Last name _____

First name _____

LARSON—MATH 656—CLASSROOM WORKSHEET 20 Gallai-Edmonds-Decomposition.

Organizational Notes

- 1. Don't forget to send your Notes / Classroom worksheet after each class (make the email subject useful: like "Math 656 c20 notes").
- 2. The VCU Discrete Math Seminar is every Wednesday.
- 3. h06 is due today (#3.3.1, 3.3.2, 3.3.3, 3.3.6, 3.3.10).
- 4. Read ahead! Next up we'll talk about Petersen's Theorem (Corollary to Tutte's Theorem in Sec 3.3) and then Network Flow problems (Sec. 4.3)

Concepts & Notation

- factor-critical graph, near-perfect matching, Edmonds-Gallai Decomposition (West paper).
- Petersen's Theorem (Sec. 3.3).
- Network Flows (Sec. 4.3).

Review

- 1. (**Theorem**) (Berge-Tutte Formula) $\nu = \frac{1}{2}(n def(G)).$
- 2. (**Theorem**) (Tutte's Theorem) A graph G has a perfect matching if and only if for every $S \subseteq V(G) \ o(G-S) \leq |S|$.
- 3. What is a *factor-critical graph*?
- 4. What is a *near-perfect* matching?

Notes

- 1. A vertex v in a graph is either (1) covered by every maximum matching (set B), or (2) not covered by every maximum matching (set D). A vertex in B either (1) has a neighbor outside B (set A) or (2) does not (set C). The **Gallai-Edmonds Decomposition** is the partition of V(G) into sets C, A and D.
- 2. One (efficient) algorithm for finding the Gallai-Edmonds Decomposition is simple to test each vertex v to see whether it is in D. Then A must be the vertices adjacent to the vertices in D and C must be the remaining vertices (C = V A D).
- 3. Find the Gallai-Edmonds Decomposition for a graph with a perfect matching.
- 4. Find the Gallai-Edmonds Decomposition for P_3 .

- 5. Find the Gallai-Edmonds Decomposition for S_4 .
- 6. Find the Gallai-Edmonds Decomposition for the house graph.
- 7. Find the Gallai-Edmonds Decomposition for the graph formed by the join of $3K_3$ and P_2 .
- 8. (Gallai-Edmonds Structure Theorem). Let A, C, D, be the sets in the Gallai-Edmonds Decomposition of a graph G. Let G_1, \ldots, G_k be the components of G[D]. If M is a maximum matching in G then:
 - (a) M covers C and matches A into distinct components of G[D].
 - (b) Each G_i is factor-critical and M restricts to a near-perfect matching on G_i ,
 - (c) If $S \subseteq A$ is non-empty then $N_G(S)$ has a vertex in at least |S| + 1 of G_1, \ldots, G_k ,

(d)
$$def(A) = def(G) = k - |A|.$$

The structure of West's proof, given a maximum matching M of a graph G with decomposition sets, C, A, D, is:

- (a) Define T as in the proof of the Berge-Tutte formula proof (we'll also need facts about the auxiliary graph H(T)),
- (b) We also know:
 - i. All components of G T are factor-critical (and hence odd),
 - ii. Any maximum matching matches T to one vertex in each of T components of G T (in particular M),
- (c) Define $R \subseteq T$ to be a maximum subset with $N_{H(T)}(R) = |R|$,
- (d) Let R' be the union of the components corresponding to the vertices R matches in H(T) with respect to M,
- (e) Argue that $R \cup R' \subseteq C$ (and later $R \cup R' = C$),
- (f) Let D' = V(G) T R' and argue D = D', and
- (g) Argue A = T R.
- 9. What does the Gallai-Edmonds Structure Theorem say for a graph with a perfect matching? Find a maximum matching M, a maximal maximum deficiency set T and check the theorem claims.
- 10. What does the Gallai-Edmonds Structure Theorem say for P_3 ? Find a maximum matching M, a maximum deficiency set T and check the theorem claims.
- 11. What does the Gallai-Edmonds Structure Theorem say for S_4 ? Find a maximum matching M, a maximal maximum deficiency set T and check the theorem claims.
- 12. What does the Gallai-Edmonds Structure Theorem say for the house graph? Find a maximum matching M, a maximum deficiency set T and check the theorem claims.
- 13. What does the Gallai-Edmonds Structure Theorem say for the graph formed by the join of $3K_3$ and P_2 ? Find a maximum matching M, a maximal maximum deficiency set T and check the theorem claims.