turn now from describing Graffiti’s operation to giving an example of the
concrete objects it typically considers, a concrete invariant, and one of its actual
conjectures. The majority of the program’s conjectures have been about graphs
(a graph is a collection of vertices together with a set of edges joining some or all
of the vertices). In this case the objects are graphs—these may be represented
in a computer as certain matrices of 0’s and 1’s (the adjacency matrix of the
graph). Numerical invariants for graphs include the independence number of
the graph—the cardinal of the largest set of vertices where no two are joined by
an edge. This invariant is of enormous practical importance and, while it can
be computed, it can’t be computed efficiently (as a function of the number of
vertices of the graph it takes, in general, an exponential amount of time)—so
conjectures about its upper and lower bounds represent possible important new
knowledge. If the independence number of a graph is represented by the letter
a, then conjectures regarding upper bounds of this graph invariant would have
the form a <t (where ¢ is a term function representing some other invariant),
and conjectures regarding lower bounds would have the form ¢ < a. One of
the first conjectures Graffiti made—and the topic of one of the first papers
published about any computer-generated conjecture—was it’s Conjecture No. 2



regarding the lower bound of the independence number: “(For every connected
graph) average distance (between any two vertices in the graph) < independence
number (of the graph).” (The conjecture was proved by Fan Chung. [6])

The question was raised earlier whether a researcher writing an automated
conjecture-making program should try and implement Lenat’s ideas. Reasons
now exist to ignore two of his specific claims: that conjecture-making programs
require huge numbers of heuristics and that new heuristics are required for every
domain in which a program makes conjectures. Fajtlowicz’s work on Graffiti has
shown that neither is necessary for a program to make conjectures.

AM employed a whopping 250 heuristics yet, in Lenat’s view, AM’s failure
was due in part to a lack of heuristics:

AM’s key deficiency appeared to be the absence of heuristics which
cause the creation and modification of new heuristics. [34, p. 57]

No version of Graffiti has employed more than four heuristics. Graffiti’s success
demonstrates that conjecture-making programs do not require large numbers of
heuristics much less heuristics for finding heuristics.

Lenat also claimed that a requirement for programs which can make con-
jectures in multiple domains is that it employ domain specific heuristics. The
following statements are among the reasons behind his claim.

[[n distinct fields of science and mathematics ... [nJot only are the
concepts different, so are most of the powerful heuristics. [28, p. 288]

Working in point-set topology with geometry heuristics is not very
efficient, nor was AM’s working in number theory using only heuris-
tics from set theory. [32, p. 23]

Graffiti has made conjectures in graph theory, number theory, geometry and
chemistry, using only the domain-independent heuristics described earlier. This
disproves Lenat’s claim.

Lastly, I will make a claim of my own: I claim that the ideas behind Graf-
fiti are of use in many areas of artificial intelligence research, for instance, in
constructing machines that interact in certain ways with the physical world.
Graffiti has only made conjectures about abstract objects, there is no a priori
reason why a computer adhering to Graffiti’s general principles could not make
conjectures about physical objects. Consider the following thought experiment.
Suppose a computer—call it Charly—was connected to a simple mechanical
arm whose range of motion is just vertically up and down (Fig. 1) and which is
equipped with an internal clock and the following two sensors: one indicating
that something is sitting on its “hand,” and a second which reports the relative
height of the arm. Suppose one of Charly’s tasks require it to have a reasonable
estimate of the weights of certain objects resting on its hand. Of course, a scale
could be built in to its arm. But Charly may have many responsibilities and
we prefer to construct it with a minimum of specialized mechanisms—utilizing
more general mechanisms whenever there is evidence that this can be done.
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Figure 1: Charly weighs the situation

Charly might implement the task as follows. It represents anything that has
triggered its hand sensor for some length of time uninterruptedly as a “phys-
ical object.” It maintains a database of certain of the physical objects it has
encountered: this database consists of a table pairing each object with a row
of three numbers, numbers corresponding to the three invariants height, time,
and weight. Charly has procedures for determining the values of the first two
of these. The height of an object is the distance Charly can raise it from its
lowest arm position (using the relative height sensor). The time of an object
is the amount of time it takes Charly to raise the arm to this height (using
the internal clock). Charly has no procedure for determining the weight of an
object. It can use its database to make and improve a list of conjectures of the
form weight < f(height,time). Charly can use its conjectures to make guesses
about the weights of objects. When Charly makes a guess that is not sufficiently
good for its task, it can be informed of its mistake and the correct weight of
the object. If this weight contradicts one or more of Charly’s conjectures it
can add the object to its database of objects, delete the falsified conjectures
from the list of conjectures, and then proceed to make new conjectures (and, it
is hoped, better guesses in the future). If Charly demonstrates any success at
guessing weights, this ability can be used as the basis for constructing it with
more complex abilities.

4 Other Programs, Other Ideas

This last section contains accounts of three programs which have appeared since
Graffiti did.

Susan Epstein’s Graph Theorist (GT) [8, 9, 10] appeared in 1987. She de-
scribed it as follows:

10



The Graph Theorist, GT, is a knowledge-intensive, domain-specific
learning system which uses algorithmic class descriptions to discover
and prove relations among mathematical concepts ... Mathematical
discovery includes the creation of new mathematical concepts, the
conjecture of relations among concepts and the proof or disproof of
such conjectures. [8, p. 194]

Epstein claimed her program made conjectures. Mathematicians would as-
sume she means that it made what have, in this paper, been called “research
conjectures”—but none of the four examples that she reports from GT’s output
are new mathematical propositions. The first, for instance, is “Every tree is
acyclic”—which can be found in any graph theory text. There is no evidence
that GT made any (research) conjectures. (Epstein, as did Lenat, pursued other
aims besides automated conjecture-making—and no general conclusions should
be inferred from this report.)

Perhaps because the field of Artificial Intelligence is young—and successful
practices require time to be developed—published work on the mechanization
of a given ability often redescribes not only the mechanisms which have demon-
strated success in past attempts but even those which have remained unproven.
A survey of cancer treatments, in contrast, will not include descriptions of “Psy-
chic Surgery” or of homeopathic methods. They are unproven. It might be
thought that there is a difference between these cases: that in the medical case
there is no theoretical reason why the fringe treatments should work—while in
the AI case there are. This is not true, at least, in the subfield which aims to
construct conjecture-making machines or, more generally, machines with abil-
ities never before mechanized. There is no theory of the construction of such
machines. There are only methods which have had some success in mechanizing
the desired ability, and methods which have proven successful in mechanizing
relevantly similar abilities.

In 1993 an unnamed program was described in a paper by colleagues from
Wichita State University: R. Bagai, V. Shanbhogue, J. M. Zytkow, and S. C.
Chou. [1] This program formed mathematical propositions but only advanced
them if it also had a proof for them. These researchers gave the following
description of their program:

Our mechanism incrementally generates geometrical situations, makes
conjectures about them, uses a geometric theorem prover to deter-
mine the consistency of situations, and keeps valid conjectures as
theorems. [1, p. 415]

They give only two examples of the theorems output by their program, neither
of which was a new mathematical proposition: the first of these was that the
diagonals of a parallelogram intersect, and the second was Euclid’s Parallel
Postulate. This is no evidence that their program contributes to mathematical
research.

The last program accounted for in this survey—the most recent to appear—is
HR (for “Hardy-Ramanujan”), a program which does advance new mathemati-
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cal propositions. It was created by researchers, headed by Simon Colton, at the
University of Edinburgh and their research is still in progress. [4, 5, 7] They
describe their program as follows:

The HR program forms concepts and makes conjectures in domains
of pure mathematics and uses theorem prover OTTER and model
generator MACE to prove or disprove the conjectures. [4]

The HR team is extremely ambitious and the automation of conjecture-making
is only one of their numerous aims.

The papers describing HR contain roughly a dozen examples of the new
mathematical propositions that the program has produced. The following three
propositions (new to me) are representative of its output; they are definitely
credited to the program (which is sometimes unclear). They also represent the
three types of new propositions HR has produced.

1. For groups G and G' up to order 6, G and G' are isomorphic if
and only if f(G) = f(G"), where the function f is defined as follows:
for any group G, f(G) = |{(a,b,c) € G*:axb=cand bx*c = a}|
[5]

2. No perfect number is refactorable. [7]

3. The refactorable numbers are a subsequence of the sequence of
positive integers congruent to 0, 1, 2, or 4 (mod 8). [7]

Do these propositions contribute to the advancement of mathematics? That
is, are they (research) conjectures? Could they aid in advancing some pre-
existing mathematical goal? The first proposition is obviously trivial and, as to
the other two, I don’t myself know the answer—and Colton’s papers are silent
on the subject. Note, it is no criticism that the first proposition is trivial: it may
still advance our mathematical aims. It may be just the step needed in a proof,
for instance—though trivial, no one else may have thought of it. The program
is quite new so one can’t expect any circumstantial evidence yet regarding the
value of the second and third propositions, or of the rest of HR’s published
production, such as mathematical papers they have inspired. The value of these
propositions may become clearer in time.

The fact that Fajtlowicz’s program Graffiti is designed to produce inequal-
ities and that finding bounds of certain numbers is an aim of mathematics
explains, in part, why the program produces (research) conjectures. HR is
not designed to produce inequalities—but mathematical propositions of other
forms. An interesting question is: when do propositions of these forms advance
the aims of mathematics, and how can a computer be constructed to do this?
The three examples of HR’s output belong to group theory and number theory.
The forms of these propositions are not specific to these branches of mathemat-
ics though—in fact, HR’s methods are domain independent. Their forms are as
follows.
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1. An integer-valued function f defines an equivalence relation which
corresponds to a specified partition of objects (of a given type).

What classification problems are existing aims in mathematics? Obviously,
a new proposal for the solution of an outstanding classification problem will
be a (research) conjecture. When does the classification of objects serve as
intermediary step in the pursuit of a mathematical goal, for instance, the proof
of a theorem? How can a machine be designed to automate the pursuit of such
intermediate goals successfully?

2. If an object has property P then it has property @ (for objects
of a given type, and where P and @) are represented by first-order
formulas in the language of the theory of those objects).

When do conditional propositions advance the aims of mathematics? The most
obvious case is when they serve as intermediate steps in proofs of other con-
ditional statements. Suppose an existing aim of mathematics is to prove some
conditional proposition. How can a machine be constructed that produces con-
ditional propositions that do advance this aim?

3. One structure is a sub-structure of another (of the same type).

When do these propositions advance the aims of mathematics? How can they be
used to advance the proof of a desired proposition? How can this be automated?

Propositions of the three forms discussed here may be weaker or stronger.
One wonders, given a program which produces propositions of these forms and
which is designed to achieve some clear mathematical aim, whether Fajtlowicz’s
principle of making the strongest conjecture for which a counterexample is not
known will be the useful technique it has proved to be in producing inequali-
ties. Such questions have not yet been addressed in the published research of
Colton and the HR team—as mentioned, they have been pursuing a number of
goals simultaneously—but it will be interesting to see how they do tackle these
questions and what success they achieve.
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