• Suppose that you are given a network G, and you want to determine a path of shortest length that can start at either of the nodes s_1 or s_2 and can terminate at either of the nodes t_1 or t_2. How would you solve this problem?

Create network $G' = (N', A')$, where

$$
N' = N \cup \{s_0, t_0\}
$$

$$
A' = A \cup \{(s_0, s_1), (s_0, s_2), (t_1, t_0), (t_2, t_0)\}
$$

$$
c'_{ij} = \begin{cases}
 c_{ij} & \text{if } (i, j) \in A \\
 0 & \text{otherwise.}
\end{cases}
$$

Finding a shortest path from s_0 to t_0 solves the described problem; any s_0–t_0 path must go through one of s_1 and s_2, and through one of t_1 and t_2. Since arcs out of s_0 and into t_0 have zero length, they do not affect the length of the shortest path.

• Figure 4.15(b) in your text gives a road network in which all road segments are parallel to either the x-axis or the y-axis. The figure also gives the traversal costs of arcs. Suppose that we incur an additional cost (or penalty) of a units every time we make a left turn. How would you find the lowest-cost route from node 1 to node 12 by solving a single-source shortest path problem?

Let $G = (N, A)$ be the original network given in Figure 4.15(b).
$G^* = (N^*, A^*)$, where

$N^* = \{i/j : (i,j) \in A\} \cup \{s_0,t_0\}$

$A^* = \{(i/j,j/k) : (i,j) \in A \text{ and } (j,k) \in A\}$

$= \{(s_0,1/2),(s_0,1/4),(9/12,t_0),(11/12,t_0)\}.$

Let

$$c^*_{i/j,j/k} = \begin{cases} c_{ij} & \text{if turning from arc } (i,j) \text{ onto arc } (j,k) \text{ in } G \\
& \text{is not a left turn and } k \neq 12 \\
& \text{if turning from arc } (i,j) \text{ onto arc } (j,k) \text{ in } G \\
& \text{is a left turn and } k \neq 12 \\
& \text{if turning from arc } (i,j) \text{ onto arc } (j,k) \text{ in } G \\
& \text{is not a left turn and } k = 12 \\
& \text{if turning from arc } (i,j) \text{ onto arc } (j,k) \text{ in } G \\
& \text{is a left turn and } k = 12 \\
& \end{cases}$$

and $c_{s_0,1/2} = c_{s_0,1/4} = c_{9/12,t_0} = c_{11/12,t_0} = 0$.

Notice that, in G^*, we consider the cost of left hand turns. We solve the single source shortest path problem with source s_0, and consider the shortest path from s_0 to t_0. A path

$$s_0 \rightarrow 1/i_1 \rightarrow i_1/i_2 \rightarrow \cdots \rightarrow i_{k-1}/i_k \rightarrow i_k/12 \rightarrow t_0$$

says to travel (in G) the arcs

$$(1,i_1), (i_1,i_2), \ldots, (i_k, 12).$$

The cost of this path in G^* considers the cost of a left turn, if one is made. The cost of arc $(i/j,j/k)$ counts the cost of arc (i,j), unless $k = 12$, in which case we include the cost of arc (j,k) as well.

- **A. Suppose you wish to find a shortest walk from a source node s to a sink node t subject to the additional condition that the walk must visit a specified node p. How would you do this? Will this walk always be a path?**

Simply find the shortest path from s to p (call it P_1) and find the shortest path from p to t (call it P_2). Then the walk $P_1 - P_2$ gives the shortest path from s to t that visits p. This walk need not be a path (this can be seen by considering the graph $G = (N,A)$ with $N = \{1,2,3,4\}$ and $A = \{(1,2),(2,3),(2,4),(3,2)\}$, where $s = 1, t = 4, p = 3$ and all arc lengths are 1.)
B. Suppose you wish to find a shortest walk from a source node s to a sink node t subject to the additional condition that the walk must visit a specified arc (p,q). How would you do this? Will this walk always be a path?

Find the shortest path from s to p (say, P_1) and the shortest path from q to t (say, P_2). The shortest walk from s to t using arc (p,q) is $P_1-(p,q)-P_2$. This walk need not be a path (consider the graph given in part A with $s = 1, t = 4, p = 3, q = 2$).