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ABSTRACT Objective: To introduce an MRI in-plane resolution enhancement method that estimates
High-Resolution (HR) MRIs from Low-Resolution (LR) MRIs. Method & Materials: Previous
CNN-based MRI super-resolution methods cause loss of input image information due to the pooling layer.
An Autoencoder-inspired Convolutional Network-based Super-resolution (ACNS) method was developed
with the deconvolution layer that extrapolates the missing spatial information by the convolutional neural
network-based nonlinear mapping between LR and HR features of MRI. Simulation experiments were
conducted with virtual phantom images and thoracic MRIs from four volunteers. The Peak Signal-to-Noise
Ratio (PSNR), Structure SIMilarity index (SSIM), Information Fidelity Criterion (IFC), and computational
time were compared among: ACNS; Super-Resolution Convolutional Neural Network (SRCNN); Fast
Super-Resolution Convolutional Neural Network (FSRCNN); Deeply-Recursive Convolutional Network
(DRCN). Results: ACNS achieved comparable PSNR, SSIM, and IFC results to SRCNN, FSRCNN, and
DRCN. However, the average computation speed of ACNS was 6, 4, and 35 times faster than SRCNN,
FSRCNN, and DRCN, respectively under the computer setup used with the actual average computation
time of 0.15 s per 100 × 100 pixels. Conclusion: The result of this study implies the potential application of
ACNS to real-time resolution enhancement of 4D MRI in MRI guided radiation therapy.

INDEX TERMS Autoencoder, convolution neural network, deep learning, MRI, super resolution.

I. INTRODUCTION
Magnetic Resonance Imaging (MRI) has superior soft tissue
contrast versus x-ray-based imaging techniques such as Com-
puted Tomography (CT) and cone beam CT [1]. MRIs can
be acquired continuously without the risks of ionizing radi-
ation. Therefore, MRI-guided Radiation Therapy (MRIgRT)
is preferred for treating tumors that are affected by motion,
including lung tumors located near critical or radiosensitive
organs i.e. organs at risk (OARs) such as the esophagus,
heart, or major vessels [1]. Currently, a cine of a single image
plane containing the tumor is acquired to gate radiation dose
delivery in MRIgRT. However, treatment gating is desired

using the entire tumor volume and neighboring OARs to
minimize errors associated with through-plane tumor motion.
Thus, real-time four-dimensional (4D) MRI is being devel-
oped for MRIgRT. 4DMRI typically suffers from low spatial
resolution (e.g., ≥ 3.5 mm in-plane resolution) due to the
constraints of k-space acquisition, temporal resolution, and
system latency [2]. Therefore, new techniques are required to
optimize the spatial and temporal resolution of 4D MRI in
MRIgRT.

Real-time 4D acquisitions are being accelerated using
under-sampled non-Cartesian k-space trajectories and
compressed sensing or iterative image reconstruction
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methods [3], [4]. Unfortunately, these techniques require
computationally intensive and time-consuming image recon-
struction algorithms [3]. Super-Resolution (SR) is a potential
solution for the Low spatial Resolution (LR) prob-
lem [5]–[12]. Specifically, there is a demand for recovery of
missing resolution information on each slice of MRI, which
is considered an in-plane resolution problem [8].

Deep learning-based single image SR methods have been
recently introduced in computer vision [9]–[12]. Deep learn-
ing is a new breakthrough technology that is a branch of
machine learning [13], [14]. Many existing deep learning
studies have addressed various applications such as classi-
fication, detection, tracking, pattern recognition, image seg-
mentation, and parsing. They have also demonstrated robust
performance of deep learning compared to other machine
learning tools. Inmedical imaging, many deep learning-based
frameworks have been introduced for feature extraction,
anatomical landmark detection, and segmentation [15]–[17].
Recently, deep learning-based single image SR methods for
medical imaging have been actively explored [18]–[28].

In this paper, we propose an in-plane SR method for MRI,
called Autoencoder-inspired Convolutional Network-based
SR (ACNS) and investigate the relationship between the
network architecture, i.e., intra-layer structure and depth,
and its performance. The proposed method estimates
High-Resolution (HR) MRI slices from the LR MRI slices
according to a scaling factor. ACNS is composed of three
steps: feature extraction, multi-layered nonlinear mapping,
and reconstruction, where multiple nonlinear mapping layers
have less nodes than the feature extraction and reconstruc-
tion layers. The intra-layer structure and depth of ACNS are
empirically determined as a compromise between its qualita-
tive performance and computational time.

The contributions of this paper are twofold. First, this study
not only achieves high image quality of MRI but also sig-
nificantly reduces SR computational time. Spatial resolution
enhancement of MRI needs to be performed with minimal
latency duringMRIgRT. Thus, the most important problem in
the use of the deep learning-based SR methods is overcom-
ing their long computational time. This paper demonstrates
potential application of the proposed method for in-plane
SR of real-time 4D MRI in MRIgRT. Second, this study
provides a detailed analysis of the relationship between the
deep learning network architecture, i.e., intra-layer structure
and depth, and its performance based on our experimental
outcomes. The results suggest a developmental direction to
forthcoming deep learning-based SRmethods for the medical
imaging.

II. RELATED WORKS
A. MRI SUPER-RESOLUTION METHODS
SR studies for MRI have been proceeding since 1997
[29]. There are two primary goals that the SR research
has pursued: the in-plane resolution improvement [30]–[35]
and the through-plane resolution improvement [36]–[42].

The in-plane resolution improvement is to remedy missing
resolution information on 2D MRI, or a slice of 3D or 4D
MRI. The through-plane resolution improvement is to reduce
the slice thickness and remove aliasing between multiple
slices of 3D or 4D MRI. The through-plane resolution for
3D acquisitions may be lower than the in-plane resolution for
multi-slice 2D acquisitions [8]. Most studies have focused
on through-plane resolution improvements. Recently, the
in-plane resolution improvement methods for 4D MRI have
been actively studied [20]–[28].

TABLE 1. In-Plane Super-Resolution of MRI.

As shown in Table 1, the existing in-plane resolution
improvement methods include an Iterative Back-Projection
(IBP) [30], simple bilinear INTerpolation (INT), LASR,
TIKhonov (TIK), Direct Acquisition (DAC), THEOreti-
cal curves (THEO) [32], Conjugated Gradients (CG) [33],
Low-Rank Total-Variation (LRTV) [34], wavelet-based
Projection-Onto-Convex-Set (POCS) SR [31], and Toeplitz-
based iterative SR for improving Periodically Rotated
Overlapping ParallEL Lines with Enhanced Reconstruction
(PROPELLER) MRI [35], [43]. IBP is simple and fast, but is
vulnerable to noise. Additionally, IBP has no unique solution
for the SR problem due to the ill-posed nature of the inverse
problem. Deterministic regularization-based methods, such
as INT, LASR, TIK, DAC, THEO, CG, and LRTV, con-
vert a LR observation model into the well-posed problem
by using a priori information. However, the deterministic
regularization-based methods are also vulnerable to noise.
POCS methods (the wavelet-based SR and Toeplitz-based
iterative SR) are robust for noisy and dynamic images, but
their convergence speeds are slow and computational costs
are high.

B. CNN-BASED SUPER-RESOLUTION METHODS
Various SR approaches have been introduced in computer
vision. They can be categorized as reconstruction-based and
learning-based SR methods. The reconstruction-based super
resolution methods contain steering kernel regression [44]
and nonlocalmean [45] algorithms. These approaches depend
on prior knowledge such as total variation, edge, gra-
dient profile, generic distribution, and geometric duality
priors [46]–[50]. The learning-based SR methods include
nearest neighbor [51], sparse coding [52], [53], Support Vec-
tor Regression (SVR) [54], random forest [55], joint [56],
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nonlinear reaction diffusion [57], conditional regression [58],
Fourier burst accumulation-based method [59], and Convolu-
tional Neural Network (CNN)-based methods [7]–[12], [60].
The learning-based methods map the relationship between
the LR image and HR image so they can accurately recover
missing details on the image. CNN-based SR methods in
particular are state of the art [9], as they have shown superior
image quality improvements, albeit at high computational
cost.

The rapid advance of deep learning methods made a vari-
ety of the CNN-based SR methods applicable in medical
images such as retinal images [8], [62] and MRIs [21]–[28].
Pham et al. [21], [22] applied the Super-Resolution Convo-
lutional Neural Network (SRCNN) [9], [10] for brain MRIs.
Chen et al. proposed a densely connected super-resolution
network for brain MRIs in [23] that was inspired by a
densely connected network [63]. Zhang et al. and Qui et al.
proposed fast medical image SR for retina images [62] and
efficient medical image SR for knee MRIs [24]. Both meth-
ods use an identical network structure with three hidden
layers of SRCNN [9], [10] and a sub-pixel convolution layer
proposed by Shi et al. [64]. Chaudhari et al. [25][26] pro-
posed DeepResolve for knee MRIs that consists of 20 lay-
ers of paired 3D convolution operator and a rectified linear
unit. Zhao et al. [27] proposed a synthetic multi-orientation
resolution enhancement method for brain MRIs using an
Enhanced Deep Residual Network (EDRN) [65]. In [61],
a SR Generative Adversarial Network (SRGAN) [66] was
employed for the retinal images. For 4D MRI, Chun et al.
proposed a cascaded deep learning method that consists
of a denoising autoencoder [67], downsampling network,
and SRGAN [66]. Most of the proposed methods of natu-
ral images have been adopted for the medical images with
or without minor modifications in the network architecture
or a combination of several methods [21], [23], [24], [28]
[61], [62].

TABLE 2. Convolutional Neural Network-Based Super-Resolution.

We compare our method to well-known CNN-based SR
methods with a single network structure that are expected
to provide fast computation speed for 4D MRI. Table 2
shows three major methods in CNN-based SR methods:
SRCNN [9], [10]; Deeply-Recursive Convolutional Net-
work (DRCN) [12]; and Fast SRCNN (FSRCNN) [11].
SRCNN is a basic form of CNN excluding a pooling

process that was reformulated from the conventional sparse
coding-based SR methods. SRCNN was used for brain MRI
in [21], [22], [24], [62]. The test time of SRCNN was
0.39 s per image in dataset Set14 [53] at the magnification
power of 3. FSRCNN was redesigned from SRCNN with the
additional process of shrinking and expanding to reduce its
computational cost. The test time of FSRCNN was 0.061 s
per image in dataset Set14 at the magnification power of 3.
DRCN has a partially recursive structure with an exception-
ally connected component, called a ‘skip connection’ that
is considered a form of ResNet [23], [61], [68]. The skip
connection directly feeds input data into a reconstruction
network. The computation time of DRCN was not measured
in [12].

III. METHODS & MATERIALS
The aim of this study is to produce an HR MRI slice,
i.e., larger matrix size with extrapolated signals, from an
originalMRI of 64× 64 pixels or 128× 128 pixels, according
to a specified magnification power called the ‘scaling factor.’
For instance, the MRI generated by the scaling factor of
‘3’ would have a spatial resolution 3 times higher than the
original MRI. When enlarging, i.e., upsampling, the original
MRI, the image quality of the original MRI slice will natu-
rally decrease without compensation for the absent resolution
information. Although the original MRI has inadequate spa-
tial resolution for use in anatomical MRI, edges shown in the
MRI are sufficiently sharp. Blurring should not be neglected
in LR images. Among downsampling methods, a bicubic
interpolation results in blurry images rather than pixelated
ones by calculating a weighted average of the nearest pixels.
The result of the bicubic downsampling is highly analogous to
the result from blurring with a 3×3 average filter in addition
to downsampling with a nearest-neighbor interpolation with
the scaling factor of ‘2’. Thus, we model both pixel informa-
tion loss and blurring caused by the bicubic downsampling
as ACNS:

Y = DfbicubicX, (1)

where Y denotes an LR MRI corresponding to the original
MRI, Df

bicubic indicates the bicubic downsampling operator
with a scaling factor f , and X is an HR MRI corresponding
to the enlarged MRI that we desire to obtain. The proposed
algorithm produces HR MRI from the original MRI Y with a
scaling factor f and a parameter set2. We define an outcome
of ACNS as the symbol Z. The lose function for the bicubic
downsampling is produced from Eq. (1), as follows:

LD (Z) = Y− Df
bicubicZ (2)

The observation model is used to generate a training input
dataset and the LR MRIs in our experiments.

With Eq. (2), we can translate the given image SR problem
of MRI into an optimization problem:

X̂=
{
argmin

Z
‖LD (Z)‖2 :Z=F(Y; f ;2)

}
(3)
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FIGURE 1. Autoencoder-inspired convolutional network-based super-resolution.

where X̂ indicates an estimated HR MRI, Z is an outcome of
ACNS, F(·) denotes the proposed method as a function, and
2 is a parameter set for F(·). The parameter set 2 includes
filters (weights) and biases of each layer in ACNS.

ACNS consists of convolution layers, activation function
layers, and a deconvolution layer as illustrated in Fig. 1.
Convolution layers and activation function layers are primary
components of typical CNN. The other prime component of
CNN is a pooling layer—also called a subsampling layer.
The pooling layer chooses featured values from the image
for progressive reduction of the number of parameters and
the computational cost in the network, but it causes loss of
input image information. In order to keep the feature val-
ues, the proposed method excluded the pooling layer in its
architecture and designedACNSwith the deconvolution layer
to upsample the LR MRI. We also determined the network
structure of ACNS based on the experimental results.

ACNS was inspired by the autoencoder [69], one of
the well-known artificial neural networks. The autoencoder
achieves dimensionality reduction with less nodes in its
hidden layers than those in the input and output layers.
We hypothesized that critical features to be preserved through
the network would be limited even though their exact num-
ber is unknown. Under this hypothesis, the structure of the
autoencoder would perform well for the given SR problem if
parameters are appropriately set for the network. Moreover,
this structure would largely contribute to a decrease in test
time by reducing the computation in the hidden layers of the
network.

As shown in Fig. 1, ACNS is described as the three steps:
feature extraction, nonlinear mapping, and reconstruction.
In feature extraction, local features ofY are extracted depend-
ing on receptive fields as follows:

F1 (Y) = max (W1 ∗ Y+ B1, 0)+ αmin (0,W1 ∗ Y+B1) ,

(4)

where an operator ‘∗’ denotes a convolution, max(0, ·) + α
min(·, 0) is an activation function, i.e., Parametric Rectified

Linear Unit (PReLU) function [70], andW1 and B1 represent
filters and biases of feature extraction operation, respectively.
The size ofW1 isw1, which restricts a unit range to extract the
local features on Y. The number of W1, i.e., Nfeature, equals
the number of the extracted features.

As existing studies proved, nonlinearity of mapping is a
highly important process in CNN-based SR to enhance image
quality performance [12]. Therefore, we iterate the nonlinear
mapping between the Y and X:

Fi+1 (Yi+1)

= max (Wi+1 ∗ Yi+1 + Bi+1, 0)

+αmin (0,Wi+1 ∗ Yi+1 + Bi+1) , 0 < i ≤ n (5)

where Wi+1 indicates filters and Bi+1 represents biases of
the ith recurrence of the nonlinear mapping operation. The
number ofWi+1 is Nmap. In Eq. (5), Y2 equals F1(Y), i.e., the
output of the feature extraction operation. After n times
of recurring nonlinearity mapping, the output is defined as
Fn+1(Yn+1).

In nonlinear mapping, the size of Fi(Yi) must be identical
with that of Fi+1(Yi+1) because Fi(Yi) is the output of the ith
iteration and the input of the (i+1)th iteration. The output size
of the convolution operation is calculated as ‘output size =
(input size – w2 + 2·zero-padding size)/stride + 1.’ Here, w2
is the size ofWi+1, and we set ‘stride’ to ‘1’ to fully utilize the
extracted features. For this, the nonlinear mapping must have
3× 3 pixelsWi+1 with 1 pixel zero-padding. Obviously, more
iterations lead to higher computational complexity. Accord-
ingly, the time to process the resolution-enhanced MRI slices
would be longer. Thus, selecting the appropriate n is impor-
tant to compromise between image quality and processing
time.

After the nonlinear mapping, we obtain HR features using
the convolution operation as Eq. (5) where i equals n + 1.
The number ofWn+2 is set to Nfeature. Then, we use a decon-
volution operation to upscale and aggregate the HR features
depending on f as follows:

Fn+3 (Yn+3) = Deconv (Yn+3,Wn+3,Bn+3, f , p) , (6)
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where Deconv(·) denotes the deconvolution function, Wn+3
indicates filters, Bn+3 represents biases of the reconstruction
operation, and p denotes zero-padding size. Here, the size
of Wn+3, is wn+3. In Eq. (6), Yn+3 equals Fn+2(Yn+2),
i.e., the obtained HR features after the nonlinearity mapping
operation. We summarize the proposed ACNS as the follow-
ing pseudocode.

Autoencoder-Inspired Convolutional Network-Based
Super-Resolution (ACNS)
Input: Y: Low-Resolution (LR) MRI

f : Scaling factor
n: Calculation iteration number of nonlinear mapping
2 = {W1, W2, W3, B1, B2, B3}: Convolutional network
parameters

Output: X̂ : estimated High-Resolution (HR) MRI
1) Extract features from Y with 2 by Eq. (4)
for i = 1 to n do
2) Map the extracted features of Fi+1(Yi+1) nonlinearly
with 2 by Eq. (5)

end for
3) Acquire HR feature with 2 by Eq. (5)
4) Compute X̂ by up-scaling and aggregating HR features of
Fn+3(Yn+3)
with 2 by Eq. (6)

Training of ACNS is designed to find the optimal 2 that
minimizes the loss between the estimated HR MRI slice X̂ ,
i.e., Fn+3(Yn+3), and the HR MRI slice X. We use Mean
Squared Error (MSE) as the loss function

L (2) =
1
2N

N∑
i=1

∥∥∥F (Yi
; f ;2

)
− Xi

∥∥∥2, (7)

where N indicates the number of the training samples. The
loss function in Eq. (7) is minimized by the stochastic gra-
dient descent algorithm based on backpropagation [71]. The
weights are updated as follows:

1i+1 = 0.91i − η
∂L(2)

∂W l
i

, W l
i+1 = W l

i +1i+1, (8)

where l denotes a layer number, 1i+1 is a current update
value,1i is a previous update value,W l

i+1 is a current weight,
W l
i is a previous weight, η indicates a learning rate, and

∂L(2)/∂W l
i is a derivative of L(2). ACNS uses a Xavier

algorithm for weight initialization to automatically determine
initialization scale according to the network structure [71].
In [70], the authors showed that a combination of Xavier algo-
rithm and PReLU function would either converge slowly or
not converge when the network was very deep (i.e. 22 layers
or deeper). However, the initialization method was empiri-
cally chosen considering the structure of ACNS that com-
promises image quality with computation time. In training,
multiple local images were extracted as patches from both
the HR and LR MRIs, and these patches were applied as the
training input images.

The computation time of ACNS is determined by Nfeature,
Nmap, w1, wn+3, and n. Obviously, the computational com-
plexity increases with the number and size of the filters
(i.e. Nfeature, Nmap, w1 and wn+3,) as well as the number of
network layers (i.e. n). Furthermore, the selection of Nfeature,
Nmap, w1, wn+3, p, and n affects the image quality perfor-
mance in addition to how well 2 (i.e. Wk and Bk where
k = 1, 2, . . . , n + 3) is trained. Unlike computation time,
it is impossible to grasp the explicit relationship between
the network structure and its performance without validation.
Therefore, the selection of Nfeature, Nmap, w1, wn+3, p, and
n is significant, and we define them as network parameters
of ACNS. In designing ACNS, there is no restriction on
choosing Nfeature, Nmap, and n. However, we selected w1,
wn+3, and p to satisfy the following four conditions:

1) w1 < LR patch size,
2) 2p < f ·(LR patch size - w1),
3) p < wn+3, and
4) LR patch size≤ f · (LR patch size –w1)+wn+3−2 p ≤

f ·LR patch size + mod(LR patch size, 2),

where Condition2 and Condition4 are derived by constraints
on the output size of the deconvolution operation: ‘output
size= stride·(input size – 1)+wn+3 – 2p).’ Here, f is assigned
as ‘stride’, and ‘input size’ corresponds to ‘output size’ of
the non-linear mapping layer, i.e., ‘LR patch size – w1 + 1.’
Evaluation of image quality and processing time according to
the network parameters is given in Section IV.

For the image quality evaluation, we used typical metrics
in SR studies: Peak Signal-to-Noise Ratio (PSNR), Structure
SIMilarity index (SSIM), and Information Fidelity Criterion
(IFC) [9], [72]. PSNR was computed as

PSNR = 20 log10 (MAX/MSE) , (9)

whereMAX is the maximum intensity value.
SSIM was calculated as

SSIM (x, y) =

(
2µxµy + C1

) (
2σxy + C2

)(
µ2
x + µ

2
y + C1

) (
σ 2
x + σ

2
y + C2

) , (10)

where x corresponds to the MRIs enlarged by ACNS, y indi-
cates the ground truth MRIs, and µx , µy, σx , σy, and σxy are
means, variances, and covariance of x and y, respectively.
In SSIM, C1 and C2 denote stabilization constants calculated
as C1 = (K1 MAX)2 and C2 = (K2 MAX)2, where K1 � 1
and K2 � 1. Here, we set K1 as 0.1 and K2 as 0.3 according
to the Image Processing Toolbox of MATLAB.

IFC was calculated as

IFC =
∑

k∈subbands

I
(
CNk ,k ;DNk ,k

∣∣∣sNk ,k ), (11)

where CNk,k , DNk,k , and sNk,k denote Nk coefficient from the
reference image Ck , the test image Dk , and the random field
of positive scalars sk of the kth sub-band, respectively.
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IV. RESULTS
A. EXPERIMENTAL DATA
Virtual phantom and MRI data were used in the experiments.
We obtained 200 images from a virtual model of the human
torso with cardiac and respiratory motions, the 4D extended
Cardiac-Torso (XCAT) Phantom [73]. The size of the virtual
phantommodel is 256× 256× 201 voxels, and the size of the
acquired virtual phantom images were 200× 200 pixels. Out
of 713 slices, i.e. 256 coronal, 256 sagittal, and 201 trans-
verse slices, we selected the slices containing a lung region
only. Dataset1 contains 60 coronal slices. Dataset2 contains
60 sagittal slices. Dataset3 contains 60 transverse slices.

Dynamic multislice 2D True Fast Imaging with Steady
state Precession (TrueFISP) and GRadient And Spin
Echo (GRASE) images were collected from four volunteers
using a ViewRay 0.35 T MRIgRT at the Washington Univer-
sity in St. Louis after volunteers provided informed consent.
Table 3 describes theMRI data of the four volunteers used for
performance verification of the proposed image SR method.

Data1 and 2 are the sagittal MRIs from Volunteer1 and
their image size is 128 × 128 pixels. Data3 and 4 are from
the transverse MRIs from Volunteer2 and their image sizes
are 128 × 128 pixels and 128 × 120 pixels, respectively.
Data5 to 10 are the transverse MRIs from Volunteer3 and the
image size is 64× 64 pixels. Data11 to 22 are the coronal and
sagittalMRIs fromVolunteer4 with the size of 64× 64 pixels.
We additionally used 42 slices—14 coronal, 14 sagittal, and
14 transverse images—of 128 × 128 pixels from Volun-
teer3 and 5 slices—2 coronal, 2 sagittal, and 1 transverse
images—of 128× 128 pixels fromVolunteer4 for the purpose
of training the ACNS.

B. TRAINING
The original images were used as the ground truth in the
training step. LR images were generated from the original
images following the observation model of Eq. (1). The train-
ing datasets included 91 non-medical images [52], 50 XCAT
images, and 42 MRIs.

There are two main reasons why we included non-medical
images and XCAT images. First, ACNS estimates pixel loss

from HR image to LR image, independent of MRI contrast
properties. ACNS’s learning, i.e., mapping between LR and
HR images in the image domain, depends on the observation
model of (1). In this paper, we focus on the LR problem
only. Other problems of MRI were not considered when
defining our observationmodel. For example, ACNS does not
address MRI distortion. Therefore, all the training datasets
do not need to be MRI as long as the image pairs satisfy
the relationship of (1). Second, the use of higher-resolution
images in training leads to better image quality. The SR
result would be able to reach the ground truth in an ideal
case. Therefore, the resultant image quality is limited by the
ground truth employed in training. The deep learning network
trained by higher-resolution image sets can learn more details
of the pixel information to be recovered. Accordingly, it is
beneficial to include non-medical images, commonly used in
computer vision studies, and pixelated XCAT images with
highly clear boundaries in the training dataset because their
resolution is higher than that of MRIs.

Since our maximum scaling factor f is ‘4,’ the LR image
size would be extremely small, only 16 × 16 pixels, if we
selected the MRIs of 64 × 64 pixels for the training sam-
ples. Thus, we chose relatively larger matrix sizes among the
TrueFISP images we collected: 42 MRIs of 128× 128 pixels
for training and 5 MRIs of 128 × 128 pixels for testing the
training step.We produced the training images by splitting the
training images into patches of 11 × 11 pixels with stride 4.
The number of the patches was calculated as floor((LR image
size – patch size +1)/stride). For example, the LR MRIs
of 64 × 64 pixels are generated by Eq. (1) when f is 2 and
196 patches were created. Similarly, the ground truth images,
i.e. the original MRIs, were also separated into local patches.
Their patch size depends on the network parameters and the
details are given in the following Section IV-C .
Our experiments were conducted on a PC with

Intel R©Xeon R©CPU (ES-2637 3.50 GHz), NVIDIA Quadro
M6000 24GB GPU, and 128 GB RAM. The ACNS model
was trained using the Caffe package [74]. We set η of feature
extraction and nonlinearmapping layers to 0.001 and η for the
ACNS reconstruction layer to 0.0001. We denote the ACNS
according to the network parameters, such as ACNS(Nfeature,

TABLE 3. MRI Data of four subjects for performance validation.
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FIGURE 2. PSNR and elapsed time according to: (a) the number of filters in feature extraction Nfeature, (b) the number of filters in the nonlinear mapping
Nmap, (c) the filter size in the feature extraction w1, (d) the filter size in reconstruction wn+3, and (e) the zero-padding size p, when f = 2.

Nmap, w1, wn+3, p, n). For ACNS(16, 8, 5, 9, 5, 4), it took
approximately 6 hours and 30 mins for training 183 images
(91 non-medical images, 50 XCAT images, and 42 MRIs)
with 1,000,000 training iterations.

We compared the performance of ACNS with existing
CNN-based image SR methods—SRCNN, FSRCNN, and
DRCN—their codes are available at [75], [76], and [77],
respectively. Whereas SRCNN and FSRCNN codes are pub-
lic, the authors of DRCN provided the trained network code
only. In addition, we speculate that the authors of SRCNN
and FSRCNN did not disclose all the details about how
they trained and tuned the algorithm. Therefore, we used
SRCNN and FSRCNN trained by its authors with superior
performance than the ones trained by us.

The SRCNN model was trained by C. Dong et al. with
395,909 images from the ILSVRC 2013 ImageNet detection
training partition, using cuda-convnet package [78]. Accord-
ing to [9], C. Dong et al. required three days on a machine
with GTX 770 GPU, Intel CPU 3.10 GHz, and 16 GB
memory to train the SRCNNmodel with 91 images. For tests,
they took 0.14 s to process an image of 288 × 288 pixels.
The FSRCNN model was also trained by C. Dong et al. with
the Caffe package. They trained the FSRCNN model based
on 91 images first, then fine-tuned it with 100 images. The
training image sizes were from 131 × 112 pixels to 710 ×
704 pixels. The DRCN model was trained by J. Kim et al.
using theMathConvNet package [79]. Themaximum number
of recursions of the inference network was 16. Their training
time was six days on a machine with a Titan X GPU, and it
took 1 s to process an image of 288 × 288 pixels.

C. NETWORK PARAMETER SELECTION
The network parameters—Nfeature, Nmap, w1, wn+3, p, and
n—decide not only the network architecture, but also the
image quality performance and computation speed of ACNS.
To find optimal network parameters, we created various
ACNS models for f = 2 with different network parameter
values and trained them on the training settings described in
Section IV-B.

Figs. 2 (a)-(e) show the comparison of the box plot results
from tests by ACNS(Nfeature, 4, 5, 11, 5, 4), ACNS(7, Nmap,
3, 11, 7, 4), ACNS(20, 4, w1, 11, 10-w1, 4), ACNS(20, 4, 3,
wn+3, 7, 4), and RDLS(20, 4, 3, 9, p, 4) for 100 MRIs from
Dataset1, respectively. The red ‘+’ symbols in Fig. 2 rep-
resent outliers. The first row is PSNR and the second row
is elapsed time results in Fig. 2. Whereas the ranges of w1,
wn+3, and p are dependent on the LR and HR patch sizes,
Nfeature, Nmap, and n can be any natural number. We first
compared the ACNS models with different Nfeature and Nmap
values. As shown in Figs. 2 (a) and (b), PSNR results were
relatively high and stable when Nfeature was≥2 and Nmap was
≥3. In addition, the larger Nfeature and Nmap took longer to
process the SR image.

Candidate values ofw1,wn+3, and pmust satisfy the ACNS
design conditions explained in Section III. With the LR
patch size of 11, the conditions are simplified: Condition1:
w1 < 11;Condition2: p< 11 -w1;Condition3: p<wn+3; and
Condition4: 11 ≤ 22 - 2w1 + wn+3 - 2p ≤ 23. Specifically,
the candidate set for w1 is {1, 3, 5, 7, 9} by Condition1, p is
{0, 1, 2 . . . 9} by Condition2, and wn+3 is {1, 3, 5 . . . 21} by
Condition4. Any candidate for w1 can be selected regardless
of any given wn+3 and p since w1 is an independent variable.
However, selection of p and wn+3 relies on w1. A total of 167
networks are satisfied with the ACNS design conditions.
As shown in Figs. 2 (c)-(e), larger wn+3, and w1 had a subtle
increment in the elapsed time, but there was no elapsed time
change according to p on average. On the other hand, PSNR
was above 29 dBwhenw1 was 3 and 5, andwn+3 was less than
17. Besides, PSNRwas over 29 dB at p closer to its maximum
value, i.e. 10 - w1, as shown in Figs. 2 (c)-(e). As a result,
we chose a w1 of 5, wn+3 of 9, and p of 10 - w1 (i.e. 5) based
on the results in Fig. 2.

Fig. 3 shows the image quality performance of ACNS
according to the number of nonlinear mapping recursion n.
The PSNR and SSIM results are shown in Fig. 3. ACNS did
not produce a distinct difference according to n. Interestingly,
both PSNR and SSIMwere not improvedwithmore recursion
of the nonlinear mapping, whereas elapsed time increased
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FIGURE 3. Image quality performance of ACNS according to the number of
nonlinear mapping layers n: (a) PSNR and (b) SSIM results. A cyan dashed,
cyan dotted, red dashed, red solid, green dashed, green dotted, blue
dashed, and blue dotted lines correspond to n of 1, 2, 3, 4, 5, 8, 12, and
16, respectively. For visibility, we magnified a region with a red rectangle.

from 0.22s to 0.45s. From the results in Fig. 3, we determined
n as 4. The cyclic shape of the results in Fig. 3 represent phys-
iologic motion sampled during the test dataset acquisition.
The dataset consisted of multislice single-shot TrueFISP 2D
acquisitions with 10 slices/volume. Each slice was acquired
in 0.3 s and sampled at 0.33 Hz (i.e. 3 s/volume).

Although we found appropriate ranges of Nfeature and Nmap
from Figs. 2 (a) and (b), we conducted further experiments to
investigate a relationship between a combination of Nfeature
and Nmap and the image quality performance. Because the
training in ACNS strains to minimize the loss of the ACNS,
i.e. Eq. (7), training loss can be translated as image quality
performance. Fig. 4 illustrates the training loss of ACNS with
various combinations of Nfeature and Nmap; the designated w1,
wn+3, and p; and n of 4. We presented Fig. 4 with a log
scale for loss on the y-axis, to show delicate loss differences
between the ACNS networks according to the combination of
Nfeature and Nmap.

As shown in Fig. 4 (a), ACNS(8, 4, 5, 9, 5, 4) and
ACNS(16, 4, 5, 9, 5, 4) had relatively large training losses
compared to the other ACNS networks. In the results of
Fig. 4 (b), ACNS(48, 48, 5, 9, 5, 4) showed the lowest training
loss. However, the training loss of ACNS(16, 16, 5, 9, 4) was
less than that of ACNS(16, 16, 5, 9, 5, 4), ACNS(32, 16, 5,
9, 5, 4), ACNS(32, 32, 5, 9, 5, 4), ACNS(48, 16, 5, 9, 5, 4),
and ACNS(48, 24, 5, 9, 5, 4). This means that there is no sig-
nificant difference of the image quality performance between
the ACNS networks with Nfeature and Nmap, above the values
8 and 4, respectively, according to the result of Fig. 4. There-
fore, we selected Nfeature as 16 and Nmap as 8 considering the
computation speed of ACNS. In the remaining Section IV,
we used ACNS(16, 8, 5, 9, 5, 4) for all f s according to the
results in this subsection. The HR patch size was determined
as 11 for f = 2, 17 for f = 3, and 23 for f = 4.

FIGURE 4. Training loss of ACNS with various combinations of Nfeature
and Nmap; the designated w1, wn+3, and p; and n of 4. The area marked
with a red rectangle in (a) is magnified as (b). A y-axis, i.e. loss, is in a log
scale. A cyan dashed line is the result of ACNS(8, 4, 5, 9, 5, 4), a red
dashed line is the result of ACNS(16, 4, 5, 9, 5, 4), a red solid line is the
result of ACNS(16, 8, 5, 9, 5, 4), a red dotted line is the result of ACNS(16,
16, 5, 9, 5, 4), a green dashed line is the result of ACNS(32, 16, 5, 9, 5, 4),
a green solid line is the result of ACNS(32, 32, 5, 9, 5, 4), a blue dashed
line is the result of ACNS(48, 16, 5, 9, 5, 4), a blue solid line is the result of
ACNS(48, 24, 5, 9, 5, 4), and a blue dotted line is the result of ACNS(48,
48, 5, 9, 5, 4).

D. IMAGE QUALITY EVALUATION
We verified the image quality performance of ACNS by
comparing it with SRCNN, FSRCNN, and DRCN. Unlike
ACNS and FSRCNN, SRCNN and DRCN improve image
resolution while maintaining the original image size, without
image size expansion depending on f . For comparisons with
the identical input images, we first enlarged the LR image
using bicubic upsampling according to f , then applied the
upsampled LR image to SRCNN and DRCN, whereas the LR
image was directly used as the input of ACNS and FSRCNN.
We used the original images as the ground truth and the LR
images produced by Eq. (1) to measure PSNR, SSIM, and
IFC. The ground truth images need to be large enough for the
maximum f , as in training. Therefore, three XCAT datasets,
and Volunteer1 and Volunteer2 datasets were used for PSNR,
SSIM, and FIC comparison.

Fig. 5 shows a comparison of the resolution-enhanced
XCAT image and MRIs. We randomly selected three resul-
tant images from the XCAT dataset1, Volunteer1 and Volun-
teer2 datasets, shown in Figs. 5 (a), (b), and (c), respectively.
As shown in Fig. 5, all resultant images were more detailed
than the LR XCAT image and LRMRIs. SRCNN, FSRCNN,
and ACNS maintained the image intensity values regardless
of resolution improvement. However, DRCN increased the
intensity contrast of the MRIs.

In Table 4, we provided the quantitative results, i.e., aver-
age PSNR, SSIM, and IFC of the resolution-enhanced virtual
phantom images. The best results are highlighted in bold
font. The average PSNRs of three XCAT datasets for three f s
using SRCNN, FSRCNN, DRCN, and ACNS were 26.36 dB,
25.96 dB, 26.73 dB, and 26.53 dB, the average SSIMs were
0.86, 0.48, 0.93, and 0.84, and the average IFCs were 2.32,
2.38, 2.45, and 2.50, respectively. As shown in Table 4, ACNS
showed the best IFC performance and the second best PSNR
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FIGURE 5. Comparison of resolution-enhanced XCAT image and MRIs using SRCNN, FSRCNN, DRCN, and ACNS: (a) XCAT dataset1, (b) Volunteer1, and
(c) Volunteer2 datasets. The first and second columns present the original HR and LR images; and the third, fourth, and fifth columns indicate SR results
from SRCNN, FSRCNN, and DRCN, respectively. The sixth column is the resolution-enhanced XCAT image and MRIs by ACNS. All results were at a f of 2.
To provide visible comparison, the images were partially enlarged from the regions marked as red squares.

performance next to DRCN. In addition, ACNS had better
performance than FSRCNN in terms of SSIM.

In the comparison of Table 4, there was an interesting
finding that the average SSIM results by FSRCNN were
exceedingly inferior to ACNS, DRCN, and even SRCNN
with the simplest layer structure. The virtual phantom images
contain the background along with the human torso. The
background area is large relative to the virtual phantom
image, and the background’s intensity value is ‘0.’ During
the resolution improvement, FSRCNN failed to preserve the
intensity values in the background while SRCNN, DRCN,
and ACNS did. The intensity values of the background in
the resolution-enhanced images by FSRCNN varied between
‘2’ and ‘7.’ The virtual phantom image was stored with
8 bits per pixel i.e., intensity ranges between ‘0’ and ‘255.’
The failure of FSRCNN in conserving the background inten-
sity values degraded its SSIM results. The inferior SSIM
results of FSRCNN were not observed in other studies using
the natural images because the majority of natural images
commonly used in computer vision do not include large
background areas.

Table 5 compares average PSNR, SSIM, and IFC of the
resolution-enhanced MRIs. The best results are highlighted
using bold font. The average PSNR, SSIM, and IFC of the
MRIs were greater at the smaller f . The average PSNRs of
two volunteer datasets for three f s using SRCNN, FSRCNN,

DRCN, and ACNS were 28.72 dB, 28.96 dB, 29.26 dB, and
29.25 dB, the average SSIMs were 0.76, 0.77, 0.77, and
0.80, and the average IFCs were 3.81, 4.09, 4.35, and 3.85,
respectively.

ACNS achieved the highest average PSNR of 33.12 dB and
SSIM of 0.91 for the Volunteer2 dataset and f of 2 as shown
in Table 5. ACNS mostly outperformed SRCNN, FSRCNN,
and DRCN regarding PSNR and SSIM in the experiment
using the Voluneer2 dataset. IFC results of ACNS was rel-
atively low compared with FSRCNN and DRCN. For the
Volunteer1 dataset, the performance of DRCN was slightly
better than the other methods.

Fig. 6 shows MRIs of Volunteer1, Volunteer2, Volun-
teer3, and Volunteer4 datasets, enlarged by nearest-neighbor
interpolation, bicubic interpolation, and ACNS. To obtain the
enlarged MRIs as our ultimate goal, we used the original
MRIs as the inputs of ACNS. As shown in Fig. 6, MRIs
acquired by ACNS were less blurry than MRIs by bicubic
upsampling and less pixelated than nearest-neighbor interpo-
lation. In Fig. 6 (d), the MRIs enlarged by nearest-neighbor
interpolation and bicubic upsampling lost pixel information
of two bright lines at the center of the red square after its
size changedwhile theACNS imagesmaintained it. However,
ACNS accentuated artifacts as illustrated in Fig. 6 (a) and (c).
This is because ACNS does not selectively remedy missing
pixel information.
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TABLE 4. Average PSNR, SSIM, and IFC of Resolution-enhanced Virtual
Phantom Images.

TABLE 5. Average PSNR, SSIM, and IFC of Resolution-enhanced MRIs.

E. COMPUTATIONAL TIME COMPARISON
We compare the running times to produce resolution-
enhanced images using SRCNN, FSRCNN, DRCN, and
ACNS in Table 6. The best results are presented with bold
font. For XCAT datasets, the input images of ACNS and FSR-
CNN were generated from the original images by Eq. (1) to

FIGURE 6. MRIs enlarged by ACNS: (a) Volunteer1, (b) Volunteer2,
(c) Volunteer3, and (d) Volunteer4 datasets. Each MRI was randomly
selected. The first and second columns are the original MRIs magnified by
nearest-neighbor interpolation and bicubic upsampling, and the third
column is the resulting MRIs from ACNS, at a f of 3. We magnified the
area in the red square to show more details.

obtain the resultant images of the identical size to the original
images. For MRI datasets, we used the original images as the
inputs of ACNS and FSRCNN, and upsampled the images
with f as the inputs of SRCNN and DRCN. The image size
fed to the network varied and this caused a different level of
computation for each method. ACNS and FSRCNN had f 2

times smaller input images than SRCNN and DRCN. Thus,
we can observe diminishing patterns with f in ACNS and
FSRCNN results with f for XCAT datasets and increasing
patterns with f in SRCNN and DRCN for MRI datasets
in Table 6.

As shown in Table 6, the average running time of ACNS
was 0.71 s for the Volunteer1 and Volunteer2 datasets and
0.25 s for the Volunteer3 and Volunteer4 datasets. The test
time measured in each method varied depending on the
image size. The running time per 100 × 100 pixels of the
resultant image was 0.89 s in SRCNN, 0.54 s in FSRCNN,
4.91 s in DRCN, and 0.14 s in ACNS. Accordingly, ACNS
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TABLE 6. Running time.

was 6, 4, and 35 times faster than SRCNN, FSRCNN, and
DRCN, respectively. Although DRCN produced outstanding
SR images, it required the longest computational time.

V. DISCUSSION
In the experiments, ACNS not only achieved comparable
PSNR, SSIM, and IFC results to other CNN-based SR meth-
ods, but also substantially reduced the computational time
compared to the methods currently considered state-of-the-
art. The performance of ACNS results from its network
structure. Given an identical training environment, the larger
number of parameters, including the filters and layers, and
bigger filter size caused longer computational time and did
not lead to better image quality. This demonstrated that
the common belief, ‘‘the deeper the better,’’ [22] is not
always true. We determined the network structure of ACNS
based on the experimental results in Section III-C. ACNS’s
network structure is a compromise between image quality
and computational time. ACNS consists of 6 layers and
5,728 parameters, whereas DRCN has 18 layers—when its
recursive layers are unfolded—and 1,774,080 parameters.
Thus, DRCN inevitably takes longer to calculate its outcome.

More complex and deeper networks require more painstak-
ing and cumbersome training. Given two well-trained net-
works with different network depths, the deeper network
(with higher nonlinearity) would be expected to achieve a
greater improvement in image quality than the shallower
network. Therefore, the well-trained DRCN yielded qual-
itatively better results than the other methods: SRCNN,
FSRCNN, and ACNS.

SRCNN has only 3 layers, which is the shallowest
layer structure. Therefore, SRCNN has less nonlinearity
than FSRCNN, DRCN and ACNS, resulting in its inferior

performance in image quality. Despite its simple layer struc-
ture, SRCNN generally demanded longer computational time
than FSRCNN and ACNS due to its intra-layer design,
i.e., the number and size of filters at each layer. Specifically,
the number of the parameters was 8,032 for SRCNN and
12,464 for FSRCNN, i.e., 1.4 and 2.2 times greater than the
number of the parameters in ACNS, respectively. We used
the smallest practical number of the parameters in ACNS.
We assume that the proposed framework can reduce the
computational complexity and inference time due to fewer
parameters and appropriate network structure than other
methods.

The deconvolution operation also affected the computa-
tional time. Both ACNS and FSRCNN can produce an image
of identical size with f 2 times less inputs than SRCNN
and DRCN by using deconvolution for upsampling. Hence,
the computation workload in ACNS and FSRCNN are f 2

times less than SRCNN and DRCN.We can enhance theMRI
resolution using SRCNN and DRCN before upsampling to
preserve the identical size of the inputs and resultant images.
This would prevent a computational time increase propor-
tional to f 2. However, the image quality would be apprecia-
bly deteriorated. The nearest-neighbor interpolation would
unnaturally pixelate and the bicubic interpolation would blur
the estimated HRMRI through upsampling. It is not practical
to reduce computational time without a sacrifice in image
quality.

The biggest problem in applying the current CNN-based
SR methods to 4D MRI for MRIgRT is their long compu-
tational time. Since 4D MRI needs to be promptly obtained
and used during the treatment, it is necessary to accomplish
both high image quality and fast processing. Ideally, recon-
struction and resolution improvement of 4D MRI should
be performed in real-time. According to [11], when FSR-
CNN was implemented in C++, the average computational
time of FSRCNN was 0.061s at f of 3 for dataset Set14,
which includes 14 images in a range of 276 × 276 pixels
to 720 × 576 pixels. However, we implemented our method
and FSRCNN in MATLAB, and the average test time of
FSRCNN was 2.49 s at f of 3, for Volunteer1 dataset with
900 MRIs of 128 × 128 pixels. For the same dataset and f ,
ACNSwas 3 times faster than FSRCNN. Accordingly, ACNS
is expected to achieve real-time processing in C++. More-
over, GPU performance has become very fast. The GPU
used in the experiment can process 7 trillion floating point
operations per second (TFLOP) and the performance of the
NVIDIAQuadro RTX 8000, one of the state-of-the-art GPUs,
is 16.3 TFLOP. Thus, the real-time processing is feasible with
high-performance GPUs in combination with implementa-
tion using C++.

Additionally, our experiments showed the importance of
network parameter selection in CNN-based SR. Based on
the experimental results, the performance of ACNS did not
rely on each network parameter, i.e., number and size of
filters, zero-padding, and the number of layers, but their
combination. Although more layers and filters led to longer
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computation time, they did not result in better image qual-
ity. We also observed that the training datasets affect the
performance of ACNS. Therefore, there are no universal
CNN-based SR methods. Instead, we need to customize
the method for its purpose by empirically selecting opti-
mal parameters and using appropriate training datasets. This
evokes caution that when using deep learning methods for
medical images, the performance with ensembles of the
experimental data sets need to be continuously evaluated for
their reliability because the deep learning methods are not
transparent [20].

VI. CONCLUSION
In this study we demonstrated ACNS, an in-plane SR method
for MRI that recovers missing image information of LR
MRIs by CNN-based nonlinear mapping between LR and HR
features. Our experiments showed that ACNS achieved com-
parable image quality improvement as well as outstanding
processing speed, whichwas approximately 6, 4, and 35 times
faster than SRCNN, FSRCNN, and DRCN, respectively. The
result implies the potential application of ACNS to real-time
resolution enhancement of 4DMRI inMRIgRT.Additionally,
we presented experimental analysis regarding the relationship
between deep learning network parameters and the network’s
performance. According to the experimental results, the deep
learning-based SRmethod needs to be customized for its pur-
pose through empirical selection of the optimal parameters
and the use of appropriate training datasets.

In this study, we focused on only the in-plane resolution
enhancement for MRI. However, there is a clinical demand
for the through-plane resolution enhancement in gating based
on 3D or 4DMRI. Therefore, our future work aims to enhance
the through-plane resolution of 3D and 4D MRI.
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