Introduction to SAS IML: Interactive Matrix Language

Bios 524: Biostatistical Computing

Getting Help!

- Use the SAS OnLine Documentation for help on SAS IML (click the icons – they are links to VCU’s copy of SAS OnlineDoc).
- Language Reference

What is SAS IML?

- From the OnLine Doc: SAS/IML software
 - is a programming language.
 - operates on matrices.
 - possesses a powerful vocabulary of operators.
 - uses operators that apply to entire matrices.
 - is interactive.
 - is dynamic.
 - processes data.
 - produces graphics.

A Simple Example

Solve this system of linear equations:

\[
\begin{align*}
3x + 2y - 4z &= 11 \\
5x - 4y &= 9 \\
3y + 10z &= 42
\end{align*}
\]

In matrix terms:

\[
\begin{pmatrix}
3 & 2 & -4 \\
5 & -4 & 0 \\
0 & 3 & 10
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
=
\begin{pmatrix}
11 \\
9 \\
42
\end{pmatrix}
\]

A Simple Example: IML Solution

```sas
proc iml;
M={3 2 -4, 5 -4 0, 0 3 10};
B={11, 9, 42};
A=solve(M,B);
```

Result: A

5
4
3

Creating Matrices

- Assigning vectors and matrices
- Creating matrices with functions and operators
- Special Matrices
 - Identity
 - Constant
 - Diagonal
Matrix Operators

- Addition, subtraction, negation (+, –)
- Multiplication
 - (*)
 - Matrix multiplication
 - Scalar multiplication
 - Element-wise multiplication (#)
- Division (/)
 - Matrix/Matrix
 - Matrix/scalar or scalar/Matrix
 - Scalar/scalar

More Matrix Operators

- Power
 - Based on matrix multiplication (**)
 - Example: M*M*M same as M**3.
 - Based on element-wise multiplication (##)
 - Example: M##M same as M##3.
- Concatenation
 - Horizontal (||)
 - Vertical (/)

Comparison Operators

- Comparisons (<, <=, >, >=, ^=)
 - Matrices are compared element by element. The result is a matrix of 0's and 1's, with a 1 indicating that the corresponding element comparison is true.
 - If the comparison is used in a conditional statement, then all element comparisons must be true (=1) for the conditional statement to execute.
- Logical Operators (&, |, ^)
 - Element-wise comparisons
 - (&) Element is 1 if both corresponding elements are nonzero.
 - (|) Element is 1 if at least one corresponding element is nonzero.
 - Not prefix (^): Converts zeros to 1 and nonzeros to 0.

Matrix Subscripts

- Select a single element: X[2,3]
- Select a row: X[2,]
- Select a column: X[,3]
- Select a submatrix
 - X[1 2 3],[2 3]
 - X[1:3,2:3]
- Assign values to submatrix
 - X[2,3]=0
- Subscripts may also be functions or expressions: M[(M<0)]=0

Subscript Reduction Operators

- Operators may be used in place of subscripts that reduce the matrix by operating on certain elements.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>addition</td>
</tr>
<tr>
<td>#</td>
<td>multiplication</td>
</tr>
<tr>
<td><></td>
<td>maximum</td>
</tr>
<tr>
<td><=</td>
<td>minimum</td>
</tr>
<tr>
<td>>=</td>
<td>index of maximum</td>
</tr>
<tr>
<td><=</td>
<td>index of minimum</td>
</tr>
<tr>
<td>:</td>
<td>mean (different from the MATRIX procedure)</td>
</tr>
<tr>
<td>##</td>
<td>sum of squares</td>
</tr>
</tbody>
</table>

Exercise 1

- Assign these two matrices to A and B, respectively:
 - Assign these two matrices to A and B, respectively:
 - Find the sum of all values in A.
 - Find the sum of each column in B.
 - Find the matrix product, AB.
 - Find the value of C=6(A, A<0) – 5B.
 - Set the negative values of C to zero.
 - Solve AU=B for U (a 3x2 matrix).
Using IML with SAS Datasets

- Create matrices from the variables and observations of a SAS data set in several ways.
 - Create a column vector for each data set variable.
 - Create a matrix where columns correspond to data set variables.
 - You can use all the observations in a data set or use a subset of them.
- Create a SAS data set from a matrix.
 - The columns correspond to data set variables and the rows correspond to observations.
 - When reading a SAS data set, you can read any number of observations into a matrix either sequentially, directly by record number, or conditionally.

IML inclassExamples.sas

Open a SAS Data Set for Reading into a Matrix

- Read only:
 USE SAS-data-set < VAR operand > < WHERE(expression) > < NOSAS name > ;
 - SAS-data-set can be specified with a one-word name (for example, A) or a two-word name (for example, SASUSER.A)
 - Operand
 Selects a set of variables.
 - expression is evaluated for being true or false. Selects a set of observations.
 - name
 is the name of a variable to contain the number of observations.

Read Data from a SAS Data Set into a Matrix

- Read from the opened SAS data set:
 READ < range > < VAR operand > < WHERE(expression) > < INTO name > ;
 - range specifies a range of observations.
 -_operand selects a set of variables.
 - expression is evaluated for being true or false. Selects a set of observations.
 - name names a target matrix for the data.

Create a SAS Data Set from a Matrix

- Create a new SAS data set:
 CREATE SAS-data-set < VAR operand > ;
 -_operand selects a set of variables.
 - A literal containing variable names
 - the name of a matrix containing variable names
 - an expression in parentheses yielding variable names
 - one of the keywords described below:
 - _ALL_ for all variables
 - _CHAR_ for all character variables
 - _NUM_ for all numeric variables

Create a SAS Data Set from a Matrix

- Create a new SAS data set:
 CREATE SAS-data-set < FROM matrix-name > [COLNAME=column-name ROWNAME=row-name] ;
 - column-name is a character matrix or quoted literal containing descriptive names to associate with data set variables.
 - row-name is a character matrix or quoted literal containing descriptive names to associate with observations on the data set.

Data Management Commands

Look these up, for example:
- Append adds observations to the end of a SAS data set
- Show Contents shows contents of the current input SAS data set
- Show Datasets shows SAS data sets currently open
- Close closes a SAS data set
- Setin selects an open SAS data set for input
Exercise 2

Use IML to place the number of FTE physicians in the clinics into a vector.
- Find the average FTE.
- Find the maximum FTE.
- Find the smallest FTE that is greater than the mean.
 - Challenge: Find all clinics corresponding to this value.
 - Challenge: Print the clinic names using $CLINID format.

Note: Use the libref LIBRARY, since CLINICS uses custom formats.

Regression Example

- Model
 \[y = \alpha + \beta_1 X + \beta_2 X^2 + \epsilon \]
- X: 1, 2, 3, 4, 5
- Y: 1, 5, 9, 23, 36
- Regress Y on X
 - Find estimates of \(\alpha, \beta_1, \beta_2 \)
 - Find predicted values of Y.

Exercise 3

- Convert this table of means to a matrix:

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>13</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

 - Find the
 - overall mean
 - mean of each row
 - mean of each column.
 - Subtract the overall mean from the mean of each row and from the mean of each column.

- Find values of \(\mu, \alpha, \beta, \gamma \) where
 - \(\mu \) is the overall mean
 - \(\alpha_i \) is the contrast for the \(i \)th row
 - \(\beta_j \) is the contrast for the \(j \)th column
 - \(\gamma_{ij} \) is the interaction for the \(ij \)th cell

\[
E(Y_{ij}) = \mu + \alpha_i + \beta_j + \gamma_{ij}
\]