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Abstract: This paper presents an online learning framework for the behavior  
of an articulated body by capturing its motion using real-time video. In our 
proposed framework, supervised learning is first utilised during an offline 
learning phase for small instances using principal component analysis (PCA); 
then we apply a new incremental PCA technique during an online learning 
phase. Rather than storing all the previous instances, our online method just 
keeps the eigenspace and reconstructs the space using only the new instance. 
We can add numerical new training instances while maintaining the reasonable 
dimensions. The experimental results demonstrate the feasibility and merits. 
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1 Introduction 

Automatic learning is a demanding approach to vision-based real-time interfaces that is 
facilitated by observing the motions and/or behaviour of tracked objects. The target 
application is sometime called learning by imitation. In visual-based interface 
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communities, automated training methodology for articulated behaviour is very 
important. Offline based training behaviour using a video camera is possible, and the use 
of visual-based motion analysis is now standard in non-contact type measurement 
systems. For example, some existing 3D motion analysis systems have been already 
developed in various industrial applications, such as Vicon Motion Systems 
(http://www.vicon.com/), A.P.A.S. (http://www.arielnet.com/), Motion Analysis 
(http://www.motionanalysis.com/), and (http://www.is.aist.go.jp/humanoid/openhrp/; 
Wren et al., 1997; Haritaoglu et al., 2000) in academia. 

In this paper, we argue that visual behaviour acquisition can be extended from the 
existing static image-based learning methodologies to video-based motion sequences.  
In the learning phase for training behaviour, we would like to implement an online 
learning framework, in which observable instances are incremented. When the degree of 
behavioural freedom is increased, the feature space tends to explode in a long-term 
learning phase. Our new method prevents this from happening. We use PCA to classify 
the training behaviours. Certain behaviours may follow a common pattern, and we can 
use information from this kinematical motion to build a common or principal task, which 
we call eigen behaviour. We will explain how the principal components of articulated 
motions can be obtained and used together with classification. 

The organisation of this paper is as follows: Section 2 describes our proposed system.  
In Section 3, our main contribution, incremental online PCA, is illustrated thoroughly. 
Section 4 contains some interesting experiment results to demonstrate the performance. 
Concluding remarks are given in Section 5. 

2 Visual observation system through motion capture 

We take several articulated parts of a humanoid and the corresponding actual parts of a 
human body into consideration. Currently we have developed the following four 
kinematical models to be used to correspond to articulated target objects: 

• human hand 

• human arm 

• robotic arm 

• humanoid robot. 

Figure 1 shows a flow diagram of the developed modules. We select these objects  
as targets since we wish to establish efficient and effective interaction among the actual 
target objects, the virtual avatars, and eventually retarget both the virtual and actual 
targets. More specifically, we wish to establish the following protocols: First, human 
movements are observed by a motion capturing device using a camera. Then, using a 
uniquely developed Graphical User Interface (GUI), the motion is registered in the 
computer by a human-in-the-loop. The registered behaviour is retargeted to a virtual 
human from an actual object in the real world. The final step is to train its motions in the 
learning phase. 
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Figure 1 Modules for learning by visual observation 

 

In this proposed scenarios, rather than registering the limited joint descriptions, the 
system learns the principal behaviour of each articulated object part. Moreover, 
determining optimal values of motion parameters such as trajectory and velocity of  
the manipulator depend on the configuration of the workspace and the structure of the 
manipulator. Task plans described in terms of more abstract and qualitative 
representation of assembly operations such as pick and place are of high reusability. 
However those descriptions required a labelling procedure in the learning phase.  
The exhaustive sample-labelling that is needed makes expensive human resources 
necessary and is often unrealistic. For example, in visual-based automatic gesture 
training, labelling data is a time consuming and difficult task. For other applications, 
labelling data may require very expensive tests so that only a small set of labelled data 
may be available. In some domains, only a few positive samples are available while 
unlabelled examples are plentiful. In all these cases, we need to find ways to relieve the 
users from the annotation burden. Therefore we develop here a new framework of 
training behaviour using incremental learning methodologies, in which the training 
behaviours are incrementally executed in the online manner. Compared to other 
approaches of incremental learning using each static image (Li et al., 2003; Artac et al., 
2002a, 2002b; Hall et al., 1998; Nayar et al., 1996), our proposed method is new since we 
consider image sequences as one unit of sensory data for the positions of markers.  
Thus our main contribution in this paper is that we have developed PCA to fit video 
sequences by incrementally updating eigen behaviour in an online manner. The system 
automatically reconstructs the eigenspace by updating a scatter matrix with the new 
instances. Another contribution of the system that we have developed is a unique 
registration process of the labelling for behaviour learning by initial inputs from the 
human-in-the-loop (the details of which are beyond the scope of this paper). During the 
initial PCA supervised learning (before the online incremental PCA), the computer still 
needs to acquire the label of the initial behaviours. To label each behaviour, we will 
describe a GUI developed as follows: 

2.1 Behavioural graphical interface editor 

In the learning phase of behaviour acquisitions, humanoid robot Kondo KHR-1 and a 
wood-made mannequin are used for articulated objects. Each physical model, however, is 
not specified in detail. The number of joints is assigned by choosing from the menu in the 
learning editor. The following snapshots of the GUI editor will illustrate the registration 
process.  



   

 

   

   
 

   

   

 

   

    Incremental online PCA for automatic motion learning of eigen behaviour 299    
 

    
 
 

   

   
 

   

   

 

   

       
 

Using the GUI of Figure 2(a), a human operator specifies the number of the 
articulated parts, which highlights the landmarks. The humanoid structure is  
standardised at the International Organization for Standardization (ISO) and the 
International Electrotechnical Commission (IEC) as FCD 19774 Humanoid animation 
(http://www.h-anim.net/). In this format, the joints of the humanoid are defined as a tree 
structure. We apply a kinematical model to restrict each joint so that the system can 
register the behaviour to follow the adjacency constraints or relative joint relationships. 

Figure 2  (a) Learning editor for a humanoid robot and (b) The motion of the articulated objects is 
captured using the camera sensor 

 

3 Online learning using incremental PCA 

In our proposed learning system, we apply several unique characteristics for capturing 
behaviours of articulated robotic movements. In order to limit the number of scenarios of 
articulated behaviours, the robot is only allowed to learn a few typical operations with 
representative postural tasks. This provides examples for considering a small number of 
sequences of the articulated behaviours. We would like to create efficient classifiers, 
hopefully with minimal supervision. Initial behaviour instances shown in Figure 3 
(typically 50 behaviour instances), are labelled for classifications by a human operator. 
This first step is called offline learning, in which training behaviours are classified using 
a standard PCA method. In the latter step we develop an online learning methodology 
using unlabelled instances. Thus, in our overall learning frame, we initially apply 
supervised learning for small instances using traditional PCA (Section 3.1), and then we 
apply a new framework to PCA using an incremental learning technique (Section 3.3).  
In the following subsections, we will explain the specific methodological procedures. 

3.1 Traditional off-line PCA for each static data 

For the traditional PCA, we represent xi as all sensory data at each sampling frame i in 
the form of a column of vectors xi ∈ Rl×1, i = 1 … n, where l is the number of data points 
in each data set, and n is the number of the data sequence or the number of images.  
We reduce the dimensionality of the image by projecting the image to the k-dimension 
space. Each image is approximated by 

1
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where superscript ′ indicates that the measurement vector xi is reduced by the eigenspace, 
and m is the sample mean 

1

1 .
n

i
i

m x
n =

= ∑  

Eigenvectors ej(j = 1 … k) are computed by solving the scatter matrix 

1

( )( ) .
n

T
i i

i

S x m x m
=

= − −∑  

We select the eigenvectors ej corresponding to the k largest eigenvalues of the scatter 
matrix of Sej = λjej. The scalar ( )T

ij j ia e x m= −  is found. It corresponds to the distance of 
any image xi from the mean m along the ej eigenvector. We use Jacob’s method to solve 
the eigen values/vectors. 

Thus, we get a least-squares solution by projecting the image xi onto the subspace in 
the direction of ej that passes through the sample mean. Each image is optimally 
approximated to the degree of error by taking into account the k most informative 
eigenvectors only.  

3.2 Time sequential data representation 

The representation of the learned behaviours plays a very important role in the learning 
algorithm. Our learning behaviours can be classified into two type of structures:  

• semantic labelled behaviour (such as raise right hand etc.) 

• time sequential instances (i.e., the progression of movement through the beginning 
middle, and end of a task sequence). 

Although we prepare the training instance by setting the beginning and ending of 
behaviour sequences, each sequence is analysed using the entire set of image frames from 
a camera sensor. We extend the data frame into the following way. 

• Rather than using the entire set of 2D image pixels with an eigenimage approach 
(Nayar et al., 1996), here the data are only extracted from the marker points. These 
points are correlated to the geometrical model of the articulated object. Let us define 
xl = (ul, vl)T where l is the number of markers with position (u, v) in a 2D image.  
In order to track the movement of the humanoid robot precisely and prevent 
interference from the environment, we put colour stickers on the each joint of the 
humanoid robot. For example, in our humanoid experiment we have a total of 11 
colour stickers; each colour sticker has a vertical and horizontal position. Therefore, 
the dimensionality of each image has been reduced from 256 × 256 to 22 × 1. 

• In order to completely classify ‘p’ types of behaviours, we take ‘q’ images as a 
sequence for each kind of behaviour. More specifically, we expand to reconstruct 
this measurement sequence by defining Xi to denote the ith sequence: 

1 2( ... ), 1 ,l l l
i i iqiX x x x i p= = …  
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where xij means the jth image in the ith behaviour sequence. Thus we have a matrix 
Xi with dimension of 2l row by q columns. At first we calculate a 2l × q dimensional 
sample mean m by newly computing 

1

1 .
n

i
i

m X
n =

= ∑  

As described in the above, using the eigenvectors ej(j = 1 … k), the p types of 

behaviours Xi are decomposed by ,i iX m Ea′ = +  where 1 2[ ]kE e e e= …  and 
i = 1 … p. Eigen space E is computed from the scatter matrix S of image sequences 
Xi by defining 

1
( )( ) .

n
T

i i
i

S X m X m
=

= − −∑  

The scalar vector ai is determined by ai = ET(Xi – m). 

In this way, we consider time sequences as a single unit of sensory data for positioning 
landmarks. Since we have p types of behaviours and q images in a sequence for each 
behaviour, when p and q become large, and we still require a lot of memory to store the 
data at the long-term training phase. By using PCA, we can reduce the dimensionality of 
each image, therefore reducing the amount of storage necessary. 

3.3 Incremental online PCA for time sequential data 

In this phase, we train each behaviour using extracted sensory data from an image 
sequence described above. When a new sequence is demonstrated, the system will  
update the eigenvectors and find the closest behaviour which best represent this new 
sequence by extracting eigen behaviour of articulated motions. We would then like to 
apply a new incremental PCA into the robotic behaviour classification. 

The traditional PCA uses batch computation. That means the entire set of n training 
image sequences are needed to compute the knowledge representation. When a new 
image sequence has to be incorporated into the representation, we must discard the old 
representation and compute the n + 1 image sequences to get the new representation. 
Therefore, in order to handle the new images during learning, all the original training 
image sequences must be stored in the traditional PCA.  If the size of the training images 
is very large because of time sequence, such a method will consume the storage of the 
system. Instead, the use of incremental PCA to represent the training behavioural scenes 
allows the retention of only the most important features. We can update the knowledge 
by combining the old representation of training and the new image sequences. In this 
way, we can discard the original image sequences once they have been used in updating. 
Since we only keep the reduced representation of the image sequences, the storage 
efficiency is increased. 

We can assume that we have obtained a set of eigenvectors ej, j = 1 … k from the 
training sensory data Xi, i = 1 … n. The eigenspace 1 2[ ].kE e e e= …  The 
corresponding eigenvalues are λj, j = 1 … k, scalar matrix 1 2[ ], 1, ,i i i ika a a a i n= =… …  
and the sample mean is m. Now, suppose a new image sequence Xn+1 is found. We will 
update the knowledgebase to take into account this new image sequence. First, we update 
the sample mean: 
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1
1 ( ).

1 nm nm X
n +′ = +

+
 (1) 

We project the new image sequence to the old subspace E: 

1 1( ).T
n na E X m+ += −  (2) 

The updated scatter matrix can be obtained: 

1 1( )( ) .
1

T
n n

nS S X m X m
n + +′ = + − −

+
 (3) 

In order to reflect the new data from image sequence Xn+1, we must update the 

eigenvectors by solving .i iS e eλι
′ ′ ′′ =  The updating process can be summarised as follows. 

When a new image sequence Xn+1 is received, we compute the new sample mean m′ and 
scalar matrix an+1 on the old subspace E, then construct an updated subspace E′, but 

without image representation. Let us use ( 1)i nX +
′  to represent image sequences Xi in  

the old subspace of E and superscript ′ indicates that the image sequences are reduced by 

the eigenvectors. Also ( 1)i nX +
′  represents the previous image sequences Xi and the new 

image sequence Xn+1 in the updated subspace E′. Then: 
'

( ) ( ) 1 .i n i nX Ea m i n= + = …  (4) 

In the new subspace: 

( 1) ( 1) 1 1.i n i nX E a m i n+ +
′ ′ ′= + = +…  (5) 

We calculate the updated scalar value ai(n+1) by  

( 1) ( ) ( ) 1 1.T
i n ia E X m i n+

′ ′= − = +…  (6) 

Please note that we do not store the previous image sequence Xi, i = 1 … n, thus using 
equation (4), the new scalar matrix equation (6) is represented by: 

( )
( 1)

( ) ( ) 1...

( ) ( ) 1.

T
i n

i n
T

i

E Ea m m i n
a

E X m i n
+

 ′ ′+ − == 
 ′ ′− = +

 (7) 

After updating the knowledgebase, we need to represent all sensory data of image 
sequences again in the new subspace, so that we do not need to keep the original  
image sensory data in memory. Since we only store the reduced sensory data of image 
sequences, it is important to update these images and also keep the approximations 
provided by equation (7). 

In order to reduce the size of the representation, we attempt to keep k dimensions, but 
only if it does not reduce accuracy. These new k eigenvectors are sorted by decreasing 
order of the eigenvalues. We will define Incremental Online PCA if the eigenspace k is 
expanded into k + 1 when the new instance Xn+1 comes. We will define Non-incremental 
online PCA if the eigenspace k keep the same dimension k when the new eigenspace is 
computed when considering the new instance Xn+1. 
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We now introduce some criteria to judge when to expand the dimension of eigen 
subspace from k to k + 1 in order to maintain the balance between storage and accuracy. 
The two criteria are evaluated to determine whether the eigenspace needs to be extended 
or not.  

Criteria 1: The new sensory data of image sequences at i = n + 1 can not be represented 
by the old eigenspace satisfactorily. This occurs when the difference between the original 

image and the reduced image ( 1) ( )|| ||i n i nX X+
′−  has exceeded the threshold.  

Criteria 2: If the new sensory data of image sequences can be represented by the old 
subspace, but the overall error of n + 1 sensory data of the images 1

( ) ( )1
|| ||n

i n i ni
X X+

=
′−∑  has 

exceeded the threshold, we need to span the subspace. Therefore, if one of thresholds is 
exceeded, the eigenspace is extended, and the system applies incremental online PCA.  

4 Experimental analysis of learning behaviours through sequential data 

We have applied the proposed incremental PCA to the following three experiments  
using a mannequin. We measured the learning performance with quantitative 
accuracy/errors by changing the dimensions of the eigenspace (Experiment 1) and by 
changing the number of training instances for online PCA (Experiment 2). We also 
evaluated classification performance of unlabelled instances for the proposed online PCA 
(Experiment 3). 

4.1 Experiment 1: dimension analysis of the eigenspace representations  
for humanoid/mannequin motions  

In this experiment, we have used 11 colour-point markers for all movable joints of a 
humanoid object shown in Figure 3. A Pulnix CCD colour camera was used for capturing 
the colour markers. We chose six representative human figure positions, for partial 
behavioural sequential tasks. The task started from a flat standing state M0 and 
completed the locomotion to a new state chosen from six figure structures described in 
Figure 3. 

Figure 3  Six behavioural training tasks of a human figure using a camera sensor. New 
behavioural tasks are added to the training sequence for incremental learning 
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These behaviours are described as  

M1: raise the right hand 
M2: raise the left hand 
M3: raise both hands 
M4: raise the right leg 
M5: raise the left leg 
M6: raise both leg. 

Each behaviour was captured during 4 seconds for at least 16 frames. From the colour 
image, the 2D position of each marker point ( , )l l l T

ix u v=  is extracted, where u, v is the 
2D centre position of each figure joint from i = 1 to 11. Thus, in the initial offline PCA 
training phase, the sensory image sequence Xi has the dimension of 22 for the row 
vectors, and column dimensions of at least 16. Thus using the 6 behaviour instances, the 
size of each Xi is 22 × 16, and the overall size of matrix [X1, X2, …, Xn] is 22 × 96.  
The dimension of the corresponding scatter matrix S is 22 × 22, and the eigen behaviour 
is at most 22, based on the matrix formation. In the incremental online PCA training 
phase, we may add any additional sensory sequence Xi as described in Section 3.  
The computation time for the incremental PCA is mainly for computing 
eigenvalues/vectors, which is less than the time for sequentially capturing the new image 
data frame. 

Traditional offline PCA was first conducted using the initial 6 × 5 = 30 training 
behaviours (6 training behaviours, and each behaviour was repeated by 5 times). We then 
applied the following five different PCA methods to handle the new behaviours by 
considering the 31th training instance: 

• the New Training method <NewT>, which involves projecting the new behaviour to 
the old eigen subspace 

• the Non-incremental online method <NonON>, which updates the eigenvectors 
using the new behaviour and old reconstructed behaviours, and keeps the same 
eigenspace dimensions 

• the Incremental online method <INON>, which involves the eigenvectors using the 
new behaviour and old reconstructed behaviours, and spans the eigenspace by 
incrementing the eigen dimension 

• the Non-incremental Off-line method <NonOF>, which means adding the new 
behaviour to the original training behaviours and updating the eigenvectors, but 
keeping the same dimension of eigenspace 

• the Incremental Off-line method <INOF>, which not only updates the eigenvectors 
using the new and old original behaviours, but also span the eigenspace by 
incrementing the eigen dimension. 

Table 1 shows the accuracy of each Task 1–7 when the training instances were 
represented by the eigenspace using five different methods discussed. The eigenspace 
dimension was 12. 
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Table 1 Comparision of reconstruction ratio 

Accuracy (%) 
ESP:12 NewT NonON INON NonOF INOF 
Task 1 97.44 97.63 97.63 98.51 98.51 
Task 2 99.15 98.51 98.51 98.61 98.63 
Task 3 97.67 97.90 97.89 98.90 98.90 
Task 4 98.17 98.16 98.15 98.77 98.77 
Task 5 97.59 97.23 97.21 97.94 97.95 
Task 6 98.77 98.17 98.17 98.28 98.28 
Task 7 95.98 98.56 98.57 98.56 98.57 

In the result of Table 1, Task 1–7 were reconstructed first. The fitting measure, which we 
call the reconstruction ratio, was evaluated by comparing the measured distance between 
the raw measurement value Xi and the reconstructed value X’

i(n) by equation (4) using 
traditional online PCA at nth. Also when the new data is coming, the fitting measure was 
evaluated using X’

i(n+1) by equation (5) of online PCA at n + 1th sequence with either 
incremental or non-incremental way. That means, the reconstruction ratio is evaluated for 
each Task in the non-incremental online and non-incremental Offline PCA (NonON and 

NonOF) by ( ) ( )1 || || / || || ( 1 || || / || ||),i n n n i n n nX X X Ea m X X′− − = − + − or in our online and 
Offline incremental PCA (INON and INOF) with additional instance by 

( 1) ( 1)1 || || / || || ( 1 || || / || ||).i n n n i n n nX X X E a m X X+ +
′ ′ ′− − = − + −  

For example in the online PCA, we setup a threshold for the criteria to determine whether 
eigenspace with the dimension of 12 is expanded into 13 or not; that is, a non-incremental 
PCA (NonON) or incremental PCA (INON). 

Table 1 illustrated that our online PCA method still maintains the reconstruction 
accuracy like traditional Offline PCA. This result indicates that online PCA  
(both non-incremental and incremental) is very promising. It is obvious that Offline PCA 
performs well, but this method needs to keep all of the original previous instances and 
new instances, in order to reconstruct the eigenspace using all the instances. Our 
proposed Online method does not keep the previous instances, but only retains the 
eigenspace and reconstructs the space using just the new instance and the reduced old 
instances. The Online PCA allows the learning system to discard the acquired 
measurement data immediately after the update. Since video-base motions are our 
measurement data, the eigenspace for the new instances arrives as a continuous stream 
and therefore is too expensive to store completely.  

If the dimension of eigenvalues is changed, the total error of  
1

( )
1

|| ||
n

i n i
i

X X
+

=

′ −∑  or 
1

( 1)
1

|| ||
n

i n i
i

X X
+

+
=

′ −∑  

is computed with respected to the number of eigenvalues in Figure 4. When the error is 
small, the reconstructed one is close to the instance, which means the eigenspace spans 
well to represent the sample instance. 
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Figure 4  Absolute total error by changing the dimension of eigenspace for reconstruction; 
comparison among Offline incremental PCA, vs. Offline non-incremental PCA,  
vs. online incremental PCA, vs. online non-incremental PCA, and New Train method 

 

As seen in Figure 4, by changing the dimension of eigenspace, we compared the errors of 
all five PCA methods. The result of Table 1 is the specific case of the eigenspace at 12 in 
Figure 4, which means that Table 1 was only evaluated at the largest 12 eigenvalues for 
reconstructions. Since the dimension of our measurement space is 22, the error reaches 
zero at 22 in the eigenspace. Figure 4 shows similar outcome of Table 1; the absolute 
total error of online PCA was larger than Offline PCA during eigenspace 8–22, but the 
difference between them was not large. The difference of absolute total error between 
Non-incremental and incremental online PCA is almost zero during eigenspace 8–22.  
But during 1–8, incremental method of both online and Offline PCA performs better; the 
total error is reduced by the incremental process. Thus based on the result of Figure 4, 
especially in the low dimensional eigenspace, the incremental method is very effective. 
Again in the incremental framework, the result of both Table 1 and Figure 4 confirmed 
that the proposed online method is very comparable to the Offline PCA. 

4.2 Experiment 2: accuracy performance evaluation of incremental  
or non-incremental online PCA 

In this experiment, we evaluated the performance of online incremental PCA by adding 
many new training instances using the online method. The old training tasks are the  
same as Experiment I, but new training behaviour is increased. The new tasks are 
combined tasks of Figure 3, starting from M0 in Figure 3 and ending at the one of 
following state:  
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M7: raise the left hand and left leg 
M8: raise the right hand and right leg 
M9: move the head to the right side 
M10: raise the right leg and left hand 
M11: raise the left leg and right hand 
M12: raise the left hand and both leg. 

Each sequential task was captured 5 times, so we have 6 × 5 new instances in addition to 
previous 30 instances. The rest of the sensory settings is all the same as Experiment I.  
We measure the total error 

1

( 1)
1

|| ||
n

i i n
i

X X
+

+
=

′−∑  

by observing the changes across the new 30 tasks. 

We compared the proposed online PCA with several different options:  

• non-incremental 

• incremental without criteria 

• incremental with criteria. 

The beginning (New Task 0) in Figure 5. The dimension of Eigenspace was 12, which 
was the size as in Experiment I. 

Figure 5  Absolute total error by training extended tasks as new instances using online PCA; 
comparison online Non-incremental PCA, vs. online incremental PCA without Criteria, 
vs. online incremental PCA with Criteria 

 

• The Non-incremental method did not increase the number of eigenvalues; even when 
New Tasks were captured, the eigenspace was kept at 12. As shown in Figure 5, 
Non-incremental online PCA has an increased total error as New Tasks were added. 
This case demonstrated the worst case for accumulating the differences between 
eigen representation and actual new instances. This method should be chosen only 
when the system does not allow an increase in the eigenspace dimensions. 



   

 

   

   
 

   

   

 

   

   308 X. Jiang and Y. Motai    
 

    
 
 

   

   
 

   

   

 

   

       
 

• Incremental online PCA without criteria method was the opposite of the first method, 
and was chosen to demonstrate how error was reduced by increasing the dimension 
of eigen subspace as much as possible. The system increased the dimension of 
eigensapce without applying any criteria. Since the system already used up to 12 
eigenspace, the remaining eigenspace in Experiment II is 22–12 = 10. As shown in 
Figure 5, the total error was smaller than the other two methods (Non-incremental 
and incremental with criteria). It should be noted that after 10th New Tasks, the error 
was not increased, since the eigenspace was already filled up and can represent the 
new instances completely. We observed that  

1

( 1) ( 1)
1

|| ||
n

i n i n
i

X X
+

+ +
=
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was not increased because of the following reason: 

Using equations (5) and (7) at over 10th New Tasks in Figure 5, 
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Since the dimension of E′ has been 22, E′(E′)T = I Thus after the 10th New Tasks, 
total error of Incremental online PCA in Figure 5 maintains the same error values by 
updating the eigenspaces. The drawback of this method was that if the dimension of 
the measurement space was very large, the dimension of the eigenspace should be 
too large to cover the new instances. 

• Incremental online PCA with criteria method was our optimal solution providing a 
compromise between the first method and the second method. Our criteria for 
deciding whether the system increases the eigenspace was that the absolute error of 
the new task projecting to the previous eigenspace was larger than 0.8. That is at 
i = n + 1, the system checks whether 1( ) 1|| ||n n nX X+ +

′ −  was larger than the threshold 
value. In our experiment, we chose this value as 0.8. The dimension of eigenspace 
was increased from 12 to 18 after adding up to 30 new tasks in Figure 5. Thus the 
incremental online PCA was our proposed choice for satisfying both the desire to 
limit the eigenspace dimension and still maintained sufficient accuracy. The absolute 
total error was controllable if the system set the threshold values before the system 
reached the saturated dimension of available eigenspace. In this automated manner, 
this incremental online PCA with criteria could be applied for long-term training 
with new instances. 

4.3 Experiment 3: classification performance of automated online PCA training 
for unlabelled instances 

We evaluated the Online PCA training performance for classifying unlabelled instances 
using two sub experiments. In the first experiment, we applied online PCA to 30 new 
instances distributed among M1–M6 (as shown in Figure 3). The system automatically 
classified the new instances by measuring the distance in eigenspace between the existing 
classes M1–M6. To each existing clas, there are 40 training data. We suppose these data 
had a normal distribution in the class. Therefore, we calculated the expected value 
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where n was the amount of training data in one specific class. The standard deviation was 
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If the new data was within the circle of rσ, we regarded this new data as belonging to this 
class. We adjusted scaler value r to examine the change in performance of the classifier 
(using values of r ranging from 0.5–1.0 in increments of 0.1 and from 1.25–3.0 in 
increments of 0.25). 

Four notions were used to measure the performance of the classifier – TP, FP,  
TN, and FN. The True/False specified whether that prediction was correct.  
The Positive/Negative indicated whether the new instance was predicted to belong to the 
specified class. Therefore, TP (True Positive) means that the classifier predicts the new 
data belong to the class while actually it really belongs to this class. FP (False Positive) 
means the classifier predicts the new data belong to the class while actually it really does 
not belong to this class. TN (True Negative) means the classifier predicts the new data 
doesn’t belong to the class while actually it really does not belong to this class. FN  
(False Negative) means the classifier predicts the new data does not belong to the class 
while actually it really belongs to this class.  We defined Accuracy as TP/(TP + FN), and 
the False Positive Rate as FP/(FP + TN). 

Figure 6 shows the Receiver Operation Curve (ROC) as an outcome of classification 
performance. The proportion of ‘true’ classifications is shown as the false positive rate is 
relaxed through a successive increase of the parameter value r. For this scenario, the 
eigenspace was kept at 12, and the system did not expand at all. Figure 6 demonstrates 
that the new unlabelled training instances were automatically classified with a high level 
of accuracy at a low rate of false positives. 

In the second experiment, we applied 34 new instances from M7 class and 34  
new instances from M8 class, which were not used for training before. That is, when a 
new instance xn+1 (not belong to any existing training class) was received and can’t be 
assigned to any existing class, the system regarded this new instance as belonging to a 
new class Cp+1. To this new class, we set its initial expected value up+1 = xn+1, and the 
initial 

2
1 1

12.5 ,p
p iip

σ σ+ =
= × ∑  

where p is the number of classes. When the other new instances were in the rσp+1 range of 
the new class Cp+1, the classifier updated the expected value and standard deviation,  

1 1 1
1 ( ),

1p p nu q u x
q+ + += × +

+
 

where q was the previous amount of data received in the class Cp+1. The standard 
deviation  
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where Mq is the parameter value that presented the satisfying data amount in the new 
class. In this experiment, first we set the Mq at a constant value 500, recorded the 
accuracy and false positive rate when increasing the threshold value r from 0.8 to 2.0 as 
shown in Figure 7(a). Figure 7(a) shows good performance of the receiver operation 
curve as an outcome of online PCA training, in which the unlabelled new instance was 
classified to the new class as the system relaxed the false positive rate by increasing the 
threshold value r. Then as shown in Figure 7(b), we set the threshold value r at a constant 
value 1.0, recorded the accuracy and false positive rate when increasing Mq from 100 to 
500. This results show that our proposed method for unlabelled instances was well 
classified if the system chose appropriately large Mq. 

Figure 6  ROC for classifying existing trained behaviours. The classification accuracy was 
evaluated by changing the value r 

 

Figure 7  ROC for classifying unlabelled new trained behaviours. The classification accuracy was 
evaluated: (a) by changing the value r and (b) by changing the value Mq 
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Figure 7  ROC for classifying unlabelled new trained behaviours. The classification accuracy was 
evaluated: (a) by changing the value r and (b) by changing the value Mq (continued) 

 
 (b) 

5 Conclusion 

In this paper, we have applied an online learning method for training articulated 
behaviours. Our contribution to the learning phase was to develop incremental learning 
methodologies, in which the training behaviours were incrementally executed in an 
online manner. Although traditionally PCA was conducted off-line, our online PCA 
sequentially updated the classification without human’s inputs since human operation of 
the system should be minimised as much as possible. In this proposed framework, we did 
not need to separate the procedures for learning and testing, but we can add the testing 
instances as an incremental instance. We defined a sequence of images as a single unit of 
sensory data for positioning land markers. The proposed system simultaneously updated 
the eigenspace by updating the scatter matrix in an online manner. Since video-based 
motions were our measurement data, the eigenspace for the new instances arrived as a 
continuous stream that was too expensive to store.  Thus we believe that the major factor 
in the design of the incremental learning systems was the availability and expandability 
of the former knowledge based initial behaviours that were acquired.  We applied the 
proposed method for a miniature human figure (replaced by a humanoid robot).  
The experiment results demonstrated the feasibility and merits of reducing learning 
dimensionalities using our incremental online PCA. We have developed the incremental 
learning methodologies for extracting eigen behaviours of articulated motions in an 
online manner using each image sequences as a unit of sensory data for the positions of 
land markers. In contrast to the Off-line PCA method, which needed to keep all the 
original previous instances and new instances in order to reconstruct the eigenspace, our 
proposed online method did not keep the previous instances, but just kept the eigenspace 
and reconstruct the space using the new instance. In our online PCA, we were able to add 
lots of new unlabelled training instances while maintaining the reasonable dimensions of 
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the eigenspace. As a remaining issue, the online classification performance using the 
incremental PCA described in this paper needs to be evaluated through the long-term 
training phase. 
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