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Abstract
I use an established formula for the genus of a hypercube graph to create images and models of n-dimensional
hypercubes. These constructions make hypercubes easier to visualize, yield interesting visual images and models,
and are the genesis for several of my artworks.

Introduction

This paper concerns the visualization of hypercubes, n-dimensional analogues of the familiar 3-dimensional
cube. The approach is to embed hypercube graphs in their surfaces of minimum genus, which can be placed in
an ambient 3-dimensional space. This yields 3-dimensional models of hypercubes, with select faces forming
an unbroken surface with no self-intersections. One can visually “walk through” such a model, see how the
various cells fit together, and thus comprehend the structure of high-dimensional cubes.

I assume you (the reader) have at least a passing acquaintance with graph theory, surface topology
and hypercubes, but we will quickly review the relevant ideas in order to synchronize our notations and
conventions. Section 1 reviews the idea of a 2-cell embedding of a graph on a surface, and Section 2 is a
refresher on hypercubes. In Section 3 we briefly survey some methods of projecting n-dimensional space to
two or three dimensions.

The substance of the paper comes in Section 4, which explains how select faces of a hypercube form a
surface that the hypercube graph is embedded in. I also showcase two of my artworks that grew from these
ideas.

1 Graphs on Surfaces

Recall that the bounded orientable surfaces are the sphere, the torus, the 2-holed torus, and, in general, tori
with n holes. (Non-orientable surfaces are those containing a Möbius band, and they do not play a role in
this paper.) The number of holes in a surface is called its genus. We denote the surface of genus n by Tn. If
T is an arbitrary surface, we denote its genus by γ(T ), so γ(Tn) = n. (The sphere has genus 0, and is thus
denoted as T0.) Figure 1 shows some examples. See Chapter 2 of Goodman [3] for background on surfaces.

T0 T1 T2 T3

Figure 1: Examples of Tori. The sphere T0 (left) followed by T1, T2 and T3.

Determining the genus of a surface can sometimes take a few moments of thought. Consider the surface
on the far left of Figure 2, whose genus may not be immediately apparent. But if we deform it (as if it were
made of some malleable material) as indicated, we see that its genus is 5. Now convince yourself that the
surface in Figure 9 (right) also has genus 5!



Figure 2: Deforming a surface to determine its genus.

A graph is an object consisting of a finite number of vertices (points) together with some number of
edges connecting pairs of vertices. The genus of a graph G, denoted γ(G), is the smallest integer n for which
G can be drawn onTn without crossed edges. A drawing of G on a surface, without crossed edges, is called an
embedding of G on the surface. An embedding of G on a surface of genus γ(G) is called a genus embedding.
For example, for the G on the left of Figure 3, γ(G) = 0, because we can draw G on the surface of a sphere
T0, as shown in Figure 3. The figure also shows embeddings of G on T1 and T2, but, as G can be embedded
in T0, we have γ(G) = 0. The embedding of G on T0 is a genus embedding, and the other embeddings in
Figure 3 are not genus embeddings. (See [2] for a standard introduction to these topics.)
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Figure 3: A graph G (left) and three embeddings of G on surfaces. The first two embeddings are 2-cell
embeddings. But the embedding on the far right is not a 2-cell embedding.

A graph embedded on a surface divides the surface into regions. (Imagine cutting along each edge with
an X-Acto knife. The surface would be cut into pieces, and each piece is a region.) For example, in Figure 3,
the embedding in T0 has four regions, while the embeddings in T1 and T2 each have two regions.

We are especially interested in embeddings for which each region—if flattened—is a polygon. Such
embeddings are called 2-cell embeddings. The embedding in T0 in Figure 3 is a 2-cell embedding, as the
regions are two triangles and two squares. The embedding of G in T1 in Figure 3 is also a 2-cell embedding,
as its two regions are a triangle and an 11-gon. (Seeing the 11-gon may take a moment of visual analysis.)
But the embedding of G in T2 is not a 2-cell embedding, because one of the regions is not a polygon at all,
but rather a portion of a torus. Given a 2-cell embedding, we call its polygon regions faces. It is a fact that
every genus embedding is a 2-cell embedding.

The remarkable Euler genus formula states that if a 2-cell embedding of a graph in a surface T has v
vertices, e edges and f faces, then

γ(T ) =
2 − v + e − f

2
. (1)

(Theorem 7.1 of [2].) Check this formula on the 2-cell embeddings in Figure 3.



2 Hypercubes

Our primary subjects are the n-dimensional hypercubes Hn, and the hypercube graphs Qn, described below.
For an integer integer n > 0, the n-dimensional hypercube graph, denoted Qn, is the graph whose

vertices are the binary strings of length n, and for which an edge joins any two vertices that differ in exactly
one position. Figure 4 shows Q2, Q3 and Q4. The hypercube graph Qn is also called the n-cube graph.
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Figure 4: The 2-, 3- and 4-dimensional cubes.

Figure 4 highlights the fact that the edges of Qn can be properly colored by colors {1, 2, . . . , n}, where
an edge is colored k if its two endpoints differ in position k. Let’s call this the standard coloring of Qn.
Observe that Qn has 2n vertices (which is the number of n-digit binary strings). Each vertex has degree n (as
any vertex is incident with one edge of each color), so the number of edges in Qn is 1

2 n2n = n2n−1.
It is natural to think of Qn as a wire-frame model in Rn as follows: Each vertex corresponds to a point

in Rn in the obvious way (e.g., 0010 corresponds to (0, 0, 1, 0) ∈ R4, etc.), and each edge is a straight line
segment connecting vertices that differ in only one coordinate.

Let I = [0, 1] be the unit interval in R. Then Qn is the 1-skeleton (i.e., the vertices and edges) of the
polytope Hn = I × I × · · · × I =

{
(x1, x2, . . . , xn) | 0≤xi≤1

}
⊆ Rn. We call Hn the n-dimensional hypercube,

or the n-dimensional cube or just the n-cube. (The n-cube graph Qn is a subspace Qn ⊆ Hn.)
LetO = {0, 1} be the boundary of the interval I, so the vertex set of Hn (andQn) isO×O×· · ·×O (n times).

The edges of Hn (and Qn) are the components of the products O × O × · · · × I × · · · × O having only one
factor of I. The faces (also called the 2-cells) of Hn are the connected components of the products

O ×O × · · · × I × · · · × I × · · · ×O

that have exactly two factors of I. As there are
(
n
2

)
ways to choose the positions for the two factors of I, and

2 possibilities (0 or 1) for each of the remaining n − 2 coordinates, it follows that Hn has
(
n
2

)
2n−2 faces, and

each face is isometric to a square (2-cube) I × I.
In a similar vein, for any 1 ≤ k ≤ n, the hypercube Hn has

(
n
k

)
2n−k so-called k-cells, each one a copy

of Ik = Hk . In particular, the number of (n−1)-cells in Hn is
(

n
n−1

)
2n−(n−1) = 2n. (Some writers refer to the

(n−1)-cells as simply the cells of Hn.) Note that H3 has six cells (its six faces, each an H2) and H4 has eight
cells, each one a cube H3. (It is not hard to pick out these eight cells in Figure 4.)



3 Rudiments of Projection

In drawing (or building models of) hypercubes and other n-dimensional figures, we adapt ancient and
well-worn canons of representation, and a brief nod to them is appropriate.

In linear projection, an n-dimensional object in Rn is projected to Rd by a linear transformation. (Here
d = 2 for a drawing, or d = 3 for a sculpture or 3D model.) To set up a linear projection P : Rn → Rd,
begin by selecting n vectors

{
v1, . . . , vn

}
⊆ Rd, which are to be the images of the standard basis

{
e1, . . . , en

}
of Rn. Then any point (x1, . . . , xn) in Rn projects to P(x1, . . . , xn) = x1v1 + x2v2 + · · · + xnvn ∈ Rd. In
linear projection, parallel lines project to parallel lines (or in degenerate cases, to points). See Figure 5 (left).
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Figure 5: Projections of the 4-cube. Left: linear projection using v1 = (1, 0), v2 =
√
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2 (1, 1), v3 = (0, 1), and
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√

2
2 (−1, 1). Center: perspective projection; Right: informal perspective.

Next consider perspective projection, which is a map P : Rn → Rn−1. This was (for n=3) a well-
developed system by the Renaissance. Here the eye of a viewer is located at a viewpoint v = (v1, . . . , vn) ∈ Rn,
and an (n−1)-dimensional hyperplaneV ⊆ Rn is chosen as a picture space. An arbitrary point x ∈ Rn projects
to the point P(x) ∈ V , which is the intersection of the line through v and x with V . In this system, parallel
lines in Rn that are not parallel to V project to non-parallel lines in V that meet at a vanishing point (in V ).

For example, taking v = ( 1
2,

1
2,

1
2,−1) ∈ R4 and V =

{
(x1, x2, x3, 0) | x1, x2, x3 ∈ R

}
⊆ R4, the 4-cube

projects to the configuration in Figure 5 (center). The image is a cube with a smaller cube inside it, with
corresponding points joined by lines (in blue) that meet at a vanishing point. The smaller cube is further
from the viewer than the larger cube, in the direction of the 4th dimension. (The smaller cube is the 4-cube
cell whose points have 4th coordinate 1. The larger cube is the cell whose points have 4th coordinate 0.)

Very oftenwe tacitly compose a perspective projectionRn → Rn−1 with a linear or perspective projection
Rn−1 → Rd for d ∈ {2, 3}, so that the image is a drawing or a 3D model. For example, in Figure 5 (center)
the perspective view of the 4-cube has been composed with a linear projection R3 → R2 to make it a flat
image. We may be barely cognizant of this step, since we are so used to reading 2D images as 3D.

The visual language of perspective is flexible enough that its rules may be bent or broken, with no loss
of image viability. For example, the blue edges of the 4-cube in Figure 5 (right) converge to not one but
two vanishing points, even though they are parallel in R4. In fact, careful (or even cavalier) rule-breaking
can improve image clarity by avoiding visual clutter, and the resulting image can even be stronger and more
readable than if the perspective were mathematically correct. For the purposes of this paper, let’s say that
such an image is rendered in informal perspective. The flexibility afforded by informal perspective will be
very convenient, especially in rendering high-dimensional objects, as we will see.



4 Genus Surfaces for Hypercubes

This section introduces a scheme that makes hypercubes easier to visualize. The key idea is that the genus
surface for any Qn (no matter how big n is) can be embedded in our familiar world R3, and (as we will see)
this surface can be built from faces of Hn.

Beineke and Harrary [1] and (earlier, in German) Ringel [6] proved that the genus of the graph Qn is

γ(Qn) = 1 + (n − 4)2n−3. (2)

(Note that this gives γ(Q2) = 0, γ(Q3) = 0, γ(Q4) = 1, γ(Q5) = 5, and γ(Q6) = 17, and it should be clear
that this is correct at least for Q2 and Q3, as they can be drawn on the sphere T0.)

In a more recent paper [4], Paul Kainen and I show that, for any n > 2, a genus embedding of Qn can be
constructed by selecting a certain subset of Hn’s faces that fit together edge-to-edge to form a surface with
Qn automatically embedded in it. The recipe for this is simple. By the standard coloring, each (square) face
of Hn is colored by edges of two colors, with opposite edges having the same color. (See Figure 6.) If a face
has edge colors k and `, we say that it has bicolor k`. Let T be the union of all Hn faces with bicolors

12, 23, 34, . . . (n−1)n, n1.

Note that if an edge of Qn has color k, it belongs to exactly two faces inT , with bicolors (k−1)k and k (k+1).
It follows that T ⊆ Rn is a surface in which Qn is 2-cell embedded, with all faces squares. Furthermore, T is
connected because Qn is connected. (And, as shown in [4], T is orientable.)

(−,−,−, 0,−,−, 0,−,−,−)

(−,−,−, 0,−,−, 1,−,−,−) (−,−,−, 1,−,−, 1,−,−,−)

(−,−,−, 1,−,−, 0,−,−,−)

Figure 6: A typical square bicolored k`. The four vertices differ only in the kth and `th coordinates. As
there are 2n−2 ways to fill the n−2 unlabeled coordinates, Qn has 2n−2 squares with this bicolor.

We claim that T is actually the genus surface for Qn. To see this, we will calculate the genus of T with
Euler’s formula (1), and show that the result agrees with the value of γ(Qn) given by Equation (2). Now, as
explained in the caption of Figure 6, for any two colors 1 ≤ k < ` ≤ n in the standard coloring of Qn, there
are 2n−2 squares in Hn that have bicolor k`. And because T is made up of the squares of Hn that have one
of the n bicolors 12, 23, 34, . . . , (n−1)n, n1, it follows that Qn is embedded in T with n2n−2 faces. And we
know that Qn has 2n vertices and n2n−1 edges. By Euler’s formula (1),

γ(T ) =
2 − v + e − f

2
=

2 − 2n + n2n−1 − n2n−2

2
= 1 + (n − 4)2n−3,

which is the genus of Qn, by Equation 2. Consequently, we have embedded Qn in a surface T of lowest
possible genus.

Of course this genus surface T lies in Rn, and all of its faces are squares of unit side-length (and 90◦
angles). But any orientable surface can be embedded in R3. Thus we should be able to build 3-dimensional
models of T , perhaps with some of the faces distorted with perspective or informal perspective.

To illustrate, let’s carry out the above construction of T for Q3, Q4 and Q5.



First, Q3. Color the edges of Q3 1 (red), 2 (green) and 3 (blue), as in Figure 4. According to our
construction, we form a surface T by including the red-green faces, the green-blue faces, and blue-red faces
of H3. These are in fact all the faces of H3, and we get the six faces shown in the left of Figure 7. They form
the boundary of the 3-cube, which is topologically equivalent to the sphere T0. So we have an embedding of
Q3 in T0.

Next, consider Q4, with edges colored red, green, blue and black, as in Figure 4. Our construction
dictates that we form a surface T by including the red-green faces, the green-blue faces, the blue-black faces
and the black-red faces of H4. There are 16 such faces. One way of embedding them in R3 is shown on
the right of Figure 7. (Some faces are foreshortened with informal perspective to prevent the surface from
intersecting itself.) The resulting surface is T1, the torus, so we have embedded Q4 in T1. This surface does
not include the red-blue and green-black faces of H4, but we clearly see their perimeters because their edges
belong to the included faces. In visually “walking through” the hole of the torus, we walk through all four
red-blue faces. And we see the perimeters of all four green-black faces, which are inside the torus. This
embedding also makes it easy to pick out all 8 cubic cells (find them!) and to see how they fit together
face-to-face. Also note that for any edge, it is easy to pick out the three cubic cells that share that edge.

This model formed the basis for one of the pop-up cards in my 2023 series 4 Views of the 4-Cube, which
consists of four pop-up designs that unfold to various projections of the 4-cube. (Each was issued in a limited
preliminary run of 22 cards.) Figure 8 shows my Toroidal Hypercube, which opens up to a 3D realization of
the toroidal embedding of the 4-cube.

Figure 7: Genus embeddings of Q3 and Q4.

Figure 8: A pop-up card from my series 4 Views of the 4-Cube, showing the genus embedding of Q4.



Finally, let’s apply our construction to get a genus embedding of Q5. Recall that γ(Q5) = 5. Say the
five edge colors of Q5 are 1, 2, 3, 4 and 5. We thus include the 5-cube faces colored 12, 23, 34, 45, and
51 to obtain an embedding of Q5 in T5. With a combination of intuition and trial-and-error, I created some
informal perspective models of this surface, shown in figures 9 and 10.

Figure 9: Two views of the 5-cube. Linear projection (left), and Q5 embedded in its genus surface T5 (right).

Figure 10: Study for 5-Dimensional Box, two views. Laser printed card stock and tape, 4′′ × 4′′ × 4′′. In
this construction the 5-cube graph is minimally embedded in a surface of genus 5, made from 40
of the 5-cube’s 80 faces.



Figure 10 is a small (4 by 4 by 4 inches) study for a larger work that I plan to undertake. This work, to be
entitled 5-Dimensional Box, will be made with translucent corrugated plastic board and clear packing tape.

The genus embeddings in Figure 9 and Figure 10 do not include the 5-cube faces colored 13, 35, 52, 24
and 41. Thus the embeddings use exactly half the 80 faces of the 5-cube. (The other 40 faces would form a
surface isometric to the one shown here, as you may care to check.) Thus you can visually “walk through”
this model and see all the edges and half the faces of H5, without any intersections. But the missing faces
are clearly visible because their perimeters are edges of faces that do belong to the embedding. In walking
through the model we can see the perimeters of the faces that are not included on the surface; we walk through
some of them, while others are inside the surface.

I believe you will agree that the 5-cube’s structure is much easier to comprehend in the genus embedding
models than in more traditional linear projections. To underscore this, compare the two images in Figure 9.
You will probably find that the following exercises are much easier if you are examining the genus embedding.

Exercise 1: Locate all 80 faces of H5.
Exercise 2: Identify all ten cells of H5. (The cells are 4-cubes, and each appears in perspective, as in Figure 5,
or in informal perspective.)
Exercise 3: The 5-cube has 40 3-cells (each one a 3-cube). Find them (or at least some of them). For each
one, find the two 4-cube cells that share it.
Exercise 4: For an arbitrary vertex, find five 4-cube cells that share this vertex.
Exercise 5: For an arbitrary edge, find four 4-cube cells that share this edge.

Though I have not made models for genus embeddings for hypercubes of dimension greater than 5, the
methods of this paper—or adaptations of them—may produce new and unexpected representations of such
objects. In addition to higher-dimensional cubes, we could consider objects such as n-dimensional simplexes
or octahedra. For example, as proved in [7], the complete graph Kn has genus γ(Kn) = d(n − 3)(n − 4)/12e.
Since Kn is the 1-skeleton of the n-dimensional simplex, we should be able to construct genus embeddings
using select (triangular) simplex faces. Similar remarks hold for n-octahedra (cross-polytopes) [5].
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