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ABSTRACT

Different statistical measures of bias of oligonucleotide sequences in DNA sequences were compared,
both by theoretical analysis and according to their abilities to predict the relative abundances of
oligonucleotides in the genome of Escherichia coli. The expected frequency of an oligonucleotide calculated
from a maximal order Markov model was shown to be a degenerate case of the expected frequency calculated
from biases of all subwords, arising when noncontiguous subwords exhibit no bias. Since (at least in E. coli),
noncontiguous sequences exhibit significant bias, the total compositional bias approach is expected to
represent biases in genomic sequences more faithfully than Markov approaches. In fact, the efficacy of
statistics based on Markov analysis even at the highest order were inferior in predicting actual frequencies of
oligonucleotides to methods that factored out biases of internal subwords with gaps.

Using total compositional bias as a measure of relative abundance, tetranucleotide and hexanucleotide
palindromes were found to be distributed differently from nonpalindromic sequences, with their means
shifted somewhat towards underrepresentation. A subpopulation of palindromic hexanucleotides, however,
was highly underrepresented, and this group consisted almost entirely of targets for Type II restriction
enzymes found within strains of E. coli. Sites recognized by Type I endonucleases from related strains were not
markedly biased, and with pentanucleotides, palindromic and nonpalindromic sequences had nearly identical
distributions. The loss of restriction sites may be explained by the free transfer of plasmids encoding restriction
enzymes and episodic selection for the presence of the enzymes.

1. INTRODUCTION

Cryptoanalysts often attack a code by making catalogues of very rare or very common symbols, hoping thereby
to make a connection between the symbolic content of the message and its meaning. Much is already known
about the information carried by DNA: it encodes protein, it contains protein-binding sites necessary for the
regulation of transcription and its own replication, and so forth. Even taking into account what is known about
informational content, however, natural DNA sequences are far from random. Examining DNA sequences for
rare or common motifs, apart from those related to known functions, may shed light on either the message or the
medium by which it is conveyed.

Much attention has been devoted to the frequencies of oligonucleotides within the genomes of specific
Eucarya, Eubacteria, and Archaea.  The relative abundance of dinucleotides (their frequencies normalized to GC
content) is generally invariant throughout a genome and may relate to the particular manner in which an organism
replicates and repairs its DNA and to DNA conformation (Karlin et al., 1997). Several groups have also noted
significant underrepresentation of specific tetranucleotides and longer oligonucleotides (Philips, et al., 1987;
Colosimo et al., 1993; Schbath, et al., 1995; Gelfand and Koonin, 1997; Karlin et al, 1997; Karlin, et al., 1998),
particularly palindromic sequences recognized by restriction endonucleases (Karlin, et al., 1992; Gelfand and
Koonin, 1997; Rocha et al., 1998). The apparent avoidance of certain restriction sites may provide important
clues to the evolution of bacterial genomes. 

To say that an oligonucleotide sequence is relatively rare hinges critically on how the “expected number of
sites” is defined.   Several different methods of calculation have been proposed,  which can be divided into two
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To say that an oligonucleotide sequence is relatively rare hinges critically on how the “expected number of
sites” is defined. Several different methods of calculation have been proposed, which can be divided into two
classes: those that are based on Markov models (Pevzner, et al., 1989; Karlin, et al., 1992; Schbath, et al., 1995;
Leung, et al., 1996), and one based on factoring out biases of internal subwords (Burge et al., 1992; Karlin et al.,
1997). Methods have differed also in how the expected number has been compared to the observed number of
sites, whether by ratio (Karlin et al., 1997; Phillips, et al., 1987) or by a difference normalized to the estimated
standard deviation (Schbatch, 1997). Some have based their conclusions on the analysis of one DNA strand
(Merkl and Fritz, 1996; Gelfand and Koonin, 1997), others on an analysis of both. It is unclear how much the
perceived bias in oligonucleotide frequencies is sensitive to the statistical method employed to detect it, hence it
is also unclear how much confidence we should place on the conclusions based on them.

I have sought to set these disparate methods within a common theoretical framework, so that their differences
can be viewed in isolation. The sequenced genome of E.coli has been used as a testing ground to determine
whether the different assumptions underlying each method affects its efficacy in judging oligonucleotide biases in
real DNA sequences.

2. THEORY

Bias in the occurrence of oligonucleotide sequences cannot be assessed merely by comparing the frequencies
of these sequences, since this approach ignores the difference in the frequencies of A+T vs G+C, which is
substantial in many organisms. Likewise, the simple approach of normalizing the observed frequency to the
expected frequency based on the frequencies of the component nucleotides ignores other confounding deviations
from randomness (Phillips, et al., 1987). For example, the sequence TAG is rare in some bacteria, and
consequently GTAG, ATAG, TTAG, and CTAG are also rare. A proper measure of bias should indicate the
deviation of the frequency of an oligonucleotide from expectation, beyond that already expected from its
component oligonucleotides. Two classes of methods have been proposed to assess bias, accounting for biases of
internal sequences, and these are discussed below.

2.1. Estimations of expected frequency based on Markov models
Markov models are most commonly used to calculate the expected frequency (EM) or expected number (NTEM)
of oligonucleotides (w1...wL), where NT is the total number of nucleotides considered from the genome under
study. The expected number of hexanucleotides, for example, has been estimated by a second order Markov
model using the observed counts (N) of contained oligonucleotides:

NTEM2(w1 w2 w3 w4 w5 w6)  =    
N(w1 w2 w3) N(w2 w3 w4) N(w3 w4 w5) N(w4 w5 w6) (1)

                                                     N(w2 w3) N(w3 w4) N(w4 w5)

(called Ctri by Karlin et al., 1992). A third order Markov model has also been used:

NTEM3(w1 w2 w3 w4 w5 w6)  =    
N(w1 w2 w3 w4) N(w2 w3 w4 w5) N(w3 w4 w5 w6) (2)

                                                                                                 
N(w2 w3 w4) N(w3 w4 w5)

(EM3 called p() by Phillips, et al., 1987). Others have used a maximal fourth order Markov model:

NTEM4(w1 w2 w3 w4 w5 w6)  =    
N(w1 w2 w3 w4 w5) N(w2 w3 w4 w5 w6) (3)

                                                              N(w2 w3 w4 w5)

(called K by Gelfand and Koonin, 1997, and E by Rocha et al., 1998). The ratio of N(w1…wL) to NTEMn will be
called ρEmn, and the expected frequency based on the maximal order Markov model will be termed EM
henceforth.

In addition, Pevzner et al. (1989) combined Markov terms in an attempt to take biases that may be present in
gapped subwords. Following Pevzner et al, the number of occurrences of two contiguous pentanucleotides in
equation (3) may be rationally replaced by the number of occurrences of any two distinct noncontiguous
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all a,b

pentanucleotides, which are divided by the occurrences of the tetranucleotide common to both. If a geometric
mean of expected occurrences based on all 15 such pairs of pentanucleotides is

NTEP (w1 w2 w3 w4 w5 w6)  =    
N (w1 w2 w3 w4 w5) N (w1 w2 w3 w4 w6)

     
N (w1 w2 w3 w4 w5) N (w1 w2 w3 w5 w6)…  (1/15)

(4)
                                  N(w1 w2 w3 w4)                                         N(w1 w2 w3 w5)                  …

In general,

NTEP(un) 
= Π  [(N (un-1)a N (un-1)b / N (un-2)a,b)] 

[2/(n(n-1))]
(5)

where un is a word of length n, (un-1)a  and (un-1)b are two nonidentical (n-1)-meric subwords of un, and (un-2)a,b is
the (n-2)-meric subword that's common to both. This expression can be simplified by combining like factors:

NTEP(un)  =  { Π [ N(un-1)n-1] / Π [ N (un-2)] }
[2/(n(n-1))]

(6)

which for hexanucleotides becomes:

NTEP(w1 w2 w3 w4 w5 w6)  =  { Π [ N(u5)5] / Π [ N (u4)] }
(1/15)

(7)

2.2. Estimation of bias based on normalized difference
Bias has been measured as the ratio of the observed frequencies to the expected frequencies or,

alternatively, as the normalized difference of the two quantities:

 z (w1w2w3...wL)=   
[N (w1w2w3...wL) – NTEM (w1w2w3...wL)] (8)                               

L1/2σ

(called zM by Schbath, 1997), where σ is the estimated standard deviation of the difference between N and NTEM,
given by Schbath (1997):

σ =   
NTEM(w1...wL) ⋅[(N(w2 w3...wL-1 ) - N(w1 w2 w3...wL-1 ) (N(w2 w3...wL-1 ) - N(w2 w3...wL )] 

(9)
                                                              N(w2 w3...wL-1 ) 

 ⋅ L

Note that in the expression for z, L  cancels in the denominator, so z is independent of length of the
oligonucleotide.

2.3. Estimation of bias by factoring out biases of contained subwords (total compositional bias)
Karlin et al (1997) used a measure of bias of an oligonucleotide sequence designed to take into account the

biases of all subwords within the sequence. That measure, ρ (given different names by Karlin et al, 1997,
depending on the length of the oligonucleotide), is equal to the frequency of occurrences of a sequence divided by
the mononucleotide frequencies and the ρ values for all of the contiguous and noncontiguous oligonucleotides
within the sequence. For example, for a tetranucleotide w1w2w3w4:

ρ(w1w2w3w4) = f (w1w2w3w4)/[f (w1)⋅f (w2)⋅f (w3)⋅f (w4) ⋅Π ρ(all duplets) ⋅ Π ρ(all triplets)] (10)

where f () represents the frequency of the given sequence, or N ( )/NT
. The six duplet factors consist of:

Π ρ(all duplets) = ρ(w1w2)⋅ρ(w1 _ w3)⋅ρ(w1 _ _ w4)⋅ρ(w2w3)⋅ρ(w2 _ w4)⋅ρ(w3w4) (11)

(“_ ” indicating a gap) and the four triplet factors consist of:

Π ρ(all triplets) = ρ(w1w2w3)⋅ρ(w1w2 _ w4)⋅ρ(w1 _ w3w4)⋅ρ(w2w3w4) (12)

ρ thus takes into account the biases inherent in all contiguous and noncontiguous subsequences and provides a
measure of the bias attributable just to the sequence under consideration. The factor is not easy to compute,
however. The total number of oligonucleotide frequencies that must be considered to compute a ρ factor is 2L - 1,
where L is the length of the sequence. Worse, the total number of individual frequencies within the calculation
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increases with length at a greater than exponential rate. 4782 frequencies are required to calculate a single
hextuplet ρ factor.

Fortunately, the expression can be greatly simplified (see Appendix) and, in general, becomes for even L
(Karlin and Cardon, 1994):

ρ(w1w2w3...wL) =    
Π (feven) 

(13)
                                                                Π (fodd)

and

ρ(w1w2w3...wL) =     
Π (fodd) 

(14)
                                                                 Π (feven)

for odd L, where “feven” and “fodd” refer to f of all contained oligonucleotide sequences of even or odd length. For
example, for a pentanucleotide, ρ may be calculated as:

ρ(w1w2w3w4w5) =
    f(w1w2w3w4w5) f(w1w2w3) f(w1w2 _ w4) f(w1w2 _ _ w5) f(w1 _ w3w4) f(w1 _ w3 _ w5)

                                   f(w1w2w3w4) f(w1w2w3 _ w5) f(w1w2 _ w4w5) f(w1 _ w3w4w5) f(w2w3w4w5)

·      f(w1 _ _ w4w5) f(w2w3w4) f(w2w3 _ w5) f(w2 _ w4w5) f(w3w4w5) f(w1) f(w2) f(w3) f(w4) f(w5)     
(15)

· f(w1w2) f(w1 _ w3) f(w1 _ _ w4) f(w1 _ _ _ w5) f(w2w3) f(w2 _ w4) f(w2 _ _ w5) f(w3w4) f(w3_ w5) f(w4w5)

Although ρ is not based on a model, one may nonetheless derive a quantity, EB, similar to an expected
frequency, such that:

ρ(w1. . .wL) = f (w1. . .wL) / EB(w1. . .wL) (16)

and so:

EB (w1…wL) = Π [ f  (wi)]  Π [ ρ (u2)] Π [ ρ (u3)] ... Π [ ρ (uL-1)] (17)

where uj represents a subword of w1…wL consisting of contiguous or noncontiguous letters.

2.4. Comparison of different measures of bias
Surprisingly, the two measures of expected frequency, EB and EM, may be expressed in terms of one

another, even though they are derived from theoretical treatments that might seem quite distinct. This relationship
(proven in the Appendix) is:

EB(w1w2w3...wL) = EM(w1w2w3...wL) Π[ρ (νG)] (18)

where νG represents only those subwords of w1...wL that contain gaps. EB and ρ therefore differ from EM and z in
accounting for the biases of noncontiguous subsequences, and if only contiguous subsequences are considered in
the calculation of EB, then the result is identical to EM. The z statistic is therefore a less complete description of
bias than ρ. For example, if the sequence GG _ _ CC were underrepresented in the genome, one would obtain
spuriously low z values for GGTACC, while the ρ value for GGTACC would incorporate the bias against
GG _ _ CC. The degree to which included noncontiguous sequences contribute to overall bias of an
oligonucleotide can be assessed by the deviation of EB/EM from 1.

There are, however, considerable advantages in using z in place of ρ. The former is generally much easier to
compute, requiring the determination of only four quantities, irrespective of the length of the sequence.
Furthermore, since z has an approximately normal distribution and is normalized to the standard deviation, z
values may be easier to interpret than ρ values. A z value of +1 indicates that the sequence is overrepresented,
deviating in frequency by one standard from expectation. Similarly, a value of -1 indicates that the sequence is
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underrepresented by a standard deviation. It should be noted, however, that the expression for standard deviation
presumes a sequence generated by a Markov chain (Kleffe and Borodovsky, 1992), which, of course, is not how
natural DNA is made.  ρ values greater than one or less than one indicate sequences that are, respectively, over-
or underrepresented, but the statistical significance of the magnitude of the deviation from 1 is not clear.

The relationship between EB and EP is readily shown to be for even L:

EB(w1w2w3...wL) = EP(w1w2w3...wL) Π[fodd<n-2)] /Π[feven<n-3)] (19)
and

EB(w1w2w3...wL) = EP(w1w2w3...wL) Π[feven<n-2)] /Π[fodd<n-3)] (20)

for odd L. The physical significance of this relationship is not clear, however.

2.5. Questions arising from the comparison of different measures of bias
It is possible to spin out ever more complicated measures of bias, but at some point one must ask whether

the additional computational demands are warranted by the additional information gained. The question cannot be
answered by theory but rather by examining actual DNA sequences to determine whether the increased
sophistication in treatment makes any discernible difference in outcome. The computational practices that have
been used to examine natural sequences, juxtaposed against the theoretical considerations discussed above,
inspired the following questions:

• Do strands of genomic DNA differ in the bias they exhibit towards oligonucleotides? If so, then it may
be necessary to examine both strands of genomic DNA in order to assess properly the bias of an
oligonucleotide.

• Do increasing orders of Markov models produce different measures of oligonucleotide bias? If so, then it
may be necessary to forego the convenience of employing lower orders.

• Do natural DNA sequences show biases with respect to certain oligonucleotides with gaps? If so, then
bias calculations based on Markov methods may be inappropriate for natural DNA sequences.

• Do Markov methods and the total compositional bias method identify the same oligonucleotides as
highly biased? If not, then we may be forced to discount conclusions reached by Markov methods
concerning the bias of oligonucleotides.

3. METHODS

The questions above have been addressed by examining the 4639221 bp sequence of the E. coli genome
(GenBank accession U00096) obtained from the University of Wisconsin E. coli genome center
(http://www.genetics.wisc.edu), stamped 18 November 1998. Recognition sequences of all restriction enzymes
carried by E. coli species were obtained from REBASE (http://rebase.neb.com/ rebase/rebase.html) on August
2000.

Sequences were analyzed on a Pentium II computer operating at 450 MHz. Except where noted, both strands
were analyzed, and the frequency of a sequence was taken to be the average of the frequency of itself and its
inverse complement (read 5' to 3'). Analysis of the entire E. coli genome for all oligonucleotides of length less
than or equal to 6 bases required about 20 minutes computer time. Complete rankings of all oligonucleotide
sequences of length six or less are available upon request.

Codon frequencies in the E. coli genome were determined from the annotated GenBank entry, summing
the lengths of all open reading frames given CDS lines.

4. RESULTS

4.1. Compositional differences between the two strands of E. coli DNA and its effect on the measure of bias
Some groups evaluating the presence of palindromic sequences examined only one of the two strands of the

E. coli genome (Phillips et al, 1987; Gelfand and Koonin, 1997). If the biases in the sequence are equally
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apparent on each strand, then nothing was lost by this choice. To determine whether this is the case, each strand
was analyzed separately and the resulting statistics compared for tetranucleotide sequences. Table 1 shows those
tetranucleotides that occur in greatest excess on the + strand relative to the – strand. In sixteen cases, the
frequency with which a tetranucleotide occurs on one strand differs by more than an estimated three standard
deviations from that on the other strand.

In six of these most biased cases, the overrepresented tetranucleotide contains one of the three codons most
frequently used by E. coli (CTG, 5.26%; GAA, 3.94%; GCG, 3.36%). Out of the 256 possible tetrameric
oligonucleotides, 24 contain one of these three codons. Using a hypergeometric distribution (or, equivalently,
presuming sampling without replacement), I calculated a probability of about 0.1% that the observed number
would arise in a random group of 16 tetranucleotides. In 4 of the remaining 10 tetranucleotides, the
complementary tetranucleotide contains one of the 5 least frequently used codons. These results would be
comprehensible if the + strand contained fewer codons than the - strand, and this indeed is the case. The + strand
has 2.2% fewer open reading frames (2095 compared with 2194) and 5.0% fewer codons (665085 compared with
698194) than its counterpart. In sum, the frequency of tetranucleotides (and penta- and hexanucleotides; data not
shown) differ substantially from one strand to the other.

If the difference between the strands is sufficient to affect the measure of bias of oligonucleotide
sequences, then z will differ depending on which strand is used to compute it. Fig. 1 shows that z based on the
+ strand differs markedly from that based on the - strand in many instances. The two measures differed by up
to 8.6 estimated standard deviations (for the hexamer CTGCTG, a duplet of the most common codon in
E. coli). For the remainder of this study, z and other statistics have been calculated on the basis of an analysis
of both DNA strands.

 TABLE 1. ASYMMETRIC DISTRIBUTION OF TETRAMERS ON TWO STRANDS OF E. COLI DNA

Sequencea,b Occurrencesb ρc zc Differenced

TCTG (CAGA) 21261 (22081) 0.935 (0.937) -28.6 (-27.76) -5.62
CTGC (GCAG) 28240 (29140) 0.934 (0.942) -17.97 (-14.84) -5.36
GCTG (CAGC) 36516 (37475) 1.017 (1.022) 13.27 (16.20) -5.02
TGCT (AGCA) 22595 (23227) 1.065 (1.074) 24.62 (27.47) -4.20
GCGT (ACGC) 25774 (26402) 1.018 (1.024) 14.03 (17.24) -3.91
CGGT (ACCG) 24668 (25277) 1.048 (1.058) 7.13 (11.79) -3.88
ACGA (TCGT) 14219 (14663) 0.914 (0.917) -7.97 (-4.90) -3.72
TGGC (GCCA) 31142 (31795) 0.936 (0.938) 18.38 (19.22) -3.70
GGCG (CGCC) 34480 (35156) 1.019 (1.013) 57.60 (58.66) -3.64
ATCT (AGAT) 16200 (16660) 0.973 (0.969) -17.82 (-16.96) -3.61
GGGC (GCCC) 15300 (15745) 1.176 (1.178) -9.51 (-6.38) -3.60
GTCT (AGAC) 10300 (10652) 0.998 (1.005) -11.32 (-11.08) -3.47
CTAC (GTAG) 9121   (9448) 1.199 (1.206) 37.56 (40.23) -3.42
TCTA (TAGA) 5527   (5778) 0.963 (0.979) -11.67 (-10.68) -3.38
CGAA (TTCG) 19087 (19546) 0.992 (0.993) -29.06 (-27.83) -3.32
ATGG (CCAT) 19566 (20000) 0.951 (0.954) -5.41 (-4.35) -3.10

a The left-hand tetranucleotide was the target for a search of the E. coli genome. The tetranucleotide within parentheses, shown only for comparison, is the
inverted complement, i.e. the sequence that would appear at the corresponding position on the opposite strand. All sequences with an absolute normalized
difference greater than 3 are shown. Triplets in bold and underscored represent codons that are used very frequently in E. coli (per 1000 codons: CTG, 51.5;
GAA, 39.8; GCG, 32.6). Triplets in bold, italicized, and overscored represent codons that are used very infrequently (TAG, 0.3; AGA, 2.6).
b The + strand is that which is deposited in GenBank. Its inverse complement is denoted as the - strand.
c ρ and z are measures of bias as described in the Theory section.
d The normalized difference is the number of occurrences of a sequence on the + strand minus the number of occurrences on the - strand, all divided by the
standard deviation of the number of occurrences on the + strand, taken to be its square root.
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4.2. Differences between EB and EM as measures of expected frequency
Conceivably, EM, or perhaps an expected frequency based on a lower order Markov model, could serve

for practical purposes in place of the more complex measure of expected frequency, EB, so long as the two
measures approximated one other. One way to answer this question is to compare each statistic with the
frequencies of occurrences of oligonucleotides in an actual genome. Table 2 shows such a comparison. For
tetranucleotides, pentanucleotides, and hexanucleotides, the Markov-based expected frequency is
significantly worse in predicting actual occurrences than EB, with effectiveness decreasing with lower orders.
EP, the only Markov-based expected frequency considered that takes gapped sequences into account, is the
best of the lot, except for EM itself. The differences between EB and EP are rather slight overall but more
striking when just palindromic sequences are considered. Frequencies calculated solely on the basis of
mononucleotide frequencies (E0) are remarkably poor estimators of actual values.

As one might expect, the differences between EB and EM carry over to the bias statistics in which they are
employed. When the two were used to compute the measures of bias, ρ and z, significant differences were
observed (Fig. 2A). Though one would not expect a linear relationship between a statistic based on a ratio and
another based on a difference, it is clear that the poor correlation between the two is real: their low Kendall-
Tau correlation coefficient of 0.216 does not depend on a linear model of comparison.

The greater part of the disagreement between ρ and z stems from the difference between EB and EM.
When ρ was calculated using EM rather than EB as the expected frequency, much of the scatter disappeared,
particularly for oligonucleotides that are little biased (Fig. 2B), and the Kendall-Tau coefficient rose to 0.885.

If EB differed from EM in a haphazard manner, general conclusions previously derived from genomic
analysis using EM might well still be valid. This is not the case, however. EM systematically estimates a
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Fig 1. Scatter plot of the bias
statistic z comparing values
obtained from hexanucleotide
frequencies on the two strands of
E. coli genomic DNA. The + strand
(x-axis) is defined as that
represented in the sequence
deposited in GenBank The – strand
(y-axis) is the inverse of that
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squared fit.

TABLE 2: CORRELATION OF EXPECTED FREQUENCIES WITH ACTUAL FREQUENCY OF OLIGONUCLEOTIDESA

Oligonucleotidesb EB
c EP

c EM4
c EM3

c EM2
c EM1

c E0
d

Tetramers (136) 0.898 0.868       --       -- 0.771 0.543 0.037
     palindromes (16) 0.917 0.850       --       -- 0.700 0.650 0.184

Pentamers (512) 0.936 0.897       -- 0.866 0.716 0.503 0.028

Hexamers (2080) 0.944 0.903 0.898 0.804 0.665 0.471 0.020
     palindromes (64) 0.831 0.728 0.680 0.620 0.534 0.359 -0.183
a Correlation of each statistic with the observed frequency computed as the Kendall-Tau statistic, as described in the Methods section.
b Class of oligonucleotide is followed by the number of oligonucleotides in that class in parentheses. The statistics are computed over both DNA
strands, so a sequence is deemed to be equivalent to its complement.
c Statistics are as described in the Theory section: EB is the expected frequency taking into account total compositional bias; EM1, EM2, EM3, and
EM4 are expected frequencies based on a first-, second-, third-, or fourth-order Markov model. EP is the geometric mean of all possible EM values
based on gapped sequences.
d E0 is the product of the frequencies of the component mononucleotides over both DNA strands.
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frequency higher for palindromes than does EB. The average ratio of EB/EM is 0.93, 0.89, and 0.91 for
palindromic tetranucleotides, pentanucleotides, and hexanucleotides, respectively, but 1.00, 1.01, and 1.00 for
nonpalindromic sequences. To illustrate this effect further, sorting oligonucleotide sequences on the basis of
their EB/EM ratio sorts them also by complementarity at their terminal positions. All 25 (5%) of the
pentanucleotides with the lowest EB/EM ratios are terminally complementary, as are 19 of the lowest 21 (1%)
hexanucleotides and 8 of the lowest 14 (10%) tetranucleotides. Since a single sequence would be expected to
have its first and last base complementary with a probability of 29%, 25%, or 26% for tetra-, penta- or
hexanucleotides, respectively, the observed extreme bias towards complementarity is highly unlikely to have
arisen by chance.

The deviation of EB/EM from one is a measure of the contribution of noncontiguous sequences to overall
bias (see Theory). The discrepancy between EB and EM just described indicates that the E. coli genome is
biased with regard to noncontiguous nucleotides. To test directly if the genome is biased in this way, the bias
of different forms of dinucleotide sequences was determined (Table 3). Although the variations in relative
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Fig 2. Scatter plots comparing two measures of expected frequency, ρ and z. In each case, the dotted line represents a least-squared fit. (A)
Comparison of ρ and z, calculated on the basis of observed and expected frequencies of hexanucleotides in the E. coli genome. ρ was calculated in
the conventional fashion, as the ratio of N and EB. (B) The same comparison of ρ and z, except that EM was used in place of EB in the calculation of
ρ (which is therefore designated ρ’).

TABLE 3. BIAS OF DINUCLEOTIDE SEQUENCES WITHIN GENOME OF E. COLIa

w1w2 w1 _ w2  w1 _ _ w2 w1 _ _ _ w2   w1 _ _ _ _ _ w2  
Sequence N ρ   N ρ    N ρ     N ρ     N ρ     

Palindromic dinucleotidesb

AT 309792 1.103 266024 0.947 264439 0.941 280555 0.999 271047 0.965
CG 346636 1.159 381586 1.275 291673 0.975 292126 0.976 292603 0.978
GC 383865 1.283 294046 0.983 251945 0.842 272577 0.911 282463 0.944
TA 211948 0.755 305177 1.087 266963 0.950 236984 0.844 281853 1.003

Average ρ 1.08 ± 0.23 1.07 ± 0.15 0.93 ± 0.06 0.93 ± 0.07 0.97 ± 0.02

Nonpalindromic dinucleotidesb

AA/TT 338647 1.206 287392 1.023 309478 1.102 282683 1.006 268616 0.956
AG/CT 236940 0.817 263833 0.910 297432 1.026 278562 0.961 296352 1.022
GA/TC 267247 0.922 288025 0.994 316034 1.090 310121 1.070 296019 1.021
GG/CC 270866 0.905 271775 0.908 339968 1.136 295699 0.988 294131 0.983
GT/AC 256126 0.884 324257 1.119 270157 0.932 299706 1.034 305490 1.054
TG/CA 323661 1.117 260910 0.900 249029 0.859 311715 1.075 295017 1.018

Average ρ  0.98 ± 0.15 0.98 ± 0.09 1.02 ± 0.11 1.02 ± 0.05 1.01 ± 0.03
a Each underscore represents a single intervening nucleotide. w1 and w2 represent any nucleotide. ρ values are calculated for all dinucleotides of
the given form for the entire E. coli genome. Those values that differ from 1 by more than 10% are shown in bold.
b Palindromic dinucleotides are those where n1 and n2 are complementary. For nonpalindromic dinucleotides, the sequence and its inverse are
shown, both having the same ρ value.
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abundance of gapped dinucleotides are less in general than those of contiguous dinucleotides, there are
several modestly under- or overrepresented gapped sequences.  On average, contiguous palindromic
dinucleotides and noncontiguous palindromes separated by a single base are overrepresented in the E. coli
genome, while dinucleotides separated by two, three, or four bases are underrepresented. These biases are not
captured by EM and statistics based on it.

4.3. Comparison of statistics to measure bias of specific oligonucleotides in E. coli genome
Since there was reason to be concerned that prior assessments of biased oligonucleotides in the bacterial

genomes may be misleading, I reanalyzed the genome of E. coli, using the statistics previously employed by
others. Table 4, 5, and 6 show the most overrepresented and underrepresented tetra-, penta-, and
hexanucleotides of E. coli, as judged by ρ (used by Karlin et al, 1997), ρEM2 (used by Karlin et al, 1992), and
z (used by Gelfand and Koonin, 1997, and Rocha et al, 1998).

The measure of bias, ρEM2, did not match well with ρ (Table 6). There is no obvious, simple relationship
between ρ and ρEM2 as there is between ρ and z, but it is clear that ρEM2 ought to be least effective with
sequences that contain strong biases in subsequences of length > L-3 or in gapped subsequences. In fact, of

TABLE 4. RANKING OF MOST UNDER- OR  OVERREPRESENTED TETRANUCLEOTIDES IN E. COLI GENOMEa

Rank (ρ)bd Tetramer sequence Nc
ρd zd Rank (z)bd Commentse

Most underrepresented  tetranucleotides
1 CTAG 887 0.244 -49.88 3
2 CAAG/CTTG 9657 0.729 -49.87 4

CT_ AG 6781 0.806
3 TATA 9078 0.830 -43.36 7
4 GAGG/CCTC 8076 0.830 -13.09 43
5 CCGG 24297 0.848 22.47 116

CT_ _ AG 10935 0.853
TCC_ A/T_ GGA 6393 0.854 TCCAA(0.766)

GG_ _ CC 8467 0.860
6 GGAG/CTCC 9568 0.867 8.13 87 GGAGG (0.812)
7 GGCC 12571 0.868 -85.91 1
8 TTGG/CCAA 13566 0.871 -63.54 2 CCAAG(0.732),TCCAA(0.766)
9 AGCT 13335 0.899 -34.79 11

10 GCGC 35068 0.905 -24.33 23
Additional tetranucleotide targeted by DNA methyltransferase of E. coli

25 GATC 19123 0.942 -44.95 6 Dam
Most overrepresented  tetranucleotides

127 GAAG/CTTC 20958 1.111 53.76 134
128 AGAG/CTCT 10729 1.118 23.34 118
129 ACAA/TTGT 16673 1.122 30.01 126 ACAAG(1.161)
130 ATAG/CTAT 9317 1.125 17.48 106
131 GGAT/ATCC 18213 1.128 0.5 73
132 TTTG/CAAA 24282 1.137 -4.53 65
133 TGGG/CCCA 13500 1.147 -17.16 35 TGGGA(1.234)
134 GGTC/GACC 13638 1.164 -23.69 25
135 GGGC/GCCC 15523 1.177 -7.94 59 GGGCC(1.179)
136 GTAG/CTAC 9284 1.203 38.9 128

a Shown are the 10 most underrepresented and 10 most overrepresented tetranucleotides in the E. coli genome as judged by the compositional bias
measure, ρ. Also shown the one tetranucleotide that is known to be recognized by a DNA methyltransferases in strains of Escherichia coli.
b The rankings consider only contiguous tetranucleotides.
c The number of occurrences, N, is taken to be the average of the number of occurrences on each of the two genomic strands. The average number of
occurrences of a tetranucleotide sequence in the E. coli genome is 18122.
d See Theory for an explanation of the statistics.
e  The sequences shown encompass the tetranucleotide sequence and have a ρ value less than or greater than the under- or overrepresented tetranucleotide.
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the ten hexanucleotides sequences with the most discordant rankings per ρ and ρEM2 (two, rank 2071 and
2078, appear in Table 6), seven contain the highly underrepresented tetranucleotide CTAG (ρ=0.244). In each
of the 26 possible CTAG-containing hexanucleotides (ranks 11, 2071, and 2078 are shown in Table 6), ρEM2

ranks the sequence lower than does ρ, with an average ranking of 27 as compared to 1061 (with a maximum
of 2080). This is clearly the worst case for the statistic, and most discordant rankings arise from a
combination of several effects. For example, the hexanucleotide GGCCTC (rank 2077 per ρ but 182 per
ρEM2) contains several relatively underrepresented oligonucleotides: a gapped dinucleotides (G _ _ C,
ρ=0.842), two tetranucleotides (CCTC, ρ=0.830; GGCC, ρ=0.868), a pentanucleotides (GG _ CTC, ρ=0.808).

The discordances between ρ and z are less pronounced and stem from causes that are more subtle. The
difference between the two statistics, Π[ρ(νG)], consists of 15 ρ calculations to determine the ρ value of a
hexanucleotide, and one factor does not generally dominate. For example, the discordance between ρ and z in the
ranking of GATATC (EcoRV; rank of 172 per ρ and 1936 per z, out of a possible 2080) arises from the failure of
z to consider the overrepresentation of several gapped subsequences, for example G _ T_ _ C/G _ _ A _ C (ρ=1.036).
The erroneously high ranking z accords GGCC and low ranking it accords CCGG (Table 4) occur because z
ignores the bias of G _ _ C (ρ=0.842) in the first case and of CC _ G/C _ GG (ρ=1.161) in the second.

The discordance between ρ and z on the ranking of the pentanucleotide TCTAG (Table 5) is a rare case in
which the error is not due to bias in gapped subsequences. In fact, Π[ρ(νG)] is close to 1 (0.983). The
discrepancy

TABLE 5. RANKING OF MOST UNDER- OR OVERREPRESENTED PENTANUCLEOTIDES IN E. COLI  GENOMEa

Rank (ρ)bd Pentamer sequence Nc
ρd zd Rank (z)bd Commentse

Most underrepresented  pentanucleotides
1 CTTGG/CCAAG 1179 0.732 -15.03 29
2 TTGGA/TCCAA 1312 0.766 -31.94 2
3 TCTAG/CTAGA 150 0.793 -2.99 176 Contains CTAG

AGG_ CC/GG_ CCT 1203 0.806
GAG_ CC/GG_ CTC 1041 0.809 GAGACC(0.499),GGGCTC(0.787)

4 GGAGG/CCTCC 1565 0.812 -7.38 105 Ribosome binding site
5 GGACC/GGTCC 1437 0.847 -17.38 19 Eco47I,(Eco47II) AvaII,(Sau96I)

Additional pentanucleotides targeted by restriction endonucleases of E. coli
8 GTCAA/TTGAC 3275 0.852 -19.78 11 -35 region of σ70 promoter

11 GGTCT/AGACC 2465 0.875 -3.94 154 EcoPI. GGTCTC(0.499)
31 CCAGG/CCTGG 6021 0.918 -32.2 1 EcoRII,Dcm,Eco13kI

483 CCGGG/CCCGG 4698 1.086 3.05 322 EcoHI NciI
Most overrepresented  pentanucleotides

508 GGGCC/GGCCC 2109 1.179 0.01 247 (Eco47II) (Sau96I)
GGGGCC(1.488),GGGCCG(1.234)

509 GAGTC/GACTC 1784 1.204 -1.73 204 GAGTCC(1.253)
510 CGAGG/CCTCG 2332 1.230 10.04 450
511 TGGGA/TCCCA 2597 1.234 -13.24 38
512 ACTAG/CTAGT 257 1.300 3.13 326

a Shown are the 5 most underrepresented and 5 most overrepresented pentanucleotides (top and bottom 1%) in the E. coli genome as judged by the
compositional bias measure, ρ. Also shown are the pentanucleotides known to be recognized by a DNA methyltransferases or restriction enzyme from a
strain of Escherichia coli.
b The rankings consider only contiguous pentanucleotides.
c The average number of occurrences, N, of a pentanucleotide in the E. coli genome is 4530.
d See Theory for an explanation of the statistics.
e Restriction enzymes or methylases from some strain of E. coli recognizing the oligonucleotide are given when known. Enzymes listed at the right are
names of better known restriction enzymes with the same specificity. Parentheses indicate that the enzyme recognizes a degenerate recognition sequence.
The sequences shown encompass the pentanucleotide sequence and have a ρ value less than or greater than the under- or overrepresented pentanucleotide.
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TABLE 6: RANKING OF MOST UNDER- OR OVERREPRESENTED HEXANUCLEOTIDESa

Rank (ρ)b Hexamer sequence Nc
ρd Rank (ρEM2)bd Rank (z)bd zd Commente

Most underrepresented  hexanucleotides
1 GGCGCC 94 0.116 1 1 -57.21 Eco78I,(Eco64I) NarI,(BanI)
2 GCCGGC 293 0.235 4 2 -48.14 Eco56I NaeI
3 GGGCCC 68 0.304 2 15 -18.26 EciEI,(Eco24I) ApaI,(BanII)
4 CACGTG 143 0.390 8 12 -20.65 Eco72I PmlI
5 CGGCCG 284 0.445 6 5 -26.58 Eco52I,(EcoHK311) EagI,(EaeI)
6 GAGCTC 152 0.461 29 14 -19.16 EcoICRI,(Eco24I) SacI,(BanII)
7 GGTCTC/GAGACC 131 0.499 18 23 -14.54 Eco31I
8 CCGCGG 657 0.601 34 7 -25.69 Eco29kI SacII
9 CCCGGG 426 0.603 205 13 -19.84 (Eco88I)   SmaI,(AvaI)
10 CTCGAG 177 0.613 86 31 -11.86 (Eco88I) XhoI,(AvaI)
11 CCTAGG 16 0.626 3 922 -0.52 (EcoT14I) AvrII,(StyI)
12 GCATGC 588 0.635 45 8 -22.68 SphI
13 GGATCC 495 0.637 77 17 -16.86 BamHI
14 GGTACC 516 0.639 78 16 -17.30 Eco149I,(Eco64I)  KpnI,(BanI)
15 CCAAGG/CCTTGG 213 0.738 26 138   -5.58 (EcoT14I) (StyI)
16 TGGCCA 630 0.743 30 11 -21.28 (EcoHK31I) BalI,(EaeI)
17 GTCAAG/CTTGAC 298 0.751 55 114   -6.24
18 AGGCCT 605 0.754 471 24 -14.32 Eco147I StuI
19 GTCGAC 544 0.756 805 9 -21.62 SalI
20 AGCGCT 780 0.758 76 4 -30.46 Eco47III
21 CTGCAG 958 0.761 53 3 -33.72 Eco49I PstI

Additional hexanucleotides targeted by restriction endonucleases of E. coli
22 CCATGG 612 0.775 74 20 -16.19 (EcoT14I) NcoI,(StyI)
23 AGTACT 400 0.776 562 32 -11.35 Eco255I ScaI
24 GGGCTC/GAGCCC 157 0.787 23 28 -13.80 (Eco24I) (BanII)
25 AAGCTT 556 0.794 72 29 -13.08 EcoVIII HindIII
28 GAATTC 645 0.810 85 41 -9.89 EcoRI
38 ATGCAT 839 0.853 199 65 -7.66 EcoT22I NsiI
39 TGTCAA/TTGACA 528 0.856 147 137 -5.61 -35 region of σ70 promoter
58 GCGCGC 2475 0.884 232 19 -16.56 Eco143I BssHII
71 ATTATA/TATAAT 518 0.898 97 39 -10.46 -10 region of σ70 promoter

172 GATATC 2040 0.932 1854 1936 5.39 EcoRV
179 GGCGGA/TCCGCC 1650 0.933 1477 570 -2.03 EciI
229 TGGCCG/CGGCCA 1058 0.942 80 1733 3.22 (EcoHK31I) (EaeI)
237 CTCGGG/CCCGAG 322 0.944 222 130 -5.77 (Eco88I) (AvaI)
1253 TACGTA 546 1.01 642 1264 0.84 Eco105I SnaBI
1571 CTGAAG/CTTCAG 1446 1.03 880 26 -13.89 Eco57I
1710 CAGCAG/CTGCTG 3563 1.04 1715 359 -3.13 EcoP15I

Most overrepresented hexanucleotides
2071 CTAGGG/CCCTAG 33 1.232 24 1395 1.41
2072 GGGCCG/CGGCCC 795 1.234 204 2069 13.26
2073 CCGGGG/CCCCGG 823 1.237 1650 1855 4.32
2074 GGATGC/GCATCC 1518 1.246 1476 1765 3.45
2075 GGACTC/GAGTCC 294 1.253 363 693 -1.41
2076 GGTGCC/GGCACC 1547 1.35 1428 1135 0.37 (Eco64I) (BanI)
2077 GGCCTC/GAGGCC 459 1.359 182 814 -0.89
2078 TCTAGA 39 1.437 16 1741 3.26 XbaI
2079 GGGGCC/GGCCCC 423 1.488 183 1600 2.38
2080 GGAGCC/GGCTCC 520 1.498 318 1953 5.67

a Shown the most under- and overrepresented hexanucleotides (top and bottom 1%) in the E. coli genome, as well as those that serve as recognition sites for
restriction enzymes isolated from a strain of E. coli. See Theory for an explanation of the statistics.
b Rank of sequence in ascending order of ρ, ρEM2, or z.
c The average number of occurrences, N, of a hexanucleotide in the E. coli genome is 1133.
d See Theory for an explanation of the statistics.
e Restriction enzymes or methylases from some strain of E. coli recognizing the oligonucleotide are given when known. Enzymes listed at the right are names
of better known restriction enzymes with the same specificity. Parentheses indicate that the enzyme recognizes a degenerate recognition sequence.
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in this and similar cases arises because the calculation of σ used to obtain z is distorted by the extreme scarcity of
CTAG.

4.4. Bias exhibited by palindromic sequences within the genome of E. coli
Given the discrepancies observed when using other measures of bias instead of the more complete

measure, ρ, it seemed prudent to reexamine the conclusions reached by previous studies (Karlin, et al., 1992;
Gelfand and Koonin, 1997; Rocha et al., 1998) regarding the occurrences of palindromes and restriction sites
within bacterial genomes. E. coli and several other bacteria are thought to generally underrepresent palin-
dromic sequences of length four (Gelfand and Koonin, 1997), and this conclusion is confirmed by Fig. 3A.
Apart from one highly underrepresented palindromic tetranucleotide (CTAG), the distribution of ρ values is
close to 1 for both palindromes and nonpalindromes but the mean for palindromes is shifted towards under-
representation.

A similar phenomenon is seen with hexanucleotide sequences (Fig. 3C). The bulk of palindromic
hexanucleotides form a population that is underrepresented as a whole relative to nonpalindromic
hexanucleotides. The downward shift of ρ values is similar in degree as that seen with palindromic tetra-
nucleotides. However, there is a second, smaller population that is highly underrepresented. 20 out of 64
(31%) palindromic hexanucleotides have ρ values less than 0.78, the value defined by Karlin’s group to be
significant. In contrast, only 3 out of 2016 (0.15%) of nonpalindromic hexanucleotides have such low ρ
values.

The situation is quite different with pentanucleotides (Fig. 3B). The ρ values of palindromic and
nonpalindromic pentanucleotides exhibit a similar distribution, with little difference between their means or
standard deviations (Table 7). The distributions are similar also to those nonpalindromic tetranucleotides and
hexanucleotides, all having mean values close to 1 and standard deviations between 0.05 and 0.07, and differ
markedly from those for palindromic tetra- and hexanucleotides. In contrast, the distribution of ρ values for
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Fig 3. Comparison of the distribution of ρ values for palindromic and nonpalindromic oligonucleotides found in the genome of E. coli. Solid lines
and broken lines represent values for nonpalindromic sequences and palindromic sequences, respectively. In panels A through C, the latter values use
the right axis. Values of ρ were binned every .05 units. (A) ρ values for tetranucleotides. (B) ρ values for pentanucleotides. The gray line shows the
distribution of ρ values of pentanucleotides in a random sequence the size of the E. coli genome. (C) ρ values for hexanucleotides. (D) The data from
panel D integrated and normalized to the total number of nonpalindromic or palindromic sequences. The gray lines represent the fraction of
nonpalindromic (solid) or palindromic (broken) sequences that are recognized by restriction enzymes identified in some strain of E. coli. The fraction
of nonpalindromic sequences uses the right axis.
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pentanucleotides (Fig. 3B) and for tetra- and hexanucleotides (not shown) calculated from a long random
sequence, is much tighter than any of the natural distributions. The shape of the real distributions, then, comes
not just from the statistical fluctuation of ρ but primarily from weak biases that occur generally in the E. coli
genome and stronger biases generally exhibited by palindromic sequences.

4.5. Bias exhibited by restriction sites in the genome of E. coli
The two apparent populations of palindromic hexanucleotides in the E. coli genome were further

examined by dividing their sequences into those that serve as targets for restriction endonucleases identified
in species of Escherichia and those that do not. Fig. 3D shows that the more biased subpopulation of
palindromic hexanucleotides is virtually identical to the group of targets for restriction endonucleases.
Removing targets from this group leaves hexanucleotides with a mean ρ value of 0.93, not far from the mean
ρ value of 0.94 for palindromic tetranucleotides. Table 6 provides a different perspective on the same
phenomenon. 18 of the 21 most underrepresented palindromic hexanucleotide sequences are recognized by
restriction enzymes of Escherichia, even though only 36% of the possible 64 palindromic hexanucleotides
serve as targets.

While E. coli restriction enzymes with palindromic hexanucleotide recognition sequences clearly tend to
recognize underrepresented sequences, the case is not nearly so strong for nonpalindromic hexanucleotides. 3
of the 4 most underrepresented nonpalindromic hexanucleotides (out of 2016 total) are recognized by
restriction endonucleases (Table 6), whose targets constitute only 0.45% of the total nonpalindromic
hexanucleotides. On the other hand, most of the nonpalindromic target sequences are not underrepresented.
These invariably have sequences that are one base removed from hexanucleotides that are highly
underrepresented, and the possible significance of this will be discussed later. Of five pentanucleotide
sequences recognized by E. coli restriction enzymes, three are modestly underrepresented, and the other two
modestly overrepresented (Table 5), the latter sequences one base removed from an underrepresented target
sequence.

TABLE 7. BIASES IN PALINDROMIC AND NONPALINDROMIC SEQUENCES

Tetranucleotides Pentanucleotides Hexanucleotides Type I endonucleasesa

Numberb Avg ρ Numberb Avg ρ Numberb Avg ρ Numberb Avg ρ’

Total site – contiguous
Palindromic 16 0.90±0.19 32·2 1.01±0.07 64 0.83±0.22
 w/o outliersc     15 0.94±0.07 41 0.93±0.12

Nonpalindromic 120·2 1.01±0.07 480·2 1.00±0.05 2016·2 1.00±0.06
Total sites - noncontiguous

Palindromic 48 0.96±0.05 0
Nonpalindromic 1128·2 1.00±0.03 2048*2 1.00±0.03

Restriction enzyme recognition sitesd

Palindromic 0 -- 4·2 1.01±0.15 23 0.65±0.23 1 0.95
Nonpalindromic 0 -- 1·2 0.88 9·2 0.92±0.23 9·2 0.99±0.05

a The endonucleases considered are shown in Table 8. The ρ’ values were computed as N/EM rather than N/EB, owing to difficulties in calculating EB

for such long sequences.
b Number of distinct palindromic or nonpalindromic sequences. Since a sequence and its inverse complement has by definition the same ρ value, the
number is shown, when appropriate, as the number of distinct pairs multiplied by 2.
cCTAG was removed from the set of palindromic tetranucleotides, and all 23 enzyme recognition sites were removed from palindromic
hexanucleotides.
dAll known restriction enzymes identified in strains of E. coli were considered except those whose recognition sequences contain gaps of a single
nucleotide.
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Target sequences of Type I restriction enzymes of Escherichia are not very underrepresented in the E.
coli genome (Table 8). The most underrepresented of the lot, however, is that of EcoKI, the only restriction
enzyme native to the strain of E. coli from which the sequence deposited in GenBank is derived.

5. DISCUSSION

5.1. Comparison of measures of expected number and bias
Identifying significantly underrepresented and overrepresented oligonucleotides may provide important

clues as to the selective forces acting on genomes. Markov analysis has been the most widely used tool to
identify such sequences. The results presented here indicates that this method is intrinsically flawed when
applied to the genome of E. coli and thus one must exercise caution in applying it to genomes of other
organisms as well. In particular, oligonucleotides characterized in previous studies based on Markov analysis
were found here in many instances to have been systematically misidentified as to bias, drawing into question
overall conclusions based on these studies.

Different orders of Markov models have been employed to analyze genomic sequences, and not
surprisingly, the higher the order, the better the ability of the model to predict actual oligonucleotide
frequencies (Table 2). However, even the maximal order expected frequency, EM, does not predict
oligonucleotide frequencies as well as EP, a Markov-based statistic that considers some gapped subsequences,
or the statistic EB, which is calculated from the biases of all contained oligonucleotides. It can be shown (see
Appendix) that EM differs from EB solely in that the latter considers gapped as well as ungapped sequences. It
follows then that the difference in bias indicated by EM relative to EB of an oligonucleotide word within a
natural sequences may be attributed to biases in one or more gapped subwords, and this is indeed the case
(Results, Section 4.3).

Problems resulting from the failure of EM to consider gapped sequences carry over to statistics of bias,
such as z, based on EM. Markov-based measures are at their worst in E. coli with palindromic sequences,
because of a systematic bias against complementary nucleotide pairs separated by two, three, or four
nucleotides (Table 3). The statistic ρ, based on EB, takes gapped sequences into account and thus gives a truer
indicator of bias of oligonucleotides within the E. coli genome. The use of Markov-based measures has led to
erroneous conclusions regarding the bias of oligonucleotides in the E. coli genome and probably that of other
organisms as well. For example, XbaI sites (TCTAGA) and EcoRV sites (GATATC) have been reported to
by significantly underrepresented and overrepresented, respectively, in the E. coli genome (Philips et al.,
1987; Gelfand and Koonin, 1997), when the opposite is the case (Table 6). The underrepresentations of
oligonucleotides based on raw counts and EM2 (Karlin et al, 1992) must be largely discounted, and those

TABLE 8. BIASES IN E.COLI GENOME OF RECOGNITION SITES FOR TYPE I ENDONUCLEASES

Enzyme Recognition Site Na ρ’b Z

EcoKI AAC _ _ _ _ _ _ GTGC 298 0.903 -2.55
EcoEI GAG _ _ _ _ _ _ _ ATGC 233 0.940 -1.28
EcoNI CCT _ _ _ _ _ AGG 549 0.953 -1.43
EcoBI TGA _ _ _ _ _ _ _ _ TGCT 355 0.962 -0.99
EcoR124II GAA _ _ _ _ _ _ _ RTCG 821 0.975 -0.98
EcoAI GAG _ _ _ _ _ _ _ GTCA 201 0.976 -0.48
EcoprrI CCA _ _ _ _ _ _ _ RTGC 667 0.990 -0.40
EcoDI TTA _ _ _ _ _ _ _ GTCY 244 1.030 0.70
EcoDXXI TCA _ _ _ _ _ _ _ RTTC 808 1.040 1.55
EcoR124I GAA _ _ _ _ _ _ RTCG 840 1.063 2.47
aThe number of occurrences, N, is taken to be the average of the number of occurrences on each of
the two genomic strands.
bThe measure of bias, ρ’, is calculated as N/EM, owing to difficulties in calculating EB for such
long sequences.
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based on EM (Merkl and Fritz, 1996; Gelfand and Koonin, 1997; Rocha et al, 1998) must be viewed with
suspicion, although their overall conclusions are likely to be correct.

While EB and, to a lesser extent, EP should be preferred over EM, practical considerations may dictate the
use of the less accurate statistic. The number of frequencies required in order to calculate EB and EP of an n-
mer is 2

n
-2 and (n2+n)/2, respectively, while only three frequencies are required for EM, regardless of the

length of the target sequence.

5.2. Bias exhibited by palindromic sequences within the genome of E. coli
Gelfand and Koonin (1997) reported a bias against palindromic tetrameric, pentameric, and hexameric

oligonucleotide sequences in six bacterial genomes, based on the ranking of their z values amongst total
oligonucleotides of the same length. A consideration of the range of ρ values of the oligonucleotide
sequences of E. coli shows a somewhat different picture (Fig. 3). Palindromic hexanucleotides fall into two
populations: one with a mean ρ value somewhat below that of nonpalindromic hexanucleotides and the other
dispersed through a range of values that extends well below 1. Palindromic tetranucleotides are also under-
represented, but except for the highly underrepresented sequence CTAG in E. coli, only the first, moderately
underrepresented population was seen.

Palindromic pentanucleotides differ from tetra- and hexanucleotides in that they have the same
distribution as their nonpalindromic counterparts, as judged by their ρ values. The difference between
palindromic and nonpalindromic pentanucleotides reported by Gelfand and Koonin (1997) is an artifact
stemming from the tendency of EM (contained within the z statistic they used) to overstate bias in
pentanucleotides palindromes, primarily by ignoring the bias against component palindromic dinucleotides of
the form w1. . .w2 (Table 3).

5.3. Significance of biases in relative abundance of oligonucleotide sequences
An analysis of compositional bias of a genome is useful if it can point out particular sequences that may have

biological function. It is not clear, however, how to assess the degree of bias. Even minor deviations of ρ from 1
are more than one would expect from chance, based on a random sequence (Fig. 3B). The calculated standard
deviation used in the z statistic is valid only if the sequence is well approximated by a Markov process, and the E.
coli genome is not. ρ values of hexamers from an E. coli-sized sequence generated from a fourth order Markov
table based on the actual E. coli genome correlate poorly with actual ρ values (data not shown). A reasonable
approach is to scrutinize the most biased oligonucleotides, bearing in mind that evolutionary pressures may well
lead in many cases to biases that are less extreme though no less valid.

Also complicating the analysis is an artifact first noted with Markov-based analysis (Merkl and Fritz,
1996; Gelfand and Koonin, 1997) and tetranucleotide biases measured with ρ (Karlin et al., 1997) but also
true for longer oligonucleotides. For example, of the ten most overrepresented hexanucleotide, eight are one
base removed from a hexanucleotide that is even more underrepresented (Table 6). Less than one such
sequence would be expected at random.

In almost all cases, the most highly underrepresented oligonucleotides are targets for restriction enzymes
found in some strain of E. coli. 86% of the 1% most underrepresented hexanucleotides are such targets (Table 6),
even though only 1 to 2% is the expected frequency by chance. Several trivial explanations can be dismissed.
Targets of most characterized restriction enzymes are palindromic, but most palindromes are not highly
underrepresented. Though restriction enzyme targets are biased towards high GC content, most hexanucleotides
with high GC are not highly underrepresented. E. coli enzymes recognize 24 of the 64 possible palindromic
hexanucleotides, but as a class, the remaining 40 (all recognized by at least one known enzyme) are not very
underrepresented (Table 7). It seems evident that the genome of E. coli is deficient specifically in sites recognized
by restriction enzymes found in members of the same species.

Similar phenomenon has been observed by a Markov analysis (Gelfand and Koonin, 1997; Rocha et al.,
1998) or analysis of ρ values (Elhai, unpublished results) of olignonucleotides of some other bacterial genomes.
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The case with the recently sequenced cyanobacterium Anabaena PCC 7120 (http://www.kazusa.or.jp/
cyano/anabaena/) is particularly striking (Elhai, unpublished results). The target oligonucleotides for the three
active restriction endonucleases characterized in the strain have ρ values of 0.13 (AvaI), 0.132 (AvaII), and
0.049 (AvaIII), and the average ρ value for all hexanucleotide targets of enzymes possessed by close relatives is
0.249.

Two classes of explanation may account for the bias against restriction sites in the genome. First,
underrepresented oligonucleotides might select for the presence of restriction enzymes. One might suppose
that the acquisition of new restriction activities is limited by the tendency of a foreign restriction
endonuclease to digest immediately the DNA of its new, unmethylated host. Endonucleases whose target sites
are rare in the genome would be more likely to spare the strain. If this were the case, however, then the
deficiency of enzyme recognition sequences should be absolute (low N), not necessarily relative (low ρ). This
prediction is not borne out. If the frequencies of all hexanucleotides in E. coli are sorted by N, then the
average rank of enzyme recognition sequences is 590, while if they are sorted by ρ, then the average rank is
only 244. The closer correspondence of E. coli restriction sites with low relative abundance rather than low
absolute abundance would seem to refute the hypothesis that the correlation of low ρ values with recognition
by restriction enzymes is driven by selective pressures on N.

The second class of hypotheses postulates that the presence of restriction enzymes selects for the
underrepresention of target oligonucleotides (Karlin, et al., 1992). Methylases that are part of restriction/
modification systems may sometimes fail, exposing sites to digestion by native restriction endonucleases. The
only moderate bias in E. coli against EcoK sites (Table 8) does not speak against the hypothesis, since EcoK
is a type I enzyme and, owing to its dependence on S-adenosyl methionine, does not digest its host’s DNA
under conditions of hypomethylation (Lark and Arber, 1970). Alternatively, organisms may seek to minimize
methylation of their genomes (required to protect their DNA against self-restriction), to avoid mutagenesis in
the case of cytosine methylation at C5, or for some other reason in the case of methylation at the N4 position
of cytosine or N6 position of adenine. This view is undermined by the observation that the two known DNA
methyltransferases in E. coli (besides M.EcoK) have sites that are not highly underrepresented: Dam (GATC;
ρ = 0.942) and Dcm (CCwGG; ρ = 0.918).

This second class of explanations leaves open the question of why E. coli is biased against sites
recognized by enzymes that it does not possess but that are found in other strains within the species. Lateral
transfer amongst related species might lead to the observed biases in at least two ways. First, strains
possessing a restriction enzyme may, as recipients of DNA transfer, select for variants of DNA lacking
restriction sites (Elhai, et al., 1997) or may select for such variants during propagation of the DNA (Karlin, et
al., 1992). Either way, the DNA, scrubbed nearly clean of restriction sites, may be disseminated to sister
strains. This hypothesis requires a remarkable degree of lateral transfer amongst related strains to produce
near homogenization with regard to restriction sites.

Alternatively, genes encoding restriction enzymes may spread throughout members of the species and,
when established, select against sites within the host genome (Fig. 4A) or instead select for loss of sites
indirectly (Fig. 4B), as suggested by Gelfand and Koonin (1997). The latter scenario seems to require that the
ability of a bacterium to resist parasitism by a restriction enzyme depends in a graded fashion on the number
of sites in the genome. The former scenario has the attractive feature that there could be large-scale selection
for bacteria with enzyme (and in the process of gradually reducing the number of sites) at times of viral
epidemics (Bickle and Krüger, 1993).

It is possible to distinguish between the two possibilities of massive transfer of DNA or massive transfer of
genes encoding restriction enzymes. Barriers exist between enteric bacteria regarding the establishment of
transferred DNA through recombination, but much less so regarding transfer itself: plasmids are readily
transferred between E. coli and Salmonella but not chromosomal DNA requiring recombination to persist in the
new host (Matic, et al., 1995). If follows that if loss of sites is due to homogenization of genomic DNA, then E.
coli should be distinct from other enteric bacteria with respect to biases against restriction target sequences.
However, if loss of sites is due to the exchange of genes encoding restriction enzymes (generally borne on
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plasmids), then other enteric bacteria may have the same profile as E. coli with regard to extreme oligonucleotide
bias.

A major impetus in looking for biases in the occurrences of oligonucleotide is the prospect of identifying
sequences that may serve a functional purpose. If one puts aside targets for restriction enzymes, what highly
biased oligonucleotides remain? One might expect that oligonucleotides that serve specific functional
purposes would be in low abundance, so as not to titrate binding factors or otherwise interfere with function.
Indeed, consensus -35 and -10 sequences for the binding of RNA polymerase σ70 subunit are moderately
underrepresented (Table 6), as is the optimal pentanucleotide ribosome binding site (Table 5). However, this
is not the case for half-binding sites for a few other DNA binding protein (e.g. σ54, σ28, FNR, and CRP). It
may be that there is no selection in general against partial binding sites recognized by protein.

Certainly the most striking bias amongst the oligonucleotides considered, apart from those recognized by
restriction enzymes, is the bias against CTAG (Table 4), which has been previously noted for the genomes of
E. coli and several other bacteria (Karlin, et al., 1997; Karlin, et al., 1998). It is interesting that a few of the
highly to modestly underrepresented penta- and hexanucleotides are related to CTAG: TCTAG/CTAGA
(ρ=0.793, rank=3), GCTAGA/TCTAGC (ρ=.803, rank=26), and GTCTAG/CTAGAC (ρ=.822,rank=30), and
the three most highly underrepresented oligonucleotides that aren't known targets for restriction contain
CAAG, one base removed from CTAG: CAAG/CTTG (ρ=0.729, rank=1), CTTGG/CCAAG (ρ=0.732, rank
= 1), GTCAAG/CTTGAC (0.751, rank =17). Conceivably, a degenerate oligonucleotide sequence related to
CTAG and CAAG/CTTG is the true motif that is subject to selection.
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Fig 4. Two models to explain bias against sites recognized by restriction enzymes carried by strains within a taxonomic group. It is presumed in both
models that bacteria are more apt to exchange DNA with members within their group. (A) The model postulates that the presence of a restriction
enzyme selects for the rapid loss of corresponding restriction sites, while the gain and loss of sites is slow in the absence of restriction enzyme. The
gain or loss of restriction systems is postulated to be rapid. If the presence of a restriction enzyme puts the bacterium, at least at times, at a competitive
advantage (symbolized by a thick outline), then populations will tend to lack sites for multiple restriction enzymes. (B) The model postulates that the
gain of enzyme leads to loss of fitness for the bacterium (symbolized by the dotted outline) and that the enzyme selects for its own presence
(Kobayashi, et al., 1999). Bacteria with fewer recognition sites expose fewer sites to digestion by residual restriction enzyme when a plasmid is lost
(along with its ability to methylate host DNA) and thus are postulated to rid themselves more rapidly of their molecular parasites and regain full
fitness.
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