Contents

Preface vii

Introduction viii

I Fundamentals

1. Sets 3
   1.1. Introduction to Sets 3
   1.2. The Cartesian Product 8
   1.3. Subsets 11
   1.4. Power Sets 14
   1.5. Union, Intersection, Difference 17
   1.6. Complement 19
   1.7. Venn Diagrams 21
   1.8. Indexed Sets 24
   1.9. Sets that Are Number Systems 29
   1.10. Russell’s Paradox 31

2. Logic 33
   2.1. Statements 34
   2.2. And, Or, Not 38
   2.3. Conditional Statements 41
   2.4. Biconditional Statements 44
   2.5. Truth Tables for Statements 46
   2.6. Logical Equivalence 49
   2.7. Quantifiers 51
   2.8. More on Conditional Statements 54
   2.9. Translating English to Symbolic Logic 55
   2.10. Negating Statements 57
   2.11. Logical Inference 61
   2.12. An Important Note 62

3. Counting 63
   3.1. Counting Lists 63
   3.2. Factorials 70
   3.3. Counting Subsets 73
   3.4. Pascal’s Triangle and the Binomial Theorem 78
   3.5. Inclusion-Exclusion 81
II  How to Prove Conditional Statements

4. Direct Proof  87
   4.1. Theorems  87
   4.2. Definitions  89
   4.3. Direct Proof  92
   4.4. Using Cases  98
   4.5. Treating Similar Cases  99

5. Contrapositive Proof  102
   5.1. Contrapositive Proof  102
   5.2. Congruence of Integers  105
   5.3. Mathematical Writing  107

6. Proof by Contradiction  111
   6.1. Proving Statements with Contradiction  112
   6.2. Proving Conditional Statements by Contradiction  115
   6.3. Combining Techniques  116
   6.4. Some Words of Advice  117

III  More on Proof

7. Proving Non-Conditional Statements  121
   7.1. If-and-Only-If Proof  121
   7.2. Equivalent Statements  123
   7.3. Existence Proofs; Existence and Uniqueness Proofs  124
   7.4. Constructive Versus Non-Constructive Proofs  128

8. Proofs Involving Sets  131
   8.1. How to Prove \( a \in A \)  131
   8.2. How to Prove \( A \subseteq B \)  133
   8.3. How to Prove \( A = B \)  136
   8.4. Examples: Perfect Numbers  139

9. Disproof  146
   9.1. Counterexamples  148
   9.2. Disproving Existence Statements  150
   9.3. Disproof by Contradiction  152

10. Mathematical Induction  154
    10.1. Proof by Strong Induction  161
    10.2. Proof by Smallest Counterexample  165
    10.3. Fibonacci Numbers  167
IV Relations, Functions and Cardinality

11. Relations 175
   11.1. Properties of Relations 179
   11.2. Equivalence Relations 184
   11.3. Equivalence Classes and Partitions 188
   11.4. The Integers Modulo $n$ 191
   11.5. Relations Between Sets 194

12. Functions 196
   12.1. Functions 196
   12.2. Injective and Surjective Functions 201
   12.3. The Pigeonhole Principle 205
   12.4. Composition 208
   12.5. Inverse Functions 211
   12.6. Image and Preimage 214

13. Cardinality of Sets 217
   13.1. Sets with Equal Cardinalities 217
   13.2. Countable and Uncountable Sets 223
   13.3. Comparing Cardinalities 228
   13.4. The Cantor-Bernstein-Schröder Theorem 232

Conclusion 239

Solutions 240

Index 301