Last name

First name

LARSON-—MATH 356-SAGE WORKSHEET 11
Prufer Codes and Euler Circuits

Reminders

1. Homework #6 (h06) is due on Tuesday.
2. Check Blackboard to see if you have every grade you have submitted.

3. Read ahead in our textbook. Up next is Euler circuits (Sec. 4.1)
Coding Algorithms

1. Log in to your Sage/CoCalc account.

a) Start the Chrome browser.

(a)
(b) Go to http://cocalc.com and sign in.
(c¢) You should see an existing Project for our class. Click on that.
(d) Click “New”, call it s11, then click “Sage Worksheet”.

)

(e) For each problem number, label it in the Sage cell where the work is. So for
Problem 1, the first line of the cell should be #Problem 1.

(f) When you are finished with the worksheet, click “make pdf”, email me the pdf
(at clarson@vcu.edu, with a header that says Math 356 s11 worksheet at-
tached).

Saving and Re-using Code

We’ve coded several graphs now, and have added code for functions of graph invariants
and auxiliary functions and stored them in “graphs.sage”. 1 pushed my updated
version to your Handouts folder. Either copy that file to your Home directory—or
add the new stuff to your own “graphs.sage” file. We’ll need those functions.

2. I've updated the copy of “graphs.sage” in your Handouts folder to include what we’ve
added in class. Copy the current version from Handouts to your Home directory.

3. Load your copy of “graphs.sage”. Run: load(‘graphs.sage’).

4. Generate and display a random weighted graph with 5 vertices.



10.

Recursive Functions & a Tree theorem

A recursive function is a function that calls itself. It must always have a base case
so that the recursion eventually stops.

Now write a function recursive_is_tree to test whether a graph is a tree by seeing
if it has a leaf, peeling it off, and repeating for the remaining graph. You’ll need a
base case. What will it be?

Prufer Codes

How can we find a cut verter in a graph?

We will need the following two functions for our Prufer code construction algorithm.

. Write a function find_leafs(T) to find all leafs in a tree T

. Write a function find_cut_vertices(T) to find all cut vertices in a tree 7.

. Write a function find prufer_vertex(T) to find the label of the cut vertex incident

to a leaf with smallest label in a tree T' (assuming T"s vertex labels go from 0 to v —1,
for coding purposes, any list of linearly ordered labels will do).

The Prufer code of a labeled tree T' with labels t1,y,...,t, (from 0 to v — 1, for
coding purposes, any list of linearly ordered labels will do) is a list sq,. .., s,_2 where
s1 is the label of the cut vertex v; adjacent to the leaf w; with the smallest label in
tree T' = Ti; sg is is the label of the cut vertex vy adjacent to the leaf wsy with the
smallest label in the tree Ty, = T} — w; (formed by deleting leaf w; and its incident
edge from T7; etc.

In general s; is is the label of the cut vertex v; adjacent to the leaf w; with the smallest
label in the tree T; = T;_; — w;_; (formed by deleting leaf w;_; and its incident edge
from T;_;.

Write a function prufer_code(T) that takes a labeled tree T' (with labels from 0 to
v — 1, for coding purposes, any list of linearly ordered labels will do) as input and
outputs the Prufer Code of that tree.



11.

Euler Circuits

An FEuler circuit in a graph is a closed walk that contains every edge of the graph
(so vertices may be repeated, every edge will be used exactly once, and we return to
the starting vertex. (Since it is a circuit we can of course began at any vertex). If it
does we say the graph is Fulerian. (Note too this is a graph property: either a graph
is Eulerian or it is not).

Not every connected graph has an Fuler circuit—the Bull graph for instance does
not. How can we test if a graph has an Euler circuit? Or better, find an Euler circuit
in the case that it does not?

A first observation is that if a graph has an Euler circuit every degree must be even
(because the number of times our trail enters a vertex must equal the number of
times it leaves that vertex). So that is a necessary condition. In fact, we will prove
that this (together with being connected) is also a sufficient condition. That is, we’ll
prove: A graph is Eulerian if and only of it is connected and every vertex
has even degree.

Write a function is_eulerian(g) that tests if an input graph ¢ is Eulerian. This is
either True or False, so our function should return a boolean value.

We'll prove that we can find an Eulerian circuit in a connected graph whose vertices
all have even degree. An algorithmic idea is to start at any vertex, greedily find a
cycle (we can argue that it must return to that very same vertex), and then eztend
that cycle.

How? How can we extend the cycle? If the cycle doesn’t contain every graph edge,
then some cycle vertex v must have adjacent edges. Delete the cycle and check the
degrees of the cycle vertices. Find a new cycle, add it to the existing cycle and repeat.

Here’s how we’ll break all this down (assuming our graph has an Eulerian circuit):

(a) Write a function find _cycle(g,v) that takes a graph g and vertex v and greedily
finds a cycle starting and ending with v.

(b) Write a function find remaining subgraph(g,C) that takes the original graph
g and the cycle C' found so far, deletes the cycle edges, and returns the remaining
subgraph.

(c) Write a function find start_vertex(h,C) that takes a (non-empty) graph h
(subgraph of original graph ¢) and cycle C' and returns a cycle vertex v that has
positive degree in h (this will be the start vertex for extending C').

(d) Write a function extend _cycle(h,C,v) that takes a (non-empty) graph h (sub-
graph of original graph ¢) and cycle C', a vertex v of C' of positive degree, finds
a cycle C' in h starting at v, and returns the cycle formed by gluing C' and C’
together.

(e) Write a function find _eulerian cycle(g) by putting these auxilliary functions
(“ingredients”) together.



