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Abstract 

 
A dynamic classification using the support vector machine (SVM) technique is presented in this paper as a new 

‘incremental’ framework for multiple-classifying video stream data. The contribution of this study is the derivation of a 
unique, fast and simple to implement technique that allows multi-classification of behavioral motions based on an 
adaptation of the Least Square SVM (LS-SVM) formulation. This dynamic approach leads to an extension of SVM beyond 
its current static image-based learning methodologies. The proposed incremental multi-classification method is applied to 
video stream data, which consists of an articulated humanoid model monitored by a surveillance camera. The initial 
supervised off-line learning phase is followed by a visual behavior data acquisition and proposed incremental learning 
phase. The resulting error rate and the confidence level for the proposed technique demonstrate its validity and merits in 
articulated motion learning.  Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and 
provides the advantage of reducing both the model training time and the information storage requirements of the overall 
system which are both essential in dynamic soft computing applications. 
 
Keywords: dynamic soft computing, multiple classification, incremental support vector machine, behavior learning.   
 

1. Introduction 
 Dynamic soft computing represents a significant 

paradigm shift in the strict definition of computing. It 
demonstrates the feasibility of storing and processing 
information in a manner tolerant of imprecision, 
uncertainty and approximation. The basic ideas 
underlying the standard soft computing incarnation were 
influenced by Zadeh's work on fuzzy sets, analysis of 
complex systems and decision processes, as well as the 
possibility theory and soft data analysis. Soft Computing 
(SC) has Fuzzy Logic (FL), Neural Computing (NC), 
Evolutionary Computation (EC), Machine Learning 
(ML) and Probabilistic Reasoning (PR) as principal 
constituents [13]. 

Dynamic classification is a desirable method in ML 
applications and it serves as a basis for future decision-
making [13]. Researchers in classification had proposed 
many different algorithms such as nearest-neighbor, 
decision tree induction, error propagation, reinforcement 
learning, lazy learning, rule based and statistical learning 
algorithms [29]. Dynamic, incremental or online 
learning refers, in this context, to the situation where the 
training dataset is not fully available at the beginning of 
the learning process. The data can arrive at different time 
intervals and need to be incorporated into the training 
data to preserve the class concept.  Our study focuses on 

SVM as a prime classifier for an incremental multi-
classification mechanism for sequential stream video. 
Our selection for SVM technique is justified by several 
of its main advantages: SVM is computationally 
efficient, highly resistant to noisy data and offers 
generalization capabilities [10]. SVM distinguishes itself 
from neural networks and other non parametric 
techniques by the fact that it does not exhibit the same 
classical problems of multi-local minima, curse of 
dimensionality and over-fitting [31]. Moreover SVM 
minimizes the structural risk which controls the upper 
bound of the generalization error by maximizing the 
margin between the separating hyper plane and the data. 
This makes SVM specially suited for sparse data [8]. 
Besides work on multi-class SVM classifiers is an area 
for further research [4].  

Constructing a ML SVM classifier capable of 
incremental classification as opposed to batch-mode 
learning is very attractive and will become a strategic 
necessity for video stream data for many reasons. First  
there is a significant demand increase in video stream 
applications such as in smart surveillance [5], building a 
profile of people manners [16,26], remote monitoring of 
elderly patients in healthcare centers, elucidating rodent 
behavior under different conditions [14] as well as 
articulated motion analysis, visual-based human and 
computer interface. Second real time classification of 
video stream imposes extensive computational 

1 



 
 

requirements on the system during training and even at 
run time [8]. Third video stream data are continuous 
large data stream by nature and can exhibit a large 
degree of variability in the object class and the 
environment such as occlusions, orientation and 
illumination of the object [8]. This usually requires an 
extensive training phase for the initial classifier based on 
a large off-line collection of datasets that represent the 
learning-from-examples paradigm. If the incorporation 
of incremental modular algorithms for video stream 
classification could be designed to meet low storage and 
memory requirements, online learning will reduce the 
extensive time consuming and resource extensive 
machine learning training phase without affecting the 
classifier ability to continuously learn. This would 
enable dynamic soft computing and maintain good fit for 
the initially sparse training data as well as adequate 
prediction capabilities on the incremental data that were 
not included in the training samples. 

Within the context of dynamic learning, we present a 
novel technique that extends traditional SVM beyond its 
existing static image based learning methodologies to 
handle multiple behavioral classifications. We opted to 
investigate dynamic behavior learning because of the 
numerous current and potential applications mentioned 
earlier. For illustration purposes, we have applied our 
technique to learn the behavior of an articulated 
humanoid through video footage captured by a 
monitoring camera sensor. We have then tested the 
model’s accuracy of incrementally classifying articulated 
motions. The initial supervised off-line learning phase 
was followed by a visual behavior data acquisition and 
an online learning phase.  

To the best of our knowledge, no prior work has used 
an adaptation of LS-SVM with a multi-classification 
objective for dynamic behavior learning.  The 
contribution of this study is the derivation of this unique, 
dynamic, fast and simple to implement multi-
classification technique. 

 This paper is organized as follows. Section 2 presents 
an overview of SVM principles and related techniques: 
Section 3 covers our unique multi-classification 
procedure and Section 4 introduces our proposed 
incremental SVM. Section 5 describes the experimental 
setup and Section 6 summarizes the experimental 
analysis and results obtained. Finally, Section 7 contains 
concluding remarks and outlines our plans for follow-on 
work. 

2. SVM Principles and Related Studies 
    Originally designed for binary classification, the SVM 
techniques were invented by Boser, Guyon and Vapnik 
and were introduced during the Computational Learning 
Theory (COLT) conference of 1992 [10]. SVM offers a 

principled approach to ML problems because of its 
mathematical foundations in statistical learning theory 
[31]. The aim of SVM classification is to find a 
computationally efficient way of learning a hyper plane 
that correctly classifies the high dimensional feature 
space. SVM tries to minimize the confidence interval 
and keep the training error fixed while maximizing the 
distance between the calculated hyper plane and the 
nearest data points known as support vectors (SV). SV 
define the margins for the hyper planes and summarize 
the remaining data, which can then be ignored. The 
complexity of the classification task will thus depend on 
the number of support vectors rather than on the 
dimensionality of the input space and this helps prevent 
over-fitting. Calculating SV and specifically controlling 
their selection is one of the major limitations of SVM 
techniques [4]. 

Traditionally, SVM was considered for unsupervised 
off-line batch computation, binary classifications, 
regressions and structural risk minimization (SRM) [13]. 
Adaptations of SVM were applied to density estimation 
[25], Bayes point estimation [7] and transduction [13] 
problems. Researchers also extended the SVM concepts 
to address error margin, efficiency, multi-classification 
and incremental learning. Platt [27] introduced iterative 
chunking of the input space by heuristically selecting an 
‘active or working’ set to train SVM using generic 
optimization techniques. In his approach, the support 
vectors from the chunk are retained and the remaining 
part of the data is tested against the hypothesis found. 
All points that drastically violate the Karush-Kuhn-
Tucker (KKT) conditions are added to the support 
vectors of the previous problem forming a new chunk to 
process. For non-sparse problems or for a large set of 
support vectors, this technique is not very attractive 
because its heuristic nature requires the set of support 
vectors to be stored in system memory before being 
processed by the optimization algorithm. To improve 
efficiency and to end the need for iterative chunking in 
large data sets, Suykens and Vandewalle [30] developed 
a least-squares SVM (LS-SVM) technique by removing 
the inequality constraints from the traditional Vapnik 
SVM quadratic formulation. The optimization problem 
is thus reduced to a set of linear equations with KKT 
conditions to be satisfied. With LS-SVM, the sparseness 
of the solution is basically lost and the best support 
vectors estimation occurs when error variables fit a 
Gaussian distribution curve. Ralaivola and d’Alche’-Buc 
[11] introduced an incremental learning algorithm that 
exploits the locality of Radial Basis Function (RBF) by 
re-learning only the weights of the training data points 
lying in the vicinity of the new incremental data. Their 
study however didn’t address any drifting concepts. 
Cauwenberghs and Poggio [9] presented an online 
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recursive training algorithm that allowed incrementing 
and decrementing to enable an evaluation for the ‘leave 
one out’ generalization performance.  Despite the fact 
that the ‘leave one out’ error is almost unbiased and can 
be proved by the Luntz-Brailovsky theorem, computing 
it is expensive in general because training on L sets of 
size (L-1) is required. 

From a mathematical perspective, SVM hyper-planes 
for binary classification are given by: w.xi+b=0. 
Suppose T = {( x1,y1),…(xN,yN)} where xi є Rn is a training 
set with  attributes or features <f1,f2,…fn.> and  T+ = 
{xi|(xi,yi) є T and  yi = 1} and T- = {xi|(xi,yi) є T and  yi =- 
1} be the set of positive and negative training examples 
respectively. For a correct classification, all xi’s must 
satisfy: yi (w.xi+b)≥0. Among all such planes satisfying 
this condition, SVM finds the optimal hyper plane P0 
where the margin distance between the decision plane 
and the closest sample points is maximal. P0 is defined 
by its slope w and should be situated equidistant from 
the closest point on either side. Let P+ and P- be 2 
additional planes that are parallel to P0 and include the 
support vectors. P+ and P- are defined respectively by: 
w.xi+b=1, w.xi+b=-1.  All points xi should satisfy 
w.xi+b≥1 for yi=1., or w.xi+b≤1 for yi=-1. Thus 
combining the conditions for all points xi we have: yi 
(w.xi+b)≥1. The distances from the origin to the three 
planes P0, P+ and P- are respectively, |b-1|/||w||, |b|/||w|| 
and |b+1|/||w|| [10]. Figure 1 represents the positions of 
the 3 planes for a multi-classification case. 
 Eq. (1) through Eq. (6) presented below are based on 
Forsyth and Ponce [17] and are applicable for a binary 
and linearly separable classification. The optimal plane 
needs to minimize the quadratic objective function of 
Eq. (1) subject to the constraint in Eq. (2). As mentioned 
earlier, this optimal plane is the same as the hyper plane 
for which the separation margin between the two classes 
(measured along a perpendicular to the hyper plane) is 
also maximized.   
                         Objective function wwT .

2
1                    (1)              

Constraint linearly separable case:     (2) 
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Since the objective function is quadratic, this 
constrained optimization is a quadratic programming 
(QP) task and is solved by Lagrange multipliers method. 
The goal is to minimize the Lagrange expression  

with respect to w, b and the Lagrange coefficients 
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Substituting Eq. (4) back into the Lagrange expression, 
we now deal with the dual Lagrange problem of the 
above primal. Both problems arise from the same 
objective function but they have different constraints. In 
the dual Lagrange, the solution is found by maximize Lp 
whereas in the primal Lagrange, the solution is found by 
minimizing Ld.   
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Any new data point is then classified by the decision 
function in Eq. (5). 
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Substituting Eq. (4) into Eq. (5) allows us to rewrite 

the decision function as:  
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For most practical applications where the class data 
are not completely separable, a slack variable e is added 
to Eq. (2) so that the hyper plane maximizes the margin 
between the two classes while minimizing e which is 
proportional to the misclassification error [15] . 
Constraint for non-separable case:  
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T
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SVM solutions are obtained from solving quadratic 

programming (QP) problems. LS-SVM instead uses 
linear system instead of QP and as introduced in [30] are 
obtained by optimizing the Lagrangian as defined in Eq. 
(7): 
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with iα being the Lagrange multipliers which can be 
either positive or negative. These parameters are derived 
from Karuch Kuhn-Tucker (KKT) conditions which are 
valid as long as the objective function and conditions are 
convex [30]. The gradient of the inequality restrain 
solutions to the interior of the acceptable region and the 
optimal solution is the saddle point that satisfies Eq. (4). 
λ is the regulating parameter for the error term which 
greatly impact the classifier performance during the 
training phase. Hsu and Lin [19] showed that SVM 
accuracy rates were influenced by the selection of λ, 
which varies in ranges depending on the problem under 
investigation.  KKT conditions: 
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Eliminating w and e, the system of linear equations in 
Eq.(8) can be written more concisely in a matrix form 
as:  
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with Mercer conditions applied to TZZ [30]. 
 When data cannot be classified by linear decision 
surfaces, Cover’s theorem states that the input space 
may be transformed into a new feature space that is 
linear separable [6]. Non linear transformation called 
inner-product kernels help in mapping the input space to 
a high dimensional feature space. Most common kernels 
used are [17]: 

Linear:  i
T

i xxxxk =),(
Polynomial:  d

i
T

i xxxxk )1(),( +=
Gaussian (Radial-basis): )2/exp(),( 22 σii xxxxk −−=   

Sigmoid:  )tanh(),( 10 ββ += i
T

i xxxxk
SVM performance largely depends on the choice of 

kernels. However, there are no well established theories 
to select kernel functions in a data-dependant way. 
Amari and Wu [1] proposed a modified kernel which 
takes into consideration geometric information of the 
Riemannian structure and enlarges the spatial resolution 
to increase class separability. 

There are different strategies that researchers used to 
decompose the multi-classification problem into a set of 
binary ones. Schölkopf and Smola [28] described the 
widely used multi-classification SVM techniques: one-
versus-rest, pair-wise classification, error-correcting 
output codes and the multi-classification objective 
functions. The one-versus-the-rest also referred to as 
one-against-all (OAA) is probably the earliest SVM 
multi-class implementation [3]. It constructs c binary 
SVM classifiers where c is the number of classes. Each 
one distinguishes one class from all the other classes 
which reduces the case to a two-class problem. There are 
c decision functions: . ci

T
ci

T bxwbxw ++ .;;. 11 L

The final label output is given to the class that showed 
the highest output value [19]. 

          Class of x          (9)    ).(maxarg ,,1 i
T

ci bxwi +≡ = L

The pair-wise classification also referred to as one-
against-one (OAO) builds c(c-1)/2 binary SVM, each of 
which is used to discriminate two of the c classes only.  
For training data for the kth

 and jth class, the constraints 
are [17]:  
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For reasonable data set sizes, the accuracy of the 
different multi-classification techniques is comparable. 
For any particular problem, the selection of the optimal 
multi-classification approach partly depends on the 
required accuracy, development and training time. The 
one-to-others approach trains c SVM versus c2 however 
at runtime both techniques require the evaluation of (c-1) 
SVM classifiers [28]. The multi-classification objective 
function has probably the most compact form as it 
optimize the problem in one single step. It constructs c 
two class rules, where each classifier separates training 
vectors of a class from all the others using the constraint:  
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The decision function is the same as Eq. (9) for the one-
against all technique [19]. 

3. Proposed Multi-Classification SVM 
      Using a similar approach to Hsu and Lin [19], we 
add the plane intercept term b to the objective function.                 
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Adding b into the objective function that already 

accounts for w enables us to uniquely define the optimal 
plane. The selection of λ can be found heuristically or by 
a grid search. Large λ values favor less smooth solutions 
that drive large w values.  

Selecting the multi-classification objective function 
among the different schemes of multi-classification, we 
use the constraint as shown in Eq. (11) with a slack 
variable to account for the non-separable data:  
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However unlike traditional multi-class SVM and LS-
SVM, we consider the constraint relationship to be 
equality instead of inequality between the different 
classes. Substituting Eq. (11) into Eq. (10), we drop the 
Lagrange multipliers and get the following objective 
function to optimize:  
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The objective function remains convex which insures 
that the KKT conditions are still valid, but the model is 
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now reduced to a single system of linear equations.  
Fundamentally the problem is now different than Eq.(7). 
It is reduced to an unconstrained optimization and the 
solution now becomes equal to the rate of change in the 
value of the objective function. We do not numerically 
solve for SV that correspond to the nonzero Lagrange 
multipliers in traditional SVM.  Instead our solution now 
classifies points by assigning them to the closest parallel 
planes without explicitly calculating SV. The hyper 
planes are pushed apart by a maximum margin and 
points of each class are now clustered around them with 
no input data lying on planes. Figure 2 represents a 
geometrical illustration for the proposed approach.   

 

 

 

 

 

 

 

 

 

 
Figure 1: Standard multi-class SVM 

 

 

 

 

 

 

 

 

 

 
Figure 2: Proposed multi-class SVM 

 The elimination of SV calculation makes our 
technique faster than standard SVM which is known to 
converge slower than neural networks for a given 
generalization performance. It is also easy to implement 
and as in soft computing, it doesn’t exactly solve for SV 
instead, it exploits the tolerance for imprecision and 
uncertainty to achieve acceptable misclassification error 
for the dynamic multiclassification SVM as introduced 

in Section 4.  In traditional SVM, the order of 
operations needed for N training points with f as 
dimension for feature space and Ns as total count for SV, 
ranges from  to 

depending on the SV location with 
respect to the hyper planes [4]. The uniqueness of the 
global solution in our proposal is still valid because it is 
a property of the Hessian being positive definite or semi 
definite [15].                  
 The optimization steps for the hyper plane 
parameters are detailed in the following steps. Taking 
partial derivatives of with respect to the hyper 
plane parameters w and b for each classifier:  
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where q(n) is the total number of observation belonging 
to a specific class and c the total number of different 
classes. 

Applying similar reasoning for b, we can re-arrange 
Eq. (13) to obtain: 
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To rewrite Eq. (14) in a matrix form, we use the series 
of definitions as mentioned in Table 1. 

This allow us to manipulate Eq. (14) and rewrite it as                      
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These definitions allow us to rewrite Eq. (14) in a very 
compact form: 
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     Eq. (18) provides the separating hyper plane slopes 
and intercepts values for the different c classes. The 
hyper plane is uniquely defined based on matrix A and L  
and it does not depend on the support vectors or the 
Lagrange multipliers.  

Once the hyper plane parameters are defined, a data 
point is labeled according to the multi-classification 
decision function: 
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TABLE 1 
MATRIX NOTATION 

Matrix 
Symbol                               Matrix Element 

C Diagonal matrix of size (f*c) by (f*c),  the 
diagonal elements are composed of the square 
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Q Square matrix of size c, made from the row vector 

qn of length c   
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Square diagonal matrix of size c, the diagonal 
elements  rn are as follows 
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f denotes the dimensions of feature space and q(n) the size of class n 
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4. Proposed Dynamic SVM  
Once the hyper plane slopes are defined incorporation 

of a recently acquired image sequence (xN+1) into the 
existing model necessitates a full scale retraining for the 
classifier. 
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Clearly, this approach is computationally very 
expensive for applications with stream datasets. It is 
expensive in terms of memory requirements and 
computation time. To maintain an acceptable balance 
between storage, accuracy and computational time, we 
propose a dynamic SVM classifier to appropriately 
dispose of the recently acquired image sequences. 

4.1 Dynamic Strategy for Sequential Data 

Whenever the model needs to be updated, each 
dymanic sequence is expected to alter matrices C, G, D, 
H, E, R, Q and U in Eqs. (16) and (17) by an 
incremental amount of ΔC, ΔG, ΔD, ΔH, ΔE, ΔR, ΔQ 
and ΔU respectively. A classifier update is required if 
the confidence level in classification accuracy at the t-th 
iteration  is smaller than the initial value tΘ iniΘ (or the 
confusion rate CRt is higher than the expected initial 
value CRini).  Θ  values can be user defined or based 
on pilot studies. The confidence level Θ  is evaluated 
using elements of the confusion matrix CM. CM is a 
valuable visualization tool for supervised learning to 
easily verify if the system is mislabelling classes. The 
matrix columns represent the instances in a predicted 
class, while the matrix rows represent the instances in an 
actual class:  
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 where is the i-th diagonal element in the confusion 

matrix and  is the number of data belonging to 

class i whereas the classifier recognized them as being 
class j.  or CRini can be determined by user or from 
pilot studies.  
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For illustrative purposes, let us consider a recently 
acquired stream data xN+1 belonging to class t. Eq. (20) 
then becomes: 
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To assist in the mathematical manipulation, we define 
the following matrices: 
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We can then rewrite the incremental change as follows: 
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The new model parameters now become:    
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We thus arrive to: 
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Eq. (22) shows that the separating hyper planes slopes 
and intercepts for the different c classes can be 
efficiently and dynamically updated using the old model 
parameters.   

4.2 Dynamic Strategy for Batch Data  

For incremental batch processing, the data is still 
acquired incrementally, but it is stored in a buffer in 
queue for chunk processing. After capturing k sequences 
and if the classifier needs to be updated as outlined on 
Section 4.1, the recently acquired data is processed and 
the model is updated as described by Eq. (21).  

Alternately we can use the Sherman-Morrison-
Woodbury [32] generalization formula described by Eq. 
(23) to account for the perturbation introduced by 
matrices M and L defined such that 1  exists.  1 )( −−+ LAMI T

          (23) 111111 )()( −−−−−− +−=+ AMLAMILAALMA TTT
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Using Eqs. (16) and (18), the new model can 
represent the incrementally acquired sequences 
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according to Eq. (24).  
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Eq. (24) shows the influence of the incremental data 
on calculating the new separating hyper plane slopes and 
intercept values for the different c classes. 

Figure 3 depicts the overall generic data flow of our 
proposed dynamic multi-classification algorithm. 
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 Figure 3: Soft Classification of Dynamic Data Stream 
 
During the initial training phase, the initial model 

parameters w0 and b0 based on matrices A and L of 
Eqs.(16)  and (17) are stored  in the cache memory. The 
dynamically acquired data stream is tested by the Tukey 
test for outliers [32]. If the data passes the Tukey test, 
the system tries to correctly predict the class label of xN+1 
by using the decision function Eq. (19). A model update 
is required if the confidence level at the tth iteration tΘ  

is smaller than the initial value . If a model update is 
needed, either incremental approaches described in 
Sections 4.1 and 4.2 are applied depending if the 
dynamic stream data are to be processed sequentially or 
in a batch manner. The recently acquired image data xN+1 

is deleted after the model is updated. If

iniΘ

init Θ≥Θ , 
which means that the classifier did not require updating, 
the incrementally acquired images are stored in order to 
enable the system to learn even after several non-
incremental steps. When the model is not updated, an 
‘intelligent timer’ is incremented to keep track of the 
trend in the mis-classification error Mis_Err. If Mis_Err 
is not statistically increasing over successive non retrain 

steps, the ‘intelligent timer’ will purge the stream video 
sequence stored in the buffer. Enabling the obsolescing 
of non useful data reduces the system’s storage 
requirements. Otherwise, if Mis_Err is increasing, the 
‘intelligent timer’ will get activated and force the 
classifier to retrain after an iteration counter defined by 
the user. 

The addition of incremental data to the existing 
optimal solution still satisfies KKT conditions. Their 
incorporation into the initial classifier model is viewed 
as a ‘perturbation’ that insures low probability and key 
data is not outnumbered. L(w,b) is still convex and 
basically ΔA and ΔL are in equilibrium such that changes 
in ΔA are absorbed by changes in ΔL.  
Table 2 compares the storage requirements for the 
proposed incremental classifier (refered to in Table 2 as 
Dynamic_Model) with respect to the complete retrain 
scenario (refered to in Table 2 as Retrain_Model). When 
the behavior input sequence data becomes large, the 
Retrain_Model storage requirements become a major 
concern.  

 

TABLE 2 
STORAGE REQUIREMENTS 

Classifier Type  Data Structure Size 

Retrain_Model 1- f by c for classifier parameters 
2- a permanent storage of size 
(N+incnum)*f that is always 
increasing.   
 

Dynamic_Model 1- f by c for classifier parameters 
 2- temporary memory  of size 

incnum*f for dynamic data if 
classifier is not updated. 

  
incnum=  number of  dynamic data acquired 

5. Experimental Setup 
A block diagram of the experimental setup is shown 

in Figure 4. It consists of a humanoid animation model 
that is consistent with the standards of the International 
Organization for Standardization (ISO) and the 
International Electro technical Commission (IEC) (FCD 
19774) [21]. Our target is to establish interaction 
between actual target objects, virtual avatars and 
eventually retarget both virtual and actual targets. We 
focus on selected kinematics models to correspond to 
articulated target models. Using a uniquely developed 
graphical user interface (GUI) as described in [21], the 
humanoid motion is registered in the computer based on 
human interaction. We use selected kinematics models 
to enable correct behavior registration with respect to 
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adjacency constraints and relative joint relationships. 
The registered behavior (typically with 50 instances per 
behavior) is used to train the model in an off-line mode 
[21].  

 
Figure 4: Learning by Visual Observation Modules 

 
 Since several studies related to human motion 
classification had been published and the study of novel 
extraction methods and motion tracking is potentially a 
standalone topic [23, 33], we decided to minimize the 
complexity of image pre-processing techniques. Further 
research on multi-sensor network dedicated to human 
tracking and identification can be found in [12,18,20 and 
22].  However the scope of this paper is not to propose 
novel feature extraction techniques and motion 
detection. Our main objective is to demonstrate machine 
learning using our dynamic SVM methodology. This is 
why to identify motion and condense the frames into 
uniquely defined feature vectors, we use a combination 
of Euclidian distances and image subtraction as 
proposed in our earlier work in [21].  We extract the 
input data by tracking color-coded marker points tagged 
to 11 joints of the humanoid. This extraction method 
results in lower storage needs without affecting the 
accuracy of behavior description. Motion detection is 
derived from the positional variations of the markers 
relative to prior frames.   

The collected raw data is a two-dimensional (2D) 
image sequence of the humanoid as captured by a Pulnix 
CCD color camera. The image sequence is treated as one 
unit of sensory data. For each behavior, we acquired 40 
sequences each comprised of 50 frames. Every frame 
contained the positional information of the 11 markers. 
Each sequence of 50 frames is then condensed into a 
single vector characterizing the motion behavior of the 
humanoid. Since we are interested in the selected 
articulated motions listed in Table 3, we compute the 
feature vectors describing motion as the summation 
across the frames of the squared difference of the 
consecutive marker positions.   

Because the limited number of training datasets is one 
of the inherent difficulties in the learning methodology 
[2] and to address this limitation, we artificially create 
two synthetic datasets by adding noise to the feature 
space. Noise source in the first dataset was modeled as a 
uniformly distributed noise whereas Gaussian noise with 
distribution (σ=1) was incorporated to the second 

dataset.  
 

TABLE 3 
BEHAVIORAL CLASSES FOR SELECTED ARTICULATED MOTIONS  

 
M1 
M2 
M3 
M4 
M5 
M6 

Motion in Right Arm 
Motion in Left Arm 

Motion in Both Arms 
Motion in Right Leg 
Motion in Left Leg 

Motion in Both Legs 
 

6. Experimental Analysis for Behavior 
Learning 

We validated the proposed dynamic multi-
classification method described in Sections 3 and 4 
against the stream data acquired experimentally. Results 
are summarized in the following four subsections. 
Section 6.1 contrasts the off-line model with a freeware 
code. Section 6.2 compares the off-line and dynamic 
models to the retrain classifier. Section 6.3 analyses the 
performance of the dynamic model when updates are 
sequential of nature. Section 6.4 contrasts batch versus 
sequential model processing. Section 6.5 compares 
efficiency; storage and computational requirements 
between the proposed dynamic and retrain model. 
Finally Section 6.6 shows convergence rates for models 
that exhibit an initial poor classification performance.  

6.1 Comparing Off-line Multi-classification 
SVM 
 First, we tried our proposed multi-classification 
technique with different data sets to verify how the 
separating hyper planes will shift directivity with respect 
to changes in the data. Figure 5 is a scatter plot 
illustrating the artificially created input datasets with the 
separating planes positions.  

 
Figure 5: Hyper Planes Directivity  
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Second we compared classifier performance with the 

code available in the Statistical Pattern Recognition 
Toolbox written by Vojtech Franc and Vaclav Hlavac 
[24]. The freeware code is designed to solve for the 
Lagrange multipliers and return after a series of error 
optimization, the model parameters as well as the 
misclassification error. We used the following databases 
found in Matlab Stprtool Toolbox (The MathWorks, Inc., 
Natick, MA): IRIS, GMM and Pentagon. Databases 
specifics are listed in Table 4.  

 
TABLE 4 

DATABASE SPECIFICS 
 Feature Class Training Testing 

GMM 2 3 200 100 
IRIS 4 3 100 50 

Pentagon 2 5 66 33 
 
We compared CR of our proposed approach referred 

to as Prop in Table 5 to [24]. We varied λ for optimal 
hyper plane positions and tried different kernel functions 
for [24]. Table 5 displays the experimental results.  
Prop’s performance was greatly affected by the selection 
of λ, whereas OAO and OAA confusion rates of [24] 
were heavily dependant on kernel functions.  Prop CR 
was best in the Pentagon data, twice as bad for IRIS and 
comparable to the GMM case.   

 
TABLE 5 

EXPERIMENTAL RESULTS FOR PROP VERSUS OAO AND OAA  

 
Third we compared our off-line multi-classification 

SVM technique on the dataset that was collected per 
Section 5 details. Our proposed technique resulted in a 
much shorter computing time than in [24] as Figure 6 
suggests. For large datasets, the code proposed in [24] 

did not execute because the optimization steps consumed 
considerable computing resources. 
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Figure 6: Time and Mis_Error Ratios  

 
Figure 6 shows the Time Ratio computed as the 

execution time ratio of our proposed off-line multi-
classification technique over the execution time of [24]. 
Due to our soft computing technique for the hyper 
planes, the execution time of our method is dramatically 
shorter than the standard optimization that solves for the 
Lagrange multipliers. Similarly, Mis_Error Ratio 
represents the ratio of our misclassification error divided 
by the error rate as calculated by [24]. As the video 
stream data increased in size, the misclassification error 
of our proposed multi-classification technique became 
more attractive than [24].               

6.2 Analyzing Articulated Humanoid Sequences 
We started by investigating the effect of the data size 

used for training on Mis_Err. For this purpose, we based 
our analysis on a matrix of three scenarios with five 
different experiments for each. In all instances, we did 
not reuse the data sequences used for training to prevent 
the model from being over-fit.   

 
• Scenario 1: [Off-line Model]: Use one 

training dataset to develop the off-line 
model. Compute the confidence rate Θ for 
the off-line model using a subsequent 
dataset. 

 
• Scenario 2: [Dynamic Model]: Acquire and 

sequentially process incremental frames one 
at a time according to the incremental 
strategy highlighted in Section 4. When 
necessary, update the model dynamically as 
proposed in Section 4.1. Compute the 

  λ Kernel GMM IRIS PENTAGON 

Prop 0.005 NA 1.02% 14.58% 0% 

Prop 0.5 NA 1.02% 14.58% 0% 

Prop 1 NA 1.02% 12.50% 0% 

Prop 10 NA 1.02% 12.50% 3.03% 

Prop 100 NA 4.08% 9.50% 15.15% 

Prop 1000 NA 5.10% 9.50% 21.21% 

OAO NA RBF 1.63% 6.25% 21.70% 

 OAO NA Linear 1.40% 4.18% 11% 

OAO NA Poly 4.08% 4.17% 2% 

OAO NA Sigmoid 7.14% 12.92% 9.70% 

OAA NA RBF 2% 6% 20% 

OAA NA Linear 1.40% 4.18% 12% 

OAA NA Poly 4.37% 4.17% 3% 

OAA NA Sigmoid 8.10% 11.25% 9% 
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confidence Θ rate based on the same 
subsequent test-set sequence used in 
Scenario 1. 

 
• Scenario 3: [Retrain Model]: Acquire and 
incorporate incremental frames in the training set. 
Re-compute the model parameters. We refer to this 
scenario as the Retrain model. Compute the 
confidence rate Θ based on the same subsequent 
test-set sequence used in Scenarios 1 and 2. 

 
For each scenario, confidence rate Θ is shown in 

Figure 7. 
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Figure 7: Confidence Rates Θ for Off-line, Dynamic and 
Retrain Models 

 
 
Figure 7 shows that the performance of the dynamic 

model normally lies between Scenario 1 that employs a 
one-time training approach and Scenario 3 that 
continuously retrains. Furthermore the confidence rate of 
Scenario 2 is within 3% of Scenario 3. The discrepancies 
between the confidence rates are especially noticeable in 
all Scenarios when the training sequences are reduced in 
size. 

6.3 Analyzing Sequential Synthetic Data Stream 
    We then analyzed the synthetic data using Scenarios 2 
and 3 described in Section 6.2. Uniformly distributed 
noise was added to the feature space of the stream 
sequences collected during our experimental setup. 
Figure 8 compares the statistical misclassification 
accuracy results of our proposed incremental multi-
classification SVM to that of the retrain model. 
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Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Training set 600 720 600 1200 600 1200 1200 1800 1200 2400

  Dynamic set 120 600 600 600 1200
Testing set 120 120 600 600 1200 1200 600 600 1200 1200

Figure 8: Mis_Err Rates for the Dynamic and Retrain 
Models  

In order to investigate the worst misclassified 
behavior classes, we computed the confusion matrix 
shown in Table 6 for all the experiments run in Figure 6.        

 
TABLE 6: 

CONFUSION MATRIX FOR DYNAMIC MODEL 
 

 M1 M2 M3 M4 M5 M6 
M1 30698 0 598 0 0 0 

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Training set  30 30 35 25 25 30 20 20 30 15 15 25 10 10 20

  Dynamic set 5 5 10 10 10
Testing set 5 5 5 10 10 10 10 10 10 15 15 15 20 20 20

M2 0 36926 41 60 172 0 
M3 521 172 36506 0 0 0 
M4 0 0 0 36831 0 368 
M5 0 0 0 0 36831 368 
M6 0 0 0 367 521 36311 

 
TABLE 7 

CONFUSION MATRIX FOR RETRAIN MODEL 
 

 M1 M2 M3 M4 M5 M6 
M1 36340 0 859 0 0 0 
M2 0 36920 148 60 41 30 
M3 520 82 36597 0 0 0 
M4 0 30 0 36760 71 368 
M5 0 19 30 160 36830 160 
M6 0 11 0 881 148 36159 

 
One observes a certain level of symmetry in the 

confusion occurrences in both models. This is 
highlighted in dark grey in Table 6 and Table 7. 
Asymmetry in confusion is marked in light grey and is 
not very frequent in either model. 

Based on the confusion matrices in Table 6 and Table 
7, we generated frequency plots to highlight the most 
recurring misclassification errors. Figure 9 shows the 
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confusion rates of each model and the percentage of 
times when a predicted behavioral class (P.C) did not 
match the correct behavioral class (C.C). 

 

 
Figure 9: Confusion Occurrence for Dynamic and Retrain 

Models 
 
Based on the results shown in Figure 9, Table 6 and 

Table 7, one can make several observations. First, the 
proposed dynamic SVM has fewer distinct confusion 
cases than the retraining model (10 versus 18 cases). 
Second, it has more misclassification occurrences in 
each confusion case.  For both models, most of the 
confusion occurred between M1 and M3. Our proposed 
model has similar confusion rates when predicting class 
M1 instead of M3, and class M3 instead of M1. 

We ran the non-parametric and distribution free 
Kolmogorov-Smirnov [32] comparison test to check if 
the confidence level Θ for the dynamic and retrain 
models are significantly different. The maximum 
difference between the cumulative distributions Dist, is 
0.1856. The corresponding p value for this test is 0.643 
which denotes that the null hypotheses H0 which states 
that the dynamic and retrain models are not different 
cannot be rejected.   

We generated receiver operating characteristics 
(ROC) curves for both the retrain and the dynamic 
models as shown in Figure 10. Out of the four notions 
used to measure ROC performance, we focus on 2 of 
them: True Positive (TP) and False Positive (FP).  TP 
means that the classifier correctly predicts that the new 
data belong to class M.   FP means that the classifier 
predicts that the new data belong to class M when it does 
not actually belong to the class.  Figure 10 shows the 
receiver operation curve (ROC) as an outcome of the 
classification performance.  The area under the ROC 
curves (AUC) for the retrain and dynamic models are 
respectively 0.9004 and 0.8701 which is greater than 
0.5. An AUC of 0.5 or a diagonal line response 
represents random guessing of data stream behavior 
classification. Thus with AUC values close to 1, the test 
statistic on ROC is valid, and we can conclude that both 
dynamic and retrain performed well in classifying 
incremental data.  
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         Figure 10: Dynamic and Retrain ROC Curves  

6.4 Analyzing Batch Synthetic Data Stream  
 the 

pe
In the final stage of our analysis, we compared
rformance of batch to sequential processing. We 

added a Gaussian noise with distribution (σ=1) to the 
feature space for the stream data. We processed the new 
datasets using our proposed incremental technique first 
sequentially then in batch mode (using 100 new datasets 
at a time).  

 

 

Training set 600 720 600 1200 600 1200 1200 1800 1200 2400
Dynamic set 120 600 600 600 1200
Testing set 120 120 600 600 1200 1200 600 600 1200 1200  

Figure 11: Batch versus Sequential Processing 
 

igure 11 compares the Mis_Err rates of misclassified 
be

F
haviors for each mode. The performance of the two 

methods becomes more comparable as the training and 
the incremental sequence sizes are increased. Sequential 
processing seems to be more suited when off-line 
models are computed using a reduced number of training 
sequences because incremental data acquisition enables 
continuous model training in a more efficient manner 
than off-line training. Furthermore the misclassification 
error rates in Figure 11 of the data sequences generated  

12 



 
 

by adding Gaussian noise are lower than the 
misclassification error rates Mis_Err using the data with 
added uniformly distributed noise. Finally, with a 
Gaussian distributed noise, the misclassification rate for 
the dynamic model is not statistically different that the 
error rate of the retrain technique.  

6.5 Storage and Computational Requirements 

 storage requirements, S (referenced 

TABLE 8 
 ACCURACY VERSU E REQUIREMENTS 

 Proposed Model S 

versus Accuracy 
    We compared the
in Table 8), of the proposed technique to those of the 
retraining model considering accurate behavior 
classification. We considered extreme storage cases 
when using the proposed dynamic multi-classification 
procedure. The worst-case scenario (referenced as W in 
Table 8 ) occurred when all the incremental sequences 
were tested according to Section 4.1 and Mis_Err was 
less than the threshold, Thres. This scenario did not 
require a model update. However, the data had to be 
stored for use in future model updates to maintain the 
model learning ability. The best-case scenario (referred 
to as B in Table 8) occurred when Mis_Err for the 
acquired data sequences was greater than Thres. This 
scenario required temporary storage of the incremental 
sequence while matrix A was being computed for the 
updated model. A is a square matrix of size (f*c+c) 
where f equals to the dimension of features space and c 
the number of different classes.  
 

S STORAG
 

Worst Best case 
case 

Re-train Model S Delta 
  

120*22 18*18 720*22 -0.39% 
600*22 18*18 1200*22 -0.13% 

1200*22 18*18 2400*22 0.08% 
 
Table 8 shows the results of this comparison. The 

Delta is defined as an average computed across the 
different experiments mentioned in previous sections: 

)__Re__(1 ErrMistrainErrMisDynamicDelta ∑ −=  
n

From a storage perspective, the dynamic model is less 
de

f 
th

manding than the retrain model. The drawback might 
be a slightly higher but not significantly different 
Mis_Err. The dynamic procedure enables model tuning 
with an acceptable error rate for accurate behavior 
classification and reduced image storage requirements. 

We then compared the computational requirements o
e off-line, dynamic and the retrain models. Figure 12 

shows the elapsed CPU execution time reported in 

seconds for each model.  

 
 Figure 12: Off-line, Dynamic and Retrain CPU Time  

        
 dynamic model is less demanding than the retrain 

m

    6.6 Dynamic Learning Convergence Rate 
sifier 

w

The
odel especially for massive datasets.  It offers the 

advantage of soft computing and provides a good 
balance between accuracy and efficiency. 

To explore the learning capability of the clas
hen the initial model has a very poor performance as a 

result on a reduced training set, we ran 20 different 
experiments according to the workflow pictured in 
Figure 3. In each experiment, we used the same initial 
training and testing sets. The former was composed of 
12 sequences and the latter of 120. We started with an 
initial weak classifier model and successively 
incorporate dynamic data according to our proposed 
technique.  

 
 Figure 13: Convergence Rate with respect to Iteration Coun

 
he incremental dataset was varied across the 

experiments from 12 to 1200 in order to assess the 

t 
and Incremental Set Size    

T
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    Jane Brooks Zurn and 
Xianhua Jiang for their comments.  The authors would 

pact of the dynamic data set size on the learning curve 
convergence rate. Figure 13 shows the convergence rate 
for selected experiments. Mis_Err is improved by 50% 
when the incremental dataset is set to be 8 times bigger 
than the training dataset. If the dynamic dataset 
incorporated is set to be 100 times the training set, 
Mis_Err of the classifier drops to 10% of the initial 
model mis-classification rate. As it can be easily 
observed the incremental approach was able to gradually 
adjust the hyper plane positions to better classify data 
without the time consuming and resource extensive 
machine learning training phase.   
 

In this paper, we proposed a stream mini
 developing a unique incremental multi-c
M for articulated learning behavior. Starting with an 

off-line SVM learning model, the online SVM 
sequentially updates the hyper plane parameters when 
necessary based on proposed incremental criteria. Our 
classification scheme treats each image sequence as a 
single unit of sensory data for positional markers. The 
experimental results demonstrate the feasibility and 
merits of our proposal for dynamic learning behavior 
using SVM. Without the need of optimization and with a 
convex objective function, our proposed classifier 
efficiently solves a single system of linear equations to 
find the hyper planes characteristics. It is able to 
describe current system activity and identify an overall 
motion behavior even with noisy stream data. The 
accuracy of the proposed incremental SVM is 
comparable to a retrain model. Furthermore, our 
technique is attractive because it is simple to implement, 
it has faster computing time and requests lower storage 
and memory requirements when compared to the retrain 
model. 

Future work will investigate data sets involving real 
human m

plementation for massive datasets. We will apply our 
proposed incremental SVM technique to benchmark data 
sets for behavioral learning and we will check for model 
robustness. 
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