

Dynamic Classification for Video Stream using Support Vector Machine

 Mariette Awad1,2 and Yuichi Motai1

 1 Department of Electrical and Computer Engineering
 University of Vermont, Burlington, VT, USA
 2 IBM Systems and Technology Group, Essex Junction, VT, USA

Abstract

A dynamic classification using the support vector machine (SVM) technique is presented in this paper as a new

‘incremental’ framework for multiple-classifying video stream data. The contribution of this study is the derivation of a
unique, fast and simple to implement technique that allows multi-classification of behavioral motions based on an
adaptation of the Least Square SVM (LS-SVM) formulation. This dynamic approach leads to an extension of SVM beyond
its current static image-based learning methodologies. The proposed incremental multi-classification method is applied to
video stream data, which consists of an articulated humanoid model monitored by a surveillance camera. The initial
supervised off-line learning phase is followed by a visual behavior data acquisition and proposed incremental learning
phase. The resulting error rate and the confidence level for the proposed technique demonstrate its validity and merits in
articulated motion learning. Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and
provides the advantage of reducing both the model training time and the information storage requirements of the overall
system which are both essential in dynamic soft computing applications.

Keywords: dynamic soft computing, multiple classification, incremental support vector machine, behavior learning.

1. Introduction
 Dynamic soft computing represents a significant

paradigm shift in the strict definition of computing. It
demonstrates the feasibility of storing and processing
information in a manner tolerant of imprecision,
uncertainty and approximation. The basic ideas
underlying the standard soft computing incarnation were
influenced by Zadeh's work on fuzzy sets, analysis of
complex systems and decision processes, as well as the
possibility theory and soft data analysis. Soft Computing
(SC) has Fuzzy Logic (FL), Neural Computing (NC),
Evolutionary Computation (EC), Machine Learning
(ML) and Probabilistic Reasoning (PR) as principal
constituents [13].

Dynamic classification is a desirable method in ML
applications and it serves as a basis for future decision-
making [13]. Researchers in classification had proposed
many different algorithms such as nearest-neighbor,
decision tree induction, error propagation, reinforcement
learning, lazy learning, rule based and statistical learning
algorithms [29]. Dynamic, incremental or online
learning refers, in this context, to the situation where the
training dataset is not fully available at the beginning of
the learning process. The data can arrive at different time
intervals and need to be incorporated into the training
data to preserve the class concept. Our study focuses on

SVM as a prime classifier for an incremental multi-
classification mechanism for sequential stream video.
Our selection for SVM technique is justified by several
of its main advantages: SVM is computationally
efficient, highly resistant to noisy data and offers
generalization capabilities [10]. SVM distinguishes itself
from neural networks and other non parametric
techniques by the fact that it does not exhibit the same
classical problems of multi-local minima, curse of
dimensionality and over-fitting [31]. Moreover SVM
minimizes the structural risk which controls the upper
bound of the generalization error by maximizing the
margin between the separating hyper plane and the data.
This makes SVM specially suited for sparse data [8].
Besides work on multi-class SVM classifiers is an area
for further research [4].

Constructing a ML SVM classifier capable of
incremental classification as opposed to batch-mode
learning is very attractive and will become a strategic
necessity for video stream data for many reasons. First
there is a significant demand increase in video stream
applications such as in smart surveillance [5], building a
profile of people manners [16,26], remote monitoring of
elderly patients in healthcare centers, elucidating rodent
behavior under different conditions [14] as well as
articulated motion analysis, visual-based human and
computer interface. Second real time classification of
video stream imposes extensive computational

1

requirements on the system during training and even at
run time [8]. Third video stream data are continuous
large data stream by nature and can exhibit a large
degree of variability in the object class and the
environment such as occlusions, orientation and
illumination of the object [8]. This usually requires an
extensive training phase for the initial classifier based on
a large off-line collection of datasets that represent the
learning-from-examples paradigm. If the incorporation
of incremental modular algorithms for video stream
classification could be designed to meet low storage and
memory requirements, online learning will reduce the
extensive time consuming and resource extensive
machine learning training phase without affecting the
classifier ability to continuously learn. This would
enable dynamic soft computing and maintain good fit for
the initially sparse training data as well as adequate
prediction capabilities on the incremental data that were
not included in the training samples.

Within the context of dynamic learning, we present a
novel technique that extends traditional SVM beyond its
existing static image based learning methodologies to
handle multiple behavioral classifications. We opted to
investigate dynamic behavior learning because of the
numerous current and potential applications mentioned
earlier. For illustration purposes, we have applied our
technique to learn the behavior of an articulated
humanoid through video footage captured by a
monitoring camera sensor. We have then tested the
model’s accuracy of incrementally classifying articulated
motions. The initial supervised off-line learning phase
was followed by a visual behavior data acquisition and
an online learning phase.

To the best of our knowledge, no prior work has used
an adaptation of LS-SVM with a multi-classification
objective for dynamic behavior learning. The
contribution of this study is the derivation of this unique,
dynamic, fast and simple to implement multi-
classification technique.

 This paper is organized as follows. Section 2 presents
an overview of SVM principles and related techniques:
Section 3 covers our unique multi-classification
procedure and Section 4 introduces our proposed
incremental SVM. Section 5 describes the experimental
setup and Section 6 summarizes the experimental
analysis and results obtained. Finally, Section 7 contains
concluding remarks and outlines our plans for follow-on
work.

2. SVM Principles and Related Studies
 Originally designed for binary classification, the SVM
techniques were invented by Boser, Guyon and Vapnik
and were introduced during the Computational Learning
Theory (COLT) conference of 1992 [10]. SVM offers a

principled approach to ML problems because of its
mathematical foundations in statistical learning theory
[31]. The aim of SVM classification is to find a
computationally efficient way of learning a hyper plane
that correctly classifies the high dimensional feature
space. SVM tries to minimize the confidence interval
and keep the training error fixed while maximizing the
distance between the calculated hyper plane and the
nearest data points known as support vectors (SV). SV
define the margins for the hyper planes and summarize
the remaining data, which can then be ignored. The
complexity of the classification task will thus depend on
the number of support vectors rather than on the
dimensionality of the input space and this helps prevent
over-fitting. Calculating SV and specifically controlling
their selection is one of the major limitations of SVM
techniques [4].

Traditionally, SVM was considered for unsupervised
off-line batch computation, binary classifications,
regressions and structural risk minimization (SRM) [13].
Adaptations of SVM were applied to density estimation
[25], Bayes point estimation [7] and transduction [13]
problems. Researchers also extended the SVM concepts
to address error margin, efficiency, multi-classification
and incremental learning. Platt [27] introduced iterative
chunking of the input space by heuristically selecting an
‘active or working’ set to train SVM using generic
optimization techniques. In his approach, the support
vectors from the chunk are retained and the remaining
part of the data is tested against the hypothesis found.
All points that drastically violate the Karush-Kuhn-
Tucker (KKT) conditions are added to the support
vectors of the previous problem forming a new chunk to
process. For non-sparse problems or for a large set of
support vectors, this technique is not very attractive
because its heuristic nature requires the set of support
vectors to be stored in system memory before being
processed by the optimization algorithm. To improve
efficiency and to end the need for iterative chunking in
large data sets, Suykens and Vandewalle [30] developed
a least-squares SVM (LS-SVM) technique by removing
the inequality constraints from the traditional Vapnik
SVM quadratic formulation. The optimization problem
is thus reduced to a set of linear equations with KKT
conditions to be satisfied. With LS-SVM, the sparseness
of the solution is basically lost and the best support
vectors estimation occurs when error variables fit a
Gaussian distribution curve. Ralaivola and d’Alche’-Buc
[11] introduced an incremental learning algorithm that
exploits the locality of Radial Basis Function (RBF) by
re-learning only the weights of the training data points
lying in the vicinity of the new incremental data. Their
study however didn’t address any drifting concepts.
Cauwenberghs and Poggio [9] presented an online

2

recursive training algorithm that allowed incrementing
and decrementing to enable an evaluation for the ‘leave
one out’ generalization performance. Despite the fact
that the ‘leave one out’ error is almost unbiased and can
be proved by the Luntz-Brailovsky theorem, computing
it is expensive in general because training on L sets of
size (L-1) is required.

From a mathematical perspective, SVM hyper-planes
for binary classification are given by: w.xi+b=0.
Suppose T = {(x1,y1),…(xN,yN)} where xi є Rn is a training
set with attributes or features <f1,f2,…fn.> and T+ =
{xi|(xi,yi) є T and yi = 1} and T- = {xi|(xi,yi) є T and yi =-
1} be the set of positive and negative training examples
respectively. For a correct classification, all xi’s must
satisfy: yi (w.xi+b)≥0. Among all such planes satisfying
this condition, SVM finds the optimal hyper plane P0
where the margin distance between the decision plane
and the closest sample points is maximal. P0 is defined
by its slope w and should be situated equidistant from
the closest point on either side. Let P+ and P- be 2
additional planes that are parallel to P0 and include the
support vectors. P+ and P- are defined respectively by:
w.xi+b=1, w.xi+b=-1. All points xi should satisfy
w.xi+b≥1 for yi=1., or w.xi+b≤1 for yi=-1. Thus
combining the conditions for all points xi we have: yi
(w.xi+b)≥1. The distances from the origin to the three
planes P0, P+ and P- are respectively, |b-1|/||w||, |b|/||w||
and |b+1|/||w|| [10]. Figure 1 represents the positions of
the 3 planes for a multi-classification case.
 Eq. (1) through Eq. (6) presented below are based on
Forsyth and Ponce [17] and are applicable for a binary
and linearly separable classification. The optimal plane
needs to minimize the quadratic objective function of
Eq. (1) subject to the constraint in Eq. (2). As mentioned
earlier, this optimal plane is the same as the hyper plane
for which the separation margin between the two classes
(measured along a perpendicular to the hyper plane) is
also maximized.
 Objective function wwT .

2
1 (1)

Constraint linearly separable case: (2)

1).(≥+ bxwy i
T

i

Since the objective function is quadratic, this
constrained optimization is a quadratic programming
(QP) task and is solved by Lagrange multipliers method.
The goal is to minimize the Lagrange expression

with respect to w, b and the Lagrange coefficients
pL

0≥iα where:

)1).((.
2
1),,(

1
−+−= ∑

=

bxwywwbwL i
T

i

N

i
i

T
P αα (3)

By setting the partial derivatives of Eq. (3) with respect
to w and b equal to zero:

0),(=
∂
∂ bwL
w P

 0),(, =
∂
∂ bwL
b p

We get and (4)
jj

N

j
j xyw ∑

=

=
1
α 0

1
=∑

=
j

N

j
j yα

Substituting Eq. (4) back into the Lagrange expression,
we now deal with the dual Lagrange problem of the
above primal. Both problems arise from the same
objective function but they have different constraints. In
the dual Lagrange, the solution is found by maximize Lp
whereas in the primal Lagrange, the solution is found by
minimizing Ld.

jjiji

N

i

N

j
i

N

i
id xxyyL αααα).(

2
1)(

1 11
∑∑∑
= ==

−=

Any new data point is then classified by the decision
function in Eq. (5).

 Decision function: (5)).()(bxwsignxf T +=
Substituting Eq. (4) into Eq. (5) allows us to rewrite

the decision function as:
 (6))().()(

1

bxxysignbxwsignxf i
T

i

N

i
i

T +=+= ∑
=

α

For most practical applications where the class data
are not completely separable, a slack variable e is added
to Eq. (2) so that the hyper plane maximizes the margin
between the two classes while minimizing e which is
proportional to the misclassification error [15] .
Constraint for non-separable case:

ii
T

i ebxwy −≥+ 1).(
SVM solutions are obtained from solving quadratic

programming (QP) problems. LS-SVM instead uses
linear system instead of QP and as introduced in [30] are
obtained by optimizing the Lagrangian as defined in Eq.
(7):
)1)(()(

2
1

2
1),,,(

11

2
ii

T
i

N

i
i

N

i
i

T
p ebxwyewwebwL +−+−+= ∑∑

==

αλα (7)

with iα being the Lagrange multipliers which can be
either positive or negative. These parameters are derived
from Karuch Kuhn-Tucker (KKT) conditions which are
valid as long as the objective function and conditions are
convex [30]. The gradient of the inequality restrain
solutions to the interior of the acceptable region and the
optimal solution is the saddle point that satisfies Eq. (4).
λ is the regulating parameter for the error term which
greatly impact the classifier performance during the
training phase. Hsu and Lin [19] showed that SVM
accuracy rates were influenced by the selection of λ,
which varies in ranges depending on the problem under
investigation. KKT conditions:

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=+−+→=

=→=

=→=

=→=

∑

∑

=

=

01)(0

0

00

0

1

1

ii
T

i
i

ii
i

N

i
ii

N

i
iii

ebxwyL

e
e
L

y
b
L

xyw
w
L

δα
δ

λα
δ
δ

α
δ
δ

α
δ
δ

 (8)

3

Eliminating w and e, the system of linear equations in
Eq.(8) can be written more concisely in a matrix form
as:

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

+ − I
b

IZZY
Y

T

T 00
1 αλ

 where

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
=
=
=
=

];...;[
];...;[

]1;...1[
];...;[

];...;[

1

1

1

11

N

N

N

N
T
N

T

eee
I

yyY
yxyxZ

ααα

with Mercer conditions applied to TZZ [30].
 When data cannot be classified by linear decision
surfaces, Cover’s theorem states that the input space
may be transformed into a new feature space that is
linear separable [6]. Non linear transformation called
inner-product kernels help in mapping the input space to
a high dimensional feature space. Most common kernels
used are [17]:

Linear: i
T

i xxxxk =),(
Polynomial: d

i
T

i xxxxk)1(),(+=
Gaussian (Radial-basis):)2/exp(),(22 σii xxxxk −−=

Sigmoid:)tanh(),(10 ββ += i
T

i xxxxk
SVM performance largely depends on the choice of

kernels. However, there are no well established theories
to select kernel functions in a data-dependant way.
Amari and Wu [1] proposed a modified kernel which
takes into consideration geometric information of the
Riemannian structure and enlarges the spatial resolution
to increase class separability.

There are different strategies that researchers used to
decompose the multi-classification problem into a set of
binary ones. Schölkopf and Smola [28] described the
widely used multi-classification SVM techniques: one-
versus-rest, pair-wise classification, error-correcting
output codes and the multi-classification objective
functions. The one-versus-the-rest also referred to as
one-against-all (OAA) is probably the earliest SVM
multi-class implementation [3]. It constructs c binary
SVM classifiers where c is the number of classes. Each
one distinguishes one class from all the other classes
which reduces the case to a two-class problem. There are
c decision functions: . ci

T
ci

T bxwbxw ++ .;;. 11 L

The final label output is given to the class that showed
the highest output value [19].

 Class of x (9)).(maxarg ,,1 i
T

ci bxwi +≡ = L

The pair-wise classification also referred to as one-
against-one (OAO) builds c(c-1)/2 binary SVM, each of
which is used to discriminate two of the c classes only.
For training data for the kth

 and jth class, the constraints
are [17]:

i
kjkji

T
kj ebxw −≥+ 1. for yi=k

i
kjkji

T
kj ebxw −−≥+ 1. for yi=j

For reasonable data set sizes, the accuracy of the
different multi-classification techniques is comparable.
For any particular problem, the selection of the optimal
multi-classification approach partly depends on the
required accuracy, development and training time. The
one-to-others approach trains c SVM versus c2 however
at runtime both techniques require the evaluation of (c-1)
SVM classifiers [28]. The multi-classification objective
function has probably the most compact form as it
optimize the problem in one single step. It constructs c
two class rules, where each classifier separates training
vectors of a class from all the others using the constraint:

m
imi

T
myi

T
y ebxwbxw

ii
−−+≥+ 2

The decision function is the same as Eq. (9) for the one-
against all technique [19].

3. Proposed Multi-Classification SVM
 Using a similar approach to Hsu and Lin [19], we
add the plane intercept term b to the objective function.

2

11
)()..(

2
1 ∑∑∑

= ≠=

++
N

i

c

ym

m
imm

c

m
m

T

i

m
ebbww λ

(10)
Adding b into the objective function that already

accounts for w enables us to uniquely define the optimal
plane. The selection of λ can be found heuristically or by
a grid search. Large λ values favor less smooth solutions
that drive large w values.

Selecting the multi-classification objective function
among the different schemes of multi-classification, we
use the constraint as shown in Eq. (11) with a slack
variable to account for the non-separable data:

 (11)
m
imi

T
yi

T ebxwbxw
miiy

−++=+ 2).().(

However unlike traditional multi-class SVM and LS-
SVM, we consider the constraint relationship to be
equality instead of inequality between the different
classes. Substituting Eq. (11) into Eq. (10), we drop the
Lagrange multipliers and get the following objective
function to optimize:

2

11
)2)()((

2
)..(

2
1),(∑∑∑

= ≠=

−−+−++=
N

i

c

ym
myimymm

c

m
mm

i

ii
bbxwwbbwwbwL λ

The objective function remains convex which insures
that the KKT conditions are still valid, but the model is

4

now reduced to a single system of linear equations.
Fundamentally the problem is now different than Eq.(7).
It is reduced to an unconstrained optimization and the
solution now becomes equal to the rate of change in the
value of the objective function. We do not numerically
solve for SV that correspond to the nonzero Lagrange
multipliers in traditional SVM. Instead our solution now
classifies points by assigning them to the closest parallel
planes without explicitly calculating SV. The hyper
planes are pushed apart by a maximum margin and
points of each class are now clustered around them with
no input data lying on planes. Figure 2 represents a
geometrical illustration for the proposed approach.

Figure 1: Standard multi-class SVM

Figure 2: Proposed multi-class SVM

 The elimination of SV calculation makes our
technique faster than standard SVM which is known to
converge slower than neural networks for a given
generalization performance. It is also easy to implement
and as in soft computing, it doesn’t exactly solve for SV
instead, it exploits the tolerance for imprecision and
uncertainty to achieve acceptable misclassification error
for the dynamic multiclassification SVM as introduced

in Section 4. In traditional SVM, the order of
operations needed for N training points with f as
dimension for feature space and Ns as total count for SV,
ranges from to

depending on the SV location with
respect to the hyper planes [4]. The uniqueness of the
global solution in our proposal is still valid because it is
a property of the Hessian being positive definite or semi
definite [15].
 The optimization steps for the hyper plane
parameters are detailed in the following steps. Taking
partial derivatives of with respect to the hyper
plane parameters w and b for each classifier:

)...(23 NfNlNN sss ++

)..(2 NfNN ss +

),(bwL

 ,0),(

=
∂

∂

nw
bwL 0),(

=
∂

∂

nb
bwL (12)

Defining ⎩
⎨
⎧

≠
=

=
ny
ny

a
i

i
i 0

1

Eq. (12) becomes:

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=+−+−

+−+−+−−+

=+−+−

+−−−−−−+

∑

∑

∑

∑

≠

=

≠

=

0])2)()((

)1)(2)()(([

0])2)()((

)1)(2)()(.([

1

1

imymy
T

c

ym

inyn

N

i
y

Tn

i

c

ym
imyimy

T
ii

iinyiny
T
ii

N

i

n

abbwwx

abbwwxb

axbbxwwxx

axbbxwwxxw

iii

i

iii

i

ii

ii

λ

λ

 (13)

Let us define:

])()1()([: 22

1
iim

c

ym
yii

N

i
nyw axwwaxwwS

i

ii
−+−−−= ∑∑

≠=

=> ∑ ∑∑
= ==

−+−−=
)(

1 1

22

1
)()(

nq

p
m

c

n
nii

N

i
nyw wwxxwwS

pi

A similar argument shows that:
])()1()([:

1
i

c

ym
imyii

N

i
nyb axbbaxbbS

i

ii ∑∑
≠=

−+−−−=

=> ∑ ∑∑
= ==

−+−−=
)(

1 11
)()(

nq

p
m

c

m
nii

N

i
nyb bbxxbbS

pi

 2

 2

 ||w|| Legend
 Class 1

 Class 2
 Class 3

 P0

 P-, P+

 ||w,b|| Legend
 Class 1

 Class 2
 Class

3
 P0

5

and]2)1(2[:
1

2 i

c

ym
iii

N

i
axaxS

i

∑∑
≠=

−−=

=> ∑∑∑∑∑∑
=== ===

−=−−=
)(

11

)(

1 1

)(

11
2 2222

nq

p
i

N

i
i

nq

p

c

m
i

nq

p
i

N

i
i ppp

xcxxxxS

where q(n) is the total number of observation belonging
to a specific class and c the total number of different
classes.

Applying similar reasoning for b, we can re-arrange
Eq. (13) to obtain:

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−++++

=++++

−++++

=++++

∑∑∑ ∑∑

∑∑

∑∑∑ ∑∑∑ ∑∑

∑∑∑∑

=== ==

==

=== === ==

====

)()(2)(

))(1()(

22

)()(

11

)(

1 11

)(

11

)(

11

)(

1 11

)(

1 11

)(

11

)(

11

nqcNbnqbwxwx

ncqNbwxcx

xcxbxbxwxxwxx

xcxbwxxcxxI

c

m
m

N

i
y

nq

p

c

m

T
i

N

i
y

T
i

n

nq

p

T
i

N

i

T
i

nq

p
i

N

i
i

nq

p

c

m
mi

N

i
yi

nq

p

c

m

T
iipy

N

i

T
ii

nq

p
i

N

i
inn

nq

p

T
iip

N

i

T
ii

imp

np

ppimpi

pp

λ

λ

 (14)

To rewrite Eq. (14) in a matrix form, we use the series
of definitions as mentioned in Table 1.

This allow us to manipulate Eq. (14) and rewrite it as

⎩
⎨
⎧

=−+−
=−+−

UBQRWHD
EBHDWGC

T)()(
)()(

 Solving these equations for W and B, we obtain

 (15)

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=⎥
⎦

⎤
⎢
⎣

⎡
−

U
E

QRHD
HDGC

B
W

T

1

)()(
)()(

We define matrix A to be:

(16)

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=
)()(
)()(

QRHD
HDGC

A T

and L to be:

 (17)
⎥
⎦

⎤
⎢
⎣

⎡
=

U
E

L

These definitions allow us to rewrite Eq. (14) in a very
compact form:

 (18) LA
B
W 1−=⎥
⎦

⎤
⎢
⎣

⎡

 Eq. (18) provides the separating hyper plane slopes
and intercepts values for the different c classes. The
hyper plane is uniquely defined based on matrix A and L
and it does not depend on the support vectors or the
Lagrange multipliers.

Once the hyper plane parameters are defined, a data
point is labeled according to the multi-classification
decision function:

 (19) cmbxwxf m
T
mm

...1),).((maxarg)(=+=

TABLE 1
MATRIX NOTATION

Matrix
Symbol Matrix Element

C Diagonal matrix of size (f*c) by (f*c), the
diagonal elements are composed of the square
matrix cn which is of size f:

∑∑
==

++=
)(

1

2

1

21 nq

p
i

N

i
in p

xcxc
λ

Diagonal matrix of size (f*c) by c, the diagonal
elements are the column vector dn of length f :

∑∑
==

+=
)(

11

nq

p
i

N

i
in p

xcxd

D

Column vector of size c made from

∑∑
==

+−=
)(

11

22
nq

p
i

N

i
in p

xcxe

E

H

Matrix of size (f*c) by c. The row vector is hn of
length c and of the form:

⎥
⎦

⎤
⎢
⎣

⎡
+++= ∑ ∑ ∑ ∑∑ ∑

= = = == =

)1(

1

)(

1

)(

1

)(

1

)2(

1

)(

1
...

q

p

nq

p

cq

p

nq

p
ii

q

p

nq

p
iiiin pppppp

xxxxxxh

Square matrix of size (f*c) by (f*c), G

 composed of matrix gn of size f by c such that

⎥
⎦

⎤
⎢
⎣

⎡
++= ∑∑∑∑

====

)(

1

)(

1

)(

1

)1(

1

)(...)(
nq

p

T
iip

cq

p

T
iip

nq

p

T
iip

q

p

T
iipn pppp

xxxxxxxxg

Q Square matrix of size c, made from the row vector

qn of length c

[]))()((...))()1((nqcqnqqqn ++=

U Column vector of size c, made from un))((2 ncqNun −−=

Square diagonal matrix of size c, the diagonal
elements rn are as follows

R

)(1 ncqNrn ++=
λ

f denotes the dimensions of feature space and q(n) the size of class n

6

4. Proposed Dynamic SVM
Once the hyper plane slopes are defined incorporation

of a recently acquired image sequence (xN+1) into the
existing model necessitates a full scale retraining for the
classifier.

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

=⎥
⎦

⎤
⎢
⎣

⎡

new

new

newnew
T

newnew

newnewnewnew

n U
E

QRHD
HDGC

B
W

)()(
)()((20)

Clearly, this approach is computationally very
expensive for applications with stream datasets. It is
expensive in terms of memory requirements and
computation time. To maintain an acceptable balance
between storage, accuracy and computational time, we
propose a dynamic SVM classifier to appropriately
dispose of the recently acquired image sequences.

4.1 Dynamic Strategy for Sequential Data

Whenever the model needs to be updated, each
dymanic sequence is expected to alter matrices C, G, D,
H, E, R, Q and U in Eqs. (16) and (17) by an
incremental amount of ΔC, ΔG, ΔD, ΔH, ΔE, ΔR, ΔQ
and ΔU respectively. A classifier update is required if
the confidence level in classification accuracy at the t-th
iteration is smaller than the initial value tΘ iniΘ (or the
confusion rate CRt is higher than the expected initial
value CRini). Θ values can be user defined or based
on pilot studies. The confidence level Θ is evaluated
using elements of the confusion matrix CM. CM is a
valuable visualization tool for supervised learning to
easily verify if the system is mislabelling classes. The
matrix columns represent the instances in a predicted
class, while the matrix rows represent the instances in an
actual class:

ini

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

ccc

c

c

ss

sss
ss

CM

...
.....
.....

..

...

1

22221

111

;

∑

∑

==

==Θ c

ji
ij

c

i
ii

t

s

s

1,1

1 and

∑

∑

==

≠== c

ji
ij

c

jii
ij

s

s
CR

1,1

,1

 where is the i-th diagonal element in the confusion

matrix and is the number of data belonging to

class i whereas the classifier recognized them as being
class j. or CRini can be determined by user or from
pilot studies.

iis

∑
==

c

ji
ijs

1,1

iniΘ

For illustrative purposes, let us consider a recently
acquired stream data xN+1 belonging to class t. Eq. (20)
then becomes:

⎥
⎦

⎤
⎢
⎣

⎡
Δ+
Δ+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

Δ+−Δ+Δ+−Δ+
Δ+−Δ+Δ+−Δ+

=⎥
⎦

⎤
⎢
⎣

⎡
−

UU
EE

QQRRHHDD
HHDDGGCC

B
W

n

1

)()()()(
)()()()(

To assist in the mathematical manipulation, we define
the following matrices:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
=

1.0000
......
0.1000
......
0.0010
0.0001

c
Ic

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.1.00
......
1.2.11
......
0.1.00
0.1.00

tI

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
=

1
.

1
.
1
1

c
I e

We can then rewrite the incremental change as follows:

;)(11 c
T
NN IxxC ++=Δ ;)(11 t

T
N+N IxxG +=Δ

;1 cN IxD +=Δ ;T IxH =Δ

IR =Δ
1 tN +

;2 1 eN IxE +−=Δ ; c

;tIQ =Δ .2 eIU −=Δ
The new model parameters now become:

 (21)
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

−−
−−

+=⎥
⎦

⎤
⎢
⎣

⎡ +

−

+

+++

e

eN

tctc
T
N

tc
T
Ntc

T
NN

n I
Ix

L
IIIIx

IIxIIxx
A

B
W

2
2

)()(
)())((1

1

1

111

Let

⎥
⎦

⎤
⎢
⎣

⎡

−−
−−

=Δ
+

+++

)()(
)())((

1

111

tctc
T
N

tc
T
Ntc

T
NN

IIIIx
IIxIIxx

A

and

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=Δ +

e

eN

I
Ix

L
2

2 1

We thus arrive to:

 (22))()(1 LLAA

B
W

n

Δ+Δ+=⎥
⎦

⎤
⎢
⎣

⎡ −

Eq. (22) shows that the separating hyper planes slopes
and intercepts for the different c classes can be
efficiently and dynamically updated using the old model
parameters.

4.2 Dynamic Strategy for Batch Data

For incremental batch processing, the data is still
acquired incrementally, but it is stored in a buffer in
queue for chunk processing. After capturing k sequences
and if the classifier needs to be updated as outlined on
Section 4.1, the recently acquired data is processed and
the model is updated as described by Eq. (21).

Alternately we can use the Sherman-Morrison-
Woodbury [32] generalization formula described by Eq.
(23) to account for the perturbation introduced by
matrices M and L defined such that 1 exists. 1)(−−+ LAMI T

 (23) 111111)()(−−−−−− +−=+ AMLAMILAALMA TTT

where ;
)(

)(1
⎥
⎦

⎤
⎢
⎣

⎡
−
−

= +

tc

tcN

II
IIx

M
T

N

I
x

L ⎥
⎦

⎤
⎢
⎣

⎡
= +1

Using Eqs. (16) and (18), the new model can
represent the incrementally acquired sequences

7

according to Eq. (24).

] (24) [1111)(−−−− +−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
Δ
Δ

+⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

+⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

AMLAMIMAI
B
W

U
E

U
E

B
W

B
W

TT

old

oldn

Eq. (24) shows the influence of the incremental data
on calculating the new separating hyper plane slopes and
intercept values for the different c classes.

Figure 3 depicts the overall generic data flow of our
proposed dynamic multi-classification algorithm.

Feature Extraction

Off-line Training
Video Data

Behavior Decision
Function

Update
Needed

Yes

Dynamic Training
Video Data

No

Multiclass SVM

LA
B

W 1−=⎥
⎦

⎤
⎢
⎣

⎡
)).((maxarg)(m

T
mm

bxwxf +=

Dynamic SVM

)()(1 LLAA
B
W

n

Δ+Δ+=⎥
⎦

⎤
⎢
⎣

⎡ −

Intelligent
Timer

Error
Increased

YesNo

Purge Data Store Data

Feature Extraction

Off-line Training
Video Data

Behavior Decision
Function

Update
Needed

Yes

Dynamic Training
Video Data

No

Multiclass SVM

LA
B

W 1−=⎥
⎦

⎤
⎢
⎣

⎡
)).((maxarg)(m

T
mm

bxwxf +=

Dynamic SVM

)()(1 LLAA
B
W

n

Δ+Δ+=⎥
⎦

⎤
⎢
⎣

⎡ −

Intelligent
Timer

Error
Increased

YesNo

Purge Data Store Data

 Figure 3: Soft Classification of Dynamic Data Stream

During the initial training phase, the initial model

parameters w0 and b0 based on matrices A and L of
Eqs.(16) and (17) are stored in the cache memory. The
dynamically acquired data stream is tested by the Tukey
test for outliers [32]. If the data passes the Tukey test,
the system tries to correctly predict the class label of xN+1
by using the decision function Eq. (19). A model update
is required if the confidence level at the tth iteration tΘ

is smaller than the initial value . If a model update is
needed, either incremental approaches described in
Sections 4.1 and 4.2 are applied depending if the
dynamic stream data are to be processed sequentially or
in a batch manner. The recently acquired image data xN+1

is deleted after the model is updated. If

iniΘ

init Θ≥Θ ,
which means that the classifier did not require updating,
the incrementally acquired images are stored in order to
enable the system to learn even after several non-
incremental steps. When the model is not updated, an
‘intelligent timer’ is incremented to keep track of the
trend in the mis-classification error Mis_Err. If Mis_Err
is not statistically increasing over successive non retrain

steps, the ‘intelligent timer’ will purge the stream video
sequence stored in the buffer. Enabling the obsolescing
of non useful data reduces the system’s storage
requirements. Otherwise, if Mis_Err is increasing, the
‘intelligent timer’ will get activated and force the
classifier to retrain after an iteration counter defined by
the user.

The addition of incremental data to the existing
optimal solution still satisfies KKT conditions. Their
incorporation into the initial classifier model is viewed
as a ‘perturbation’ that insures low probability and key
data is not outnumbered. L(w,b) is still convex and
basically ΔA and ΔL are in equilibrium such that changes
in ΔA are absorbed by changes in ΔL.
Table 2 compares the storage requirements for the
proposed incremental classifier (refered to in Table 2 as
Dynamic_Model) with respect to the complete retrain
scenario (refered to in Table 2 as Retrain_Model). When
the behavior input sequence data becomes large, the
Retrain_Model storage requirements become a major
concern.

TABLE 2
STORAGE REQUIREMENTS

Classifier Type Data Structure Size

Retrain_Model 1- f by c for classifier parameters
2- a permanent storage of size
(N+incnum)*f that is always
increasing.

Dynamic_Model 1- f by c for classifier parameters
 2- temporary memory of size

incnum*f for dynamic data if
classifier is not updated.

incnum= number of dynamic data acquired

5. Experimental Setup
A block diagram of the experimental setup is shown

in Figure 4. It consists of a humanoid animation model
that is consistent with the standards of the International
Organization for Standardization (ISO) and the
International Electro technical Commission (IEC) (FCD
19774) [21]. Our target is to establish interaction
between actual target objects, virtual avatars and
eventually retarget both virtual and actual targets. We
focus on selected kinematics models to correspond to
articulated target models. Using a uniquely developed
graphical user interface (GUI) as described in [21], the
humanoid motion is registered in the computer based on
human interaction. We use selected kinematics models
to enable correct behavior registration with respect to

8

adjacency constraints and relative joint relationships.
The registered behavior (typically with 50 instances per
behavior) is used to train the model in an off-line mode
[21].

Figure 4: Learning by Visual Observation Modules

 Since several studies related to human motion
classification had been published and the study of novel
extraction methods and motion tracking is potentially a
standalone topic [23, 33], we decided to minimize the
complexity of image pre-processing techniques. Further
research on multi-sensor network dedicated to human
tracking and identification can be found in [12,18,20 and
22]. However the scope of this paper is not to propose
novel feature extraction techniques and motion
detection. Our main objective is to demonstrate machine
learning using our dynamic SVM methodology. This is
why to identify motion and condense the frames into
uniquely defined feature vectors, we use a combination
of Euclidian distances and image subtraction as
proposed in our earlier work in [21]. We extract the
input data by tracking color-coded marker points tagged
to 11 joints of the humanoid. This extraction method
results in lower storage needs without affecting the
accuracy of behavior description. Motion detection is
derived from the positional variations of the markers
relative to prior frames.

The collected raw data is a two-dimensional (2D)
image sequence of the humanoid as captured by a Pulnix
CCD color camera. The image sequence is treated as one
unit of sensory data. For each behavior, we acquired 40
sequences each comprised of 50 frames. Every frame
contained the positional information of the 11 markers.
Each sequence of 50 frames is then condensed into a
single vector characterizing the motion behavior of the
humanoid. Since we are interested in the selected
articulated motions listed in Table 3, we compute the
feature vectors describing motion as the summation
across the frames of the squared difference of the
consecutive marker positions.

Because the limited number of training datasets is one
of the inherent difficulties in the learning methodology
[2] and to address this limitation, we artificially create
two synthetic datasets by adding noise to the feature
space. Noise source in the first dataset was modeled as a
uniformly distributed noise whereas Gaussian noise with
distribution (σ=1) was incorporated to the second

dataset.

TABLE 3
BEHAVIORAL CLASSES FOR SELECTED ARTICULATED MOTIONS

M1
M2
M3
M4
M5
M6

Motion in Right Arm
Motion in Left Arm

Motion in Both Arms
Motion in Right Leg
Motion in Left Leg

Motion in Both Legs

6. Experimental Analysis for Behavior
Learning

We validated the proposed dynamic multi-
classification method described in Sections 3 and 4
against the stream data acquired experimentally. Results
are summarized in the following four subsections.
Section 6.1 contrasts the off-line model with a freeware
code. Section 6.2 compares the off-line and dynamic
models to the retrain classifier. Section 6.3 analyses the
performance of the dynamic model when updates are
sequential of nature. Section 6.4 contrasts batch versus
sequential model processing. Section 6.5 compares
efficiency; storage and computational requirements
between the proposed dynamic and retrain model.
Finally Section 6.6 shows convergence rates for models
that exhibit an initial poor classification performance.

6.1 Comparing Off-line Multi-classification
SVM
 First, we tried our proposed multi-classification
technique with different data sets to verify how the
separating hyper planes will shift directivity with respect
to changes in the data. Figure 5 is a scatter plot
illustrating the artificially created input datasets with the
separating planes positions.

Figure 5: Hyper Planes Directivity

9

Second we compared classifier performance with the

code available in the Statistical Pattern Recognition
Toolbox written by Vojtech Franc and Vaclav Hlavac
[24]. The freeware code is designed to solve for the
Lagrange multipliers and return after a series of error
optimization, the model parameters as well as the
misclassification error. We used the following databases
found in Matlab Stprtool Toolbox (The MathWorks, Inc.,
Natick, MA): IRIS, GMM and Pentagon. Databases
specifics are listed in Table 4.

TABLE 4

DATABASE SPECIFICS
 Feature Class Training Testing

GMM 2 3 200 100
IRIS 4 3 100 50

Pentagon 2 5 66 33

We compared CR of our proposed approach referred

to as Prop in Table 5 to [24]. We varied λ for optimal
hyper plane positions and tried different kernel functions
for [24]. Table 5 displays the experimental results.
Prop’s performance was greatly affected by the selection
of λ, whereas OAO and OAA confusion rates of [24]
were heavily dependant on kernel functions. Prop CR
was best in the Pentagon data, twice as bad for IRIS and
comparable to the GMM case.

TABLE 5

EXPERIMENTAL RESULTS FOR PROP VERSUS OAO AND OAA

Third we compared our off-line multi-classification

SVM technique on the dataset that was collected per
Section 5 details. Our proposed technique resulted in a
much shorter computing time than in [24] as Figure 6
suggests. For large datasets, the code proposed in [24]

did not execute because the optimization steps consumed
considerable computing resources.

0

1

2

3

4

5

6

24 48 96 144 192 200 400 600 800
Training Set Size

Ti
m

e
R

at
io

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Er
ro

r R
at

io

Execution Time Ratio
Misclassification Error Rate

Figure 6: Time and Mis_Error Ratios

Figure 6 shows the Time Ratio computed as the

execution time ratio of our proposed off-line multi-
classification technique over the execution time of [24].
Due to our soft computing technique for the hyper
planes, the execution time of our method is dramatically
shorter than the standard optimization that solves for the
Lagrange multipliers. Similarly, Mis_Error Ratio
represents the ratio of our misclassification error divided
by the error rate as calculated by [24]. As the video
stream data increased in size, the misclassification error
of our proposed multi-classification technique became
more attractive than [24].

6.2 Analyzing Articulated Humanoid Sequences
We started by investigating the effect of the data size

used for training on Mis_Err. For this purpose, we based
our analysis on a matrix of three scenarios with five
different experiments for each. In all instances, we did
not reuse the data sequences used for training to prevent
the model from being over-fit.

• Scenario 1: [Off-line Model]: Use one

training dataset to develop the off-line
model. Compute the confidence rate Θ for
the off-line model using a subsequent
dataset.

• Scenario 2: [Dynamic Model]: Acquire and

sequentially process incremental frames one
at a time according to the incremental
strategy highlighted in Section 4. When
necessary, update the model dynamically as
proposed in Section 4.1. Compute the

 λ Kernel GMM IRIS PENTAGON

Prop 0.005 NA 1.02% 14.58% 0%

Prop 0.5 NA 1.02% 14.58% 0%

Prop 1 NA 1.02% 12.50% 0%

Prop 10 NA 1.02% 12.50% 3.03%

Prop 100 NA 4.08% 9.50% 15.15%

Prop 1000 NA 5.10% 9.50% 21.21%

OAO NA RBF 1.63% 6.25% 21.70%

 OAO NA Linear 1.40% 4.18% 11%

OAO NA Poly 4.08% 4.17% 2%

OAO NA Sigmoid 7.14% 12.92% 9.70%

OAA NA RBF 2% 6% 20%

OAA NA Linear 1.40% 4.18% 12%

OAA NA Poly 4.37% 4.17% 3%

OAA NA Sigmoid 8.10% 11.25% 9%

10

confidence Θ rate based on the same
subsequent test-set sequence used in
Scenario 1.

• Scenario 3: [Retrain Model]: Acquire and
incorporate incremental frames in the training set.
Re-compute the model parameters. We refer to this
scenario as the Retrain model. Compute the
confidence rate Θ based on the same subsequent
test-set sequence used in Scenarios 1 and 2.

For each scenario, confidence rate Θ is shown in

Figure 7.

40

50

60

70

80

90

100

1 2 3 4 5
Experiment Number

C
on

fid
en

ce
 R

at
e

Pe
rc

en
ta

ge

offline Dynamic Retrain

Figure 7: Confidence Rates Θ for Off-line, Dynamic and
Retrain Models

Figure 7 shows that the performance of the dynamic

model normally lies between Scenario 1 that employs a
one-time training approach and Scenario 3 that
continuously retrains. Furthermore the confidence rate of
Scenario 2 is within 3% of Scenario 3. The discrepancies
between the confidence rates are especially noticeable in
all Scenarios when the training sequences are reduced in
size.

6.3 Analyzing Sequential Synthetic Data Stream
 We then analyzed the synthetic data using Scenarios 2
and 3 described in Section 6.2. Uniformly distributed
noise was added to the feature space of the stream
sequences collected during our experimental setup.
Figure 8 compares the statistical misclassification
accuracy results of our proposed incremental multi-
classification SVM to that of the retrain model.

5

5.5

6

6.5

7

7.5

8

8.5

1 2 3 4 5
Experiment Number

M
is

 E
rr

Retrain Dynamic

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Training set 600 720 600 1200 600 1200 1200 1800 1200 2400

 Dynamic set 120 600 600 600 1200
Testing set 120 120 600 600 1200 1200 600 600 1200 1200

Figure 8: Mis_Err Rates for the Dynamic and Retrain
Models

In order to investigate the worst misclassified
behavior classes, we computed the confusion matrix
shown in Table 6 for all the experiments run in Figure 6.

TABLE 6:

CONFUSION MATRIX FOR DYNAMIC MODEL

 M1 M2 M3 M4 M5 M6
M1 30698 0 598 0 0 0

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Training set 30 30 35 25 25 30 20 20 30 15 15 25 10 10 20

 Dynamic set 5 5 10 10 10
Testing set 5 5 5 10 10 10 10 10 10 15 15 15 20 20 20

M2 0 36926 41 60 172 0
M3 521 172 36506 0 0 0
M4 0 0 0 36831 0 368
M5 0 0 0 0 36831 368
M6 0 0 0 367 521 36311

TABLE 7

CONFUSION MATRIX FOR RETRAIN MODEL

 M1 M2 M3 M4 M5 M6
M1 36340 0 859 0 0 0
M2 0 36920 148 60 41 30
M3 520 82 36597 0 0 0
M4 0 30 0 36760 71 368
M5 0 19 30 160 36830 160
M6 0 11 0 881 148 36159

One observes a certain level of symmetry in the

confusion occurrences in both models. This is
highlighted in dark grey in Table 6 and Table 7.
Asymmetry in confusion is marked in light grey and is
not very frequent in either model.

Based on the confusion matrices in Table 6 and Table
7, we generated frequency plots to highlight the most
recurring misclassification errors. Figure 9 shows the

11

confusion rates of each model and the percentage of
times when a predicted behavioral class (P.C) did not
match the correct behavioral class (C.C).

Figure 9: Confusion Occurrence for Dynamic and Retrain

Models

Based on the results shown in Figure 9, Table 6 and

Table 7, one can make several observations. First, the
proposed dynamic SVM has fewer distinct confusion
cases than the retraining model (10 versus 18 cases).
Second, it has more misclassification occurrences in
each confusion case. For both models, most of the
confusion occurred between M1 and M3. Our proposed
model has similar confusion rates when predicting class
M1 instead of M3, and class M3 instead of M1.

We ran the non-parametric and distribution free
Kolmogorov-Smirnov [32] comparison test to check if
the confidence level Θ for the dynamic and retrain
models are significantly different. The maximum
difference between the cumulative distributions Dist, is
0.1856. The corresponding p value for this test is 0.643
which denotes that the null hypotheses H0 which states
that the dynamic and retrain models are not different
cannot be rejected.

We generated receiver operating characteristics
(ROC) curves for both the retrain and the dynamic
models as shown in Figure 10. Out of the four notions
used to measure ROC performance, we focus on 2 of
them: True Positive (TP) and False Positive (FP). TP
means that the classifier correctly predicts that the new
data belong to class M. FP means that the classifier
predicts that the new data belong to class M when it does
not actually belong to the class. Figure 10 shows the
receiver operation curve (ROC) as an outcome of the
classification performance. The area under the ROC
curves (AUC) for the retrain and dynamic models are
respectively 0.9004 and 0.8701 which is greater than
0.5. An AUC of 0.5 or a diagonal line response
represents random guessing of data stream behavior
classification. Thus with AUC values close to 1, the test
statistic on ROC is valid, and we can conclude that both
dynamic and retrain performed well in classifying
incremental data.

0.0

0.5

1.0

1.5

2.0

2.5

2 2 2 6 3 5 4 5 2 3 5 4 6 4 6 1 4 3

6 5 4 2 5 2 2 4 3 2 6 5 5 6 4 3 6 1

C.C
P.

Confusion Occurance Dynamic
Confusion Occurance Retrain

 Figure 10: Dynamic and Retrain ROC Curves

6.4 Analyzing Batch Synthetic Data Stream
 the

pe
In the final stage of our analysis, we compared
rformance of batch to sequential processing. We

added a Gaussian noise with distribution (σ=1) to the
feature space for the stream data. We processed the new
datasets using our proposed incremental technique first
sequentially then in batch mode (using 100 new datasets
at a time).

Training set 600 720 600 1200 600 1200 1200 1800 1200 2400
Dynamic set 120 600 600 600 1200
Testing set 120 120 600 600 1200 1200 600 600 1200 1200

Figure 11: Batch versus Sequential Processing

igure 11 compares the Mis_Err rates of misclassified
be

F
haviors for each mode. The performance of the two

methods becomes more comparable as the training and
the incremental sequence sizes are increased. Sequential
processing seems to be more suited when off-line
models are computed using a reduced number of training
sequences because incremental data acquisition enables
continuous model training in a more efficient manner
than off-line training. Furthermore the misclassification
error rates in Figure 11 of the data sequences generated

12

by adding Gaussian noise are lower than the
misclassification error rates Mis_Err using the data with
added uniformly distributed noise. Finally, with a
Gaussian distributed noise, the misclassification rate for
the dynamic model is not statistically different that the
error rate of the retrain technique.

6.5 Storage and Computational Requirements

 storage requirements, S (referenced

TABLE 8
 ACCURACY VERSU E REQUIREMENTS

 Proposed Model S

versus Accuracy
 We compared the
in Table 8), of the proposed technique to those of the
retraining model considering accurate behavior
classification. We considered extreme storage cases
when using the proposed dynamic multi-classification
procedure. The worst-case scenario (referenced as W in
Table 8) occurred when all the incremental sequences
were tested according to Section 4.1 and Mis_Err was
less than the threshold, Thres. This scenario did not
require a model update. However, the data had to be
stored for use in future model updates to maintain the
model learning ability. The best-case scenario (referred
to as B in Table 8) occurred when Mis_Err for the
acquired data sequences was greater than Thres. This
scenario required temporary storage of the incremental
sequence while matrix A was being computed for the
updated model. A is a square matrix of size (f*c+c)
where f equals to the dimension of features space and c
the number of different classes.

S STORAG

Worst Best case
case

Re-train Model S Delta

120*22 18*18 720*22 -0.39%
600*22 18*18 1200*22 -0.13%

1200*22 18*18 2400*22 0.08%

Table 8 shows the results of this comparison. The

Delta is defined as an average computed across the
different experiments mentioned in previous sections:

)__Re__(1 ErrMistrainErrMisDynamicDelta ∑ −=
n

From a storage perspective, the dynamic model is less
de

f
th

manding than the retrain model. The drawback might
be a slightly higher but not significantly different
Mis_Err. The dynamic procedure enables model tuning
with an acceptable error rate for accurate behavior
classification and reduced image storage requirements.

We then compared the computational requirements o
e off-line, dynamic and the retrain models. Figure 12

shows the elapsed CPU execution time reported in

seconds for each model.

 Figure 12: Off-line, Dynamic and Retrain CPU Time

 dynamic model is less demanding than the retrain

m

 6.6 Dynamic Learning Convergence Rate
sifier

w

The
odel especially for massive datasets. It offers the

advantage of soft computing and provides a good
balance between accuracy and efficiency.

To explore the learning capability of the clas
hen the initial model has a very poor performance as a

result on a reduced training set, we ran 20 different
experiments according to the workflow pictured in
Figure 3. In each experiment, we used the same initial
training and testing sets. The former was composed of
12 sequences and the latter of 120. We started with an
initial weak classifier model and successively
incorporate dynamic data according to our proposed
technique.

 Figure 13: Convergence Rate with respect to Iteration Coun

he incremental dataset was varied across the

experiments from 12 to 1200 in order to assess the

t
and Incremental Set Size

T

13

im

7. Conclusion and Future Work
ng technique

by lassification
SV

otion, heterogeneous sensed data and parallel
im

wledgement

 Jane Brooks Zurn and
Xianhua Jiang for their comments. The authors would

pact of the dynamic data set size on the learning curve
convergence rate. Figure 13 shows the convergence rate
for selected experiments. Mis_Err is improved by 50%
when the incremental dataset is set to be 8 times bigger
than the training dataset. If the dynamic dataset
incorporated is set to be 100 times the training set,
Mis_Err of the classifier drops to 10% of the initial
model mis-classification rate. As it can be easily
observed the incremental approach was able to gradually
adjust the hyper plane positions to better classify data
without the time consuming and resource extensive
machine learning training phase.

In this paper, we proposed a stream mini
 developing a unique incremental multi-c
M for articulated learning behavior. Starting with an

off-line SVM learning model, the online SVM
sequentially updates the hyper plane parameters when
necessary based on proposed incremental criteria. Our
classification scheme treats each image sequence as a
single unit of sensory data for positional markers. The
experimental results demonstrate the feasibility and
merits of our proposal for dynamic learning behavior
using SVM. Without the need of optimization and with a
convex objective function, our proposed classifier
efficiently solves a single system of linear equations to
find the hyper planes characteristics. It is able to
describe current system activity and identify an overall
motion behavior even with noisy stream data. The
accuracy of the proposed incremental SVM is
comparable to a retrain model. Furthermore, our
technique is attractive because it is simple to implement,
it has faster computing time and requests lower storage
and memory requirements when compared to the retrain
model.

Future work will investigate data sets involving real
human m

plementation for massive datasets. We will apply our
proposed incremental SVM technique to benchmark data
sets for behavioral learning and we will check for model
robustness.

8. Ackno

 The authors acknowledge

like to thank IBM Microelectronics, (Essex Junction,
Vermont) for the support and time used in this study.
This work is partially supported by NSF Experimental
Program to Stimulate Competitive Research.

9. References
[1] S. Amari and S. Wu, Improving support vector machines

classifiers by modifying kernel functions, In Proceedings
of International Conference on Neural Networks, 12,
(1999) 783-789.

[2] M. K. Arora and P. Watanachaturaporn, SVM for
classification of multi- and hyperspectral data. in
Advanced Image Processing Techniques for Remotely
Sensed Hyperspectral Data. P. K. Varshney and M. K
Arora, (Springer-Verlag, 2004).

[3] L. Botton,C. Cortes, J. Denker, H. Drucker, I. Guyon,
L.Jackel, Y.LeCun, U. Muller, E. Sackinger,P. Simard
and V. Vapnik, Comparison of classifier methods: a case
study in handwriting digit recognition. In International
Conference on Pattern Recognition, IEEE Computer
Society Press (1994) 77-87.

[4] C.C Burges, A tutorial on support vector machines for
pattern recognition, In Proceedings of the Int. Conference
on Data Mining and Knowledge Discovery, 2(2) (1998)
121-167.

[5] L. Brown, J. Connell, A. Hampapur, S. Pankanti and A.
Senior and Y. Tian, Smart Surveillance: Applications,
Technologies and Implications. Information,
Communications and Signal Processing, 2003 (2003)
1133- 1138.

[6] H.Byun and S-W. Lee, Applications of Support Vector
Machines for Pattern Recognition: A Survey, S-W. Lee
and A. Verri (Eds): SVM 2002, LNCS 2388 (2002) 213-
236.

[7] C. Campbell, R. Herbrich and T. Graepel, Bayes point
machines: Estimating the Bayes point in kernel space,
Proceedings of IJCAI Workshop Support Vector
Machines, (1999) 23-27.

[8] G. Cauwenberghs and R. Genov, Kreneltron: Support
Vector ‘Machine’ in Silicon, S-W. Lee and A. Verri
(Eds): SVM 2002, LNCS 2388 (2002)120-134.

[9] G. Cauwenberghs and T. Poggio, Incremental and
decremental support vector machine learning, in
Advances in Neural Information Systems (2000) 409-415.

[10] N. Cristianini and J. Shawe-Taylor, An introduction to
Support Vector Machines and other kernel-based learning
Methods, (Cambridge University Press, 2000).

[11] F. d’Alche’-Buc and L. Ralaivola, Incremental Support
Vector Machine Learning: a Local Approach,
Proceedings of the International Conference on Artificial
Neural Networks (2001) 322-330.

[12] L. S. Davis, I. Haritaoglu and D. Harwood, W4: Real-time
system for detection and tracking people in 2.5d,
Proceedings of the 5th European Conf. on Computer,
Vision (1998) 877.

[13] R. Duda, P. Hart, and D. Stock, Pattern Classification,
(John Willy & Sons Inc., 2001).

[14] S. I. Dworkin, J. B. Zurn, D. Hohmann, and Y. Motai, A
Real-Time Rodent Tracking System for Both Light and
Dark Cycle Behavior Analysis, Proceedings of the IEEE
Workshop on Applications of Computer Vision (2005)
87-92.

[15] R. Fletcher, Practical Methods of Optimization, (John
Wiley and Sons Inc., 1987).

14

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9074
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9074
http://www.books24x7.com/books.asp?imprintid=204

[16] M. Flickner and I. Haritaoglu, Detection and Tracking of
Shopping Groups in Stores, IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(TCVPR'01) - Volume 1 (2001) 431.

[17] D. A. Forsyth and J. Ponce, Computer vision: A modern
approach (Prentice Hall, 2003).

[18] S. Hiura, T. Matsuyama, T. Wada, K. Murase, A
Toshioka, Dynamic memory: Architecture for real time
integration of visual perception, camera action, and
network communication, Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (2000) 728-735.

[19] C. Hsu and C. Lin, A comparison of methods for multi-
class support vector machines, IEEE Transactions on
Neural Networks, 13(2002) 415-425.

[20] S. Inokuchi, A. Nakazawa, and H. Kato, Human tracking
using distributed vision systems, Proceedings of 14th
International Conference on Pattern Recognition (1998)
593–596.

[21] X. Jiang and Y. Motai, Incremental On-line PCA for
Automatic Motion Learning of Eigen Behavior, Special
Issue of Automatic Learning and Real-Time, International
Journal of Intelligent Systems Technologies and
Applications. In press, 2006.

[22] G. Kogut, Trivedi and I. Mikic, Distributed Video
Networks for Incident Detection and Management,
Proceedings of the IEEE Conference on Intelligent
Transportation Systems (2000) 390-396.

[23] B.S. Manjunah, S. Newsan, J. Testic, and L. Wang,
Issues in managing image and video data, Proceedings of
SPIE International Symposium on Electronic Imaging,

Storage and Retrieval Methods and Applications for
Multimedia (2004) 280-292.

[24] Matlab code available at http://www.cvut.cz [On-line]
[25] S. Mukherjee and V. Vapnik, Support vector method for

multivariant density estimation, Proceedings of Neural
Information Processing Systems (NIPS) (1999) 659-665.

[26] C. Nakajima, T.Poggio and M.Pontil, People recognition
and pose estimations in image sequences, Proceedings of
IEEE Int. Joint Conference on Neural Networks, vol.4
(2000) 189-194.

[27] J. Platt, Fast Training of Support Vector Machines using
Sequential Minimal Optimization, Advances in Kernel
Methods- Support Vector Learning, MIT Press, (1999)
185-208.

[28] B. Schölkopf and A. J. Smola, Learning with kernels,
(MIT Press, 2002).

[29] A. Shawkat and K. Smith, On Learning Algorithm
Selection for Classification, Applied Soft Computing 6
(2006) 119-138.

[30] J. Suykens and J. Vandewalle, Least squares support
vector machine classifier, Neural Processing Letters,
Vol.9 (1999) 293-300.

[31] V.N. Vapnik, Statistical Theory, (Wiley, New York,
1998).

[32] R. Witte, J. Witte and J.S. Witte, Statistics, (John Wiley
& Sons, 2000).

[33] S. Zelikovitz, Mining for features to improve
classification, Proceedings of Machine Learning, Models,
Technologies and Applications (TMLMTA), (2003) 108-
114.

15

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/cvpr/&toc=comp/proceedings/cvpr/2001/1272/01/1272toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/cvpr/&toc=comp/proceedings/cvpr/2001/1272/01/1272toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/cvpr/&toc=comp/proceedings/cvpr/2001/1272/01/1272toc.xml
http://www.cvut.cz/

	1. Introduction
	2. SVM Principles and Related Studies
	3. Proposed Multi-Classification SVM
	4. Proposed Dynamic SVM
	4.1 Dynamic Strategy for Sequential Data
	4.2 Dynamic Strategy for Batch Data

	5. Experimental Setup
	6. Experimental Analysis for Behavior Learning
	6.1 Comparing Off-line Multi-classification SVM
	6.2 Analyzing Articulated Humanoid Sequences
	6.3 Analyzing Sequential Synthetic Data Stream
	6.4 Analyzing Batch Synthetic Data Stream
	6.5 Storage and Computational Requirements versus Accuracy
	 6.6 Dynamic Learning Convergence Rate

	7. Conclusion and Future Work
	8. Acknowledgement
	9. References

