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Abstract— This article investigates the application of deep
learning (DL) to the fusion of omnidirectional (O-D) infrared
(IR) sensors and O-D visual sensors to improve the intelligent
perception of autonomous robotic systems. Recent techniques
primarily focus on O-D and conventional visual sensors for
applications in localization, mapping, and tracking. The robotic
vision systems have not sufficiently utilized the combination
of O-D IR and O-D visual sensors, coupled with DL, for the
extraction of vegetation material. We will be showing the con-
tradiction between current approaches and our deep vegetation
learning sensor fusion. This article introduces two architectures:
1) the application of two autoencoders feeding into a four-
layer convolutional neural network (CNN) and 2) two deep
CNN feature extractors feeding a deep CNN fusion network
(DeepFuseNet) for the fusion of O-D IR and O-D visual sensors
to better address the number of false detects inherent in indices-
based spectral decomposition. We compare our DL results to
our previous work with normalized difference vegetation index
(NDVI) and IR region-based spectral fusion, and to traditional
machine learning approaches. This work proves that the fusion
of the O-D IR and O-D visual streams utilizing our DeepFuseNet
DL approach outperforms both the previous NVDI fused with
far-IR region segmentation and traditional machine learning
approaches. Experimental results of our method validate a 92%
reduction in false detects compared to traditional indices-based
detection. This article contributes a novel method for the fusion of
O-D visual and O-D IR sensors using two CNN feature extractors
feeding into a deep CNN (DeepFuseNet).

Index Terms— Convolutional neural network (CNN), deep
learning (DL), object recognition, omnidirectional (O-D) far-
infrared (FIR) and visual fusion, semantic extraction, vegetation
detection.

I. INTRODUCTION

THE practical use of unmanned ground vehicles (UGV)
operating with small teams of humans in many civilian,

service, and military applications requires a more robust
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Fig. 1. Robot with O-D IR and O-D visual cameras, and onboard computer.
A blow-up view of camera with geometry overlay. O-D RGB and O-D IR
image from the cameras.

method of intelligent perception for determining the possi-
bility of the surrounding environment. The current state of
obstacle detection and avoidance enables the handling of
well-structured obstacles, but it is limited in its ability to
distinguish between solid obstacles and low-density passable
objects (grass). Through enhanced utilization of deep learn-
ing (DL) and convolutional neural networks (CNN) coupled
with visual and infrared (IR) omnidirectional (O-D) camera
systems, the corrections required and errors introduced are
reduced when creating a 360◦ fusion of our visual and IR
O-D cameras. In addition, we have reduced the computation
requirements, making our approach more feasible for small,
resource-constrained robots. We have reduced error sources by
the fusion of O-D IR and O-D electro-optical cameras. The
fusion of multispectral sources with reduced error minimizes
error propagation forward in the perception world model.
These advantages make the O-D sensors optimal tools for cost-
efficient perception of robotic systems.

Fig. 1 is an example of the Pioneer robot with an O-D
IR, and O-D visual camera mounted on top, with a blow-up
sketch of the camera with internal mirror geometry overlaid,
and the O-D RGB and O-D IR images alongside. The reason
for choosing O-D vision and IR is due to their superior
performance as laid out in [47].

We improve the benefits of possible low cost, O-D IR,
and O-D visual sensors utilizing intelligent, DL perception
algorithms to enhance the robot’s vision. This article pro-
poses a method for enhanced vegetation detection and the
reduction of false detects through the DL fusion of the O-D
thermal and color vision. We chose a two-stream approach
rather than the traditional, stacked-band approach so that we
could better learn the disparate but related features of the
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two streams before fusing the weights in the final model.
Our primary experimental results are obtained using our
deep CNN fusion network (DeepFuseNet) approach from the
combination of O-D thermal and color vision sensors. They
are compared to our previous work with index/region-based
fusion of O-D IR/visual Kinect cameras and with the O-D
IR/O-D visual camera. We present the results in Section IV.
We also compare to more traditional machine learning
approaches.

The contribution of this work is to utilize an O-D visual
sensor on top of an O-D far IR (FIR) camera by intro-
ducing a novel fusion method, named deep fusion network
(DeepFuseNet). This provides for semantic scene extrac-
tion or semantic region classification and multimodal fusion
of thermal and color vision of O-D sensors. Our approach
uses deep transfer learning on the ImageNet large data set
expanded to our smaller data set. We fuse the visual semantics
with thermal region semantic structure and DL to improve the
number of false detects compared to the traditional normalized
difference vegetation index (NDVI) approach, thermal region
fusion (TRF), and traditional machine learning approaches.
One drawback of DL is the need to train on large data sets.
Since we have a relatively small data set, we first train on
the large ImageNet data set with over a million images and
1000 categories. We then apply transfer learning to adapt the
learned weights to our smaller data set.

We organize the remainder of this article as follows.
Section II discusses related works in O-D camera setting, vege-
tation detection, and DL-based sensor fusion; in Section III, we
proposed our method on the utilization of deep CNN semantic
feature extraction from the two streams using DL to extract
key elements of the signatures from both the O-D vision and
O-D IR cameras, followed by the application of a high-level
deep fusion using DeepFuseNet. We applied two approaches to
the individual camera-stream feature extraction process: first,
using two autoencoder feature extractors to output the vege-
tation regions, and second, two deep CNN feature extractors,
each feeding the final DeepFuseNet. Section IV presents the
experimental setting and results of our DeepFuseNet approach
in identifying the semantics of the environment’s context-
dependent features. Finally, in Section V, the conclusion is
presented.

II. PRIOR RELATED WORKS

Cost-efficient operations with enhanced robotic perception
are crucial for unmanned systems in applications such as
rescue, military, and police. Industrial and commercial appli-
cations will also take advantage from this article. The literature
review of this work focuses on the recent research with O-D
sensors and the developments in mapping, localization and
tracking, robot navigation, and obstacle detection, but not in
the area of vegetation detection.

The fusion of IR and visual O-D sensors is valuable in order
to obtain the improved robotic perception. The organization of
the related works section is given as Section II-A O-D camera
setting, Section II-B visual and IR index, histogram, and
region-segmentation-based, and traditional machine learning

TABLE I

O-D CAMERA APPLICATIONS SUMMARY

vegetation detection, and Section II-C DL-CNN, and the
application of DL to scene recognition.

A. Omni-Direction Camera Setting

Intelligent perception is a critical element for autonomous
applications in robotics. In order to improve the robot’s per-
ception, we used O-D sensors and reviewed the characteristics
of O-D from different works in this section. The geometry
of O-D camera is covered in various aspects [1]–[6]. Table I
shows the related studies of O-D approaches. There are several
approaches to localization. An approach for localization of
UGV in a dynamic environment utilizes O-D vision and
odometry [1]. Their approach couples optical flow with a
particle filter and a database of former images mapped by
the robot to establish the robot’s global pose (x , y, θ).

The O-D geometry approach exploits the radial straight-
line geometric feature of O-D vision to map to semantic
primitives of the environment (doors, buildings, walls, edges,
trees, corners, and radiators) and track these primitives as the
robot moves through the environment. An O-D stereo and
multiple images from different positions are used to extract
the feature points for homography estimation in [2] and [3],
where Lopez-Nicolas et al. [2] used multiple homographies
from virtual image planes in O-D vision pairs. The authors
generated a family of valid, virtual image plane homographies.
The robot applies the matrix of resolved homographies to its
control law to rotate the homography to the target, drive to
the target, and then reorient to the target. Lui and Jarvis [3]
use O-D vision homography on a moving platform to emulate
stereo vision and extract multiple baselines to generate a map
of the world. Lim and Barnes [4] explored the use of O-D
sensors for navigation. Stone et al. [5] presented our approach
for O-D camera calibration. Scaramuzza et al. [6] address
identification of vertical line geometry in the image.

B. Visual and IR Index, Histogram, and Region Segmentation
Based, and Traditional Machine Learning
Vegetation Detection

The detection of surroundings is a significant application
for navigation of autonomous systems to operate continuously
in rough environments surrounded by vegetation such as
trees, grass, and bushes. Tables II and III show the details
of related works for vegetation detection and segmentation
methodology.
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TABLE II

VEGETATION DETECTION METHODOLOGY SUMMARY

TABLE III

HISTOGRAM AND SEGMENTATION METHOD SUMMARY

It is a critical task to identify vegetation in the robot’s
view for accurate navigation. The robot can easily navigate
over grass or leafy objects whereas it is more difficult to
move in a path consisting of tree trunks and constructed
materials. The authors utilized satellite images for the detec-
tion of vegetation in multispectral of the near-infrared (NIR)
spectrum and the visual spectrum in [7] and [8]. In order
to use vegetation indices with mixed techniques, multi-
spectral and hyperspectral data sets are employed in [9]
and [10]. In addition to these approaches, large data sets
were acquired from satellites for geographical classification.
Bradley et al. [11] explored the application of the NDVI to
vegetation perception in the DARPA Preceptor off-road UGV.
NIR images are used as a threshold along with images from the
visual sensor to detect the chlorophyll level corresponding to
vegetation.

The histogram and segmentation approaches are sum-
marized in Table III. Histogram and region segmentation
approaches applied to vegetation detection [12]–[20]. A sensor
fusion method applies the fusion of visual and point clouds
from LIDAR [12]. References [13]–[16] apply histogram
approaches, and references [17]–[20] apply semantic mapping
and region-based segmentation approaches.

C. DL CNN Fusion of O-D IR and O-D Visual Stream

In Table IV, we can see the literature review for NN and
DL methods. NN and machine learning techniques applied to
obstacle avoidance are presented in [21]–[47].

A three-layer NN is trained to recognize red-colored visual
objects [21], where the output of the NN is three movement
commands (forward, turn right, or turn left). The method pre-
sented in [22] divides objects in the robot’s environment into
two map representations; first, a set of perceptual maps from
each sensor derived by an NN feature extractor, and second, a
self-organizing map algorithm with a spatial map representing
the location of each of the objects in the perceptual maps.
A growing cell structure NN approach builds up these map
representations.

TABLE IV

NN AND DL METHOD SUMMARY

A multilayer feedforward artificial neural network
(ANN) [23] tracks dynamic obstacle motion by fusing
ultrasonic and visual cues. The ANN is trained off-line
using a relative error backpropagation algorithm. On-line the
ANN predicts in real time the distance from the robot to
the dynamic and stationary obstacles. The approach in [23]
applies an environmental predictor ANN rather than a motion
predictor to provide the robot with the areas occupied by
obstacles. The algorithm fuses data from multiple sensors to
identify the correlation between them and predicts the future
sensor reading.

Dongshin et al. [24] explored the use of unsupervised learn-
ing for classification of terrain traversability. On-line learning
is achieved by establishing a correspondence between the vehi-
cle’s navigation experience (successful traversals, slippage,
collisions) using onboard sensors (Inertial Measurement Unit
(IMU), bumper, and motor current), and visual characteristics
of the terrain from a stereo vision sensor. The traversability
level is established as affordance or rating of terrain difficulty
to be traversed.

Chang and Kai-Tai [25] and Coates et al. [26] applied
unsupervised feature learning to face recognition. The method
used applies two simple learning algorithms: 1) a K -means
clustering algorithm to prefilter the data and 2) agglomerative
clustering to group simple cells into “complex cells” that
are invariant features. Coates et al. [27] applied an analy-
sis of the single-layer networks to unsupervised learning.
Coates et al. [27] apply several unsupervised learning algo-
rithms followed by a convolution classifier to evaluate the
effect of different parameters used in unsupervised learning
and CNN.

Autoencoders [28]–[31] are a class of NNs where the net-
work is trying to approximate the identity matrix. The authors
use the autoencoder as a feature extractor, where the learned
weights of the sparse hidden layer represent features in the
image. Rather than use labeled data, the autoencoder tries to
match the output to the input and thus learn feature patterns
in the data. Autoencoders [28] presented a method to convert
high-dimensional data to low-dimensional data and to initialize
weights enabling the deep autoencoder network to operate

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 06,2022 at 15:44:46 UTC from IEEE Xplore.  Restrictions apply. 



9060 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 11, NOVEMBER 2021

TABLE V

DEEP FUSION NETWORK FOR O-D IR AND VISUAL STREAM

more efficiently. Hinton and Salakhutdinov [28] applied the
above to recognition of character and facial feature.

A denoising autoencoder [29] applies intentional noise
corruption of random pixels to a DL network to provide a
more robust initialization of the network, thus guiding the
intermediate steps based on the correction of the corruptions.
Lee et al. [30] look at efficient sparse autoencoder techniques.
Hao et al. [31] present a two-stream architecture, the first
stream is a denoising autoencoder to encode pixel spectral
values from the image and the second stream is the base image
evaluated. A final CNN fuses the processed and base images.

Song et al. [32] applied residual learning to optimize CNN
layer learning and to fuse the output of different hierarchical
layers of the network. Halatci et al. [33] evaluated several low
and high classifiers and looks at the fusion of the classification
results for color, texture, and geometry for terrain classifica-
tion. Zhuo et al. [34] applied automatically generated training
data for CNN detection.

References [35]–[40] applied CNN to the classification
of terrain and vegetation in the environment. In this work,
we utilize the ImageNet [41] and City Scape [42] databases.
We also reference [43]–[46] for refining our DL approach.
Reference [47] is the authors’ prior article, which compares a
modified NDVI approach and our TRF approach for vegetation
detection. Finally, Raczko and Zagajewski [48] compare sup-
port vector machines (SVMs), random forest (RF), and ANNs
for classification of hyperspectral satellite images of ground
cover. Omer et al. [49] compare SVM and ANN for mapping
endangered tree species.

III. TECHNICAL APPROACH

The technical approach of our proposed work applies
segmentation analysis on learning through our DeepFuseNet
approach coupled with transfer learning from ImageNet to
O-D visual and O-D IR images to provide vegetation detection,
classification, and highlighting. The ultimate phase is the O-D

Fig. 2. Block diagram of the authors’ technical approach.

vision system that utilized fusion of visual and IR images.
Table V and Fig. 2 show the overall process.

The four subsections of Section III will cover the following.

1) Section III-A introduces the O-D sensor along with the
O-D coordinate system setting.

2) Section III-B describes the baseline and traditional
machine learning approaches.

3) Section III-C discusses the autoencoder feature extrac-
tion of the O-D IR thermal regions with the O-D visual
(electro-optical) multispectral signature for the regions
of interest from the sensor streams.

4) Section III-D discusses the CNN feature extraction and
DL tradeoffs.

5) Section III-E discusses our DeepFuseNet architecture
and the application of DL, transfer learning, and fine-
tuning to solving the vegetation detection problem.

The DL fusion of visual and IR O-D data enables the
robotic perception system to adapt to different lighting and
environmental conditions. In this article, we will compare
the baseline and traditional machine learning approaches to
DL fusion approach shown in Fig. 2. The authors chose
a two-stream merged fusion approach rather than a stacked
image approach because the two individual inputs had different
feature characteristics that we wanted to fully learn before
merging the weights. We propose two architectures (Fig. 2)
and compare them along with our previous baseline work, and
other machine learning approaches.

A. Omni-Direction Camera Setting

In this work, the 360◦ field of view is obtained from the
O-D imaging system utilizing spherical reflecting surfaces.

Authorized licensed use limited to: Virginia Commonwealth University. Downloaded on October 06,2022 at 15:44:46 UTC from IEEE Xplore.  Restrictions apply. 



STONE et al.: DeepFuseNet OF O-D FIR AND VISUAL STREAM FOR VEGETATION DETECTION 9061

Fig. 3. Geometry of the O-D camera mirror system.

By means of these enhanced O-D systems, we generate the
360◦ image without any requirement of the image fusion of
multiple sensors. Fig. 3 and the following equations describe
the transformational relationship between coordinates of the
image plane and coordinates of the spherical surface:

r2 = x2 + y2 (1)

θ = tan−1(x/y) (2)

ϕ = tan−1(r/z) (3)

z = (r2− h2)/2h (4)

where x and y are the pixel coordinates on the image plane,
and P is the real-world point detected by the O-D sensor. The
vertical distance from the mirror surface to the image plane is
given by z. The angles θ and ϕ define the angular direction
of the ray from mirror’s origin to the mirror coordinates of
the detected pixel, and r is the horizontal distance from the
mirror center to the coordinates of the observed point on
the mirror surface. The orientation θ ranges from 0◦ to 360◦
around the edge of the mirror, and the pitch ϕ ranges from
0◦ when pointing straight down, to 90◦ when pointing at the
horizon. The calibration parameter h is the height to the xy
plane. Stone et al. [5] presented the calibration process for the
O-D camera.

B. Baseline Methods—Index, TRF, and Traditional Machine
Learning Approaches to Vegetation Detection

This section discusses the baseline methods, which we will
compare to our DeepFuseNet approach. We are using low-
cost O-D IR and O-D visual sensors to achieve better-fused
vegetation classification. Fig. 4 shows the location of a point
of interest in the O-D IR and O-D visual sensor. We show the
unwrapped IR image and the extracted relevant section from
the IR image. The blue arrows point to the relevant point in
each of the images for comparison.

Stone et al. [47] evaluated the effectiveness of two
approaches. First, we considered the classical index-based
method of NDVI approach to vegetation detection, which

Fig. 4. Representative images from the O-D IR camera. (a) 360◦ O-D
image with the r , θ geometry overlaid. (b) Cropped IR region of interest.
(c) Unwrapped rectangular image with the x , y, z coordinate axis overlaid.

looks at the red color bands in the visual spectrum and com-
pares this to near IR spectrum. We use a modified normalized
difference vegetation index (MNDVI), using FIR instead of
NIR in the following equation:

MNDVI = (IIR − IRED)/(IIR + IRED). (5)

The NDVI approach has a relatively high rate of false
positives. Second, we considered a sensor fusion approach,
merging the MNDVI and a thermal region segmentation
approach. The NDVI approach works well in chlorophyll-rich
vegetation but does not do as well in dry vegetation or desert
scenes. The fused approach we demonstrated in [47] was to
fuse the MNDVI (5) and thermal IR region (6)

σwithin(T ) = CDFB(T )σ 2
B(T )+CDFF(T )σ 2

F(T ) (6)

where CDFB (T ) is the cumulative density function of the
background below threshold T , σ 2

B(T ) is the variance of
the background histogram at T , CDFF(T ) is the cumulative
density function of the foreground above the threshold (T ),
and σ 2

F(T ) is the variance of the background histogram at T .
We then utilize the fused signatures to extract scene semantics
from the O-D IR and visual images. In this work, we compare
the results from the MNDVI red band approach, the fused
IR region thermal segmentation approach, traditional machine
learning approaches, and finally compare these methods to
our two DL approaches presented in Sections III-C, III-D,
and III-E.

One of the key issues with the current implementations of
vegetation index-based processes is the high number of false
positives that it produces. This method particularly struggles
with synthetic materials that are green in color. The vegetation
index approach has known failures in areas such as synthetic
materials and paints that have high red absorption and behave
similar to vegetation. Applying MNDVI index-based vegeta-
tion detection alone has a high incidence of false positives.

These issues with false positive detects are in the areas
where the bands overlap when using just the MNDVI
approach. Stone et al. [47] used the MNDVI approach on our
data and we show the results in Fig. 5. The effect of this
approach in this example is a relatively large number of false
detects. The average false detects was on the order of 31%.

Human vision system is adapted to using color and texture
to distinguish objects. This distinguishing process is accom-
plished by using the important indicators of objects, the color,
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Fig. 5. MNDVI approach. (a) Original image. (b) Processed image using
MNDVI vegetation index approach. This result has a high number of false
detects.

Fig. 6. MNDVI/TRF fusion results. (a) Visual O-D image. (b) IR O-D image.
(c) TRF fusion results.

and reflectivity. The baseline methods do not adequately
capture these important features, which is why we need DL
to learn these features in a similar fashion to the human
perception model.

Fig. 6 shows the results of the MNDVI/TRF fusion method,
visually showing the relationships of the results. While the
TRF reduces the false positives, it does not completely capture
the vegetation region. This is why we look at DL to learn the
feature patterns in the data.

In [47], we address the false detection problem in the index-
based approach, using semantic extraction based on thermal
regions to emphasize on vegetation detection in order to solve
the detection problem of the false positives. The material type
will determine the region characteristics in the IR images and
will cluster these regions. When the lighting or temperature
conditions alter, any change in the color of the objects will
not change the thermal view of the clusters in the IR images.
By using DL to recognize and learn this region-based color
signature and to learn the thermal behavior, we can merge
the features learned by the two networks. By utilizing the
characteristics of soil and vegetation, day time images have
darker vegetation regions in thermal images since the soil
is warmer than the vegetation. At night, vegetation and soil
reverse and the vegetation is lighter. When dust or fog obscure
the visual image, the vegetation region is still visible in the
IR image. These attributes are an advantage of applying DL
to both the visual and the thermal information.

We also looked at a few traditional machine-learning
approaches for comparison. They were SVMs, RFs, and
K -means. SVMs are a class of supervised learning mod-
els or classifiers that separate the data into clusters of points in
space with a hyperplane separating classes. Initially, the SVM
method required classes to be linearly separable. If the data are
not linearly separable, we use a nonlinear kernel to separate
the data by moving it into a higher dimensionality.

RFs are an ensemble learning or classification approach that
generates a forest of decision trees. By randomly generating
multiple decision trees, we obtain better accuracy and reduce
overfitting to the training data. RF improves accuracy by
randomly aggregating multiple decision trees into one big
meta-classifier or RF. The aggregate classifier then averages
the votes from each of the individual classifier models injecting
randomness in the training data and random feature vec-
tor selection. Finally, K -means is an unsupervised learning
approach where we cluster the data into unique groups of
similar features. The approach named K -means gets its name
because the algorithm groups the data into K unique clusters
where the center of the cluster is the mean of the values in
the cluster.

The contribution of this work is a computational foundation
for a new approach to multispectral sensor fusion, which
identifies semantically significant object classes using DL
sensor fusion of O-D visual and O-D IR sensors.

We will evaluate our two DL architectures against five base-
line methods: index-based (MNDVI), thermal region-based
fusion, and the three traditional machine learning approaches.
Our two new architectures are as follows:

1) Two stream sparse autoencoder feature extractor (SAFE)
fused by CNN;

2) DeepFuseNet—two Conv NN feature extractors, which
apply transfer learning, merged into a final output deep
fusion network.

C. Autoencoder—CNN
In the first architecture, we input the two streams into two

SAFEs in order to extract salient features from each media
type before fusing them with a deep CNN backend. This
approach allows the independent extraction of key thermal,
color, and texture features before fusion of the IR and visual
content. This approach facilitates a more robust extraction of
the regions of vegetation and other materials.

Our algorithm uses the output of the two SAFEs as the input
of the deep CNN for fusion/classification. We then compare
the SAFE-CNN architecture against the baseline index-based,
thermal region-based, and machine-learning methods to vege-
tation detection.

The SAFE-CNN architecture feeds the visual and IR input
streams into two respective autoencoders that then feed for-
ward the input images through the network to minimize the
difference between the input and output, thus learning the
feature properties of the materials in the scene. The final CNN
fuses these two autoencoder feature outputs. We build the
autoencoder of a network of basic “Neuron” nodes (Fig. 7)
which applies unsupervised learning to approximate the kernel
feature map of the scene.

Fig. 7 represents one of the autoencoder NNs, using an
unsupervised learning approach by applying backpropagation
of the error to match the output to the input. We start with a set
of unlabeled training data {x1, x2, x3, xn} where xiE Rn and
the network learns by matching the output to the input, or by
setting yi = xi . As the weights, biases, and activations are
set to minimize the error between the two, the hidden feature
layers will learn patterns in the image set. The auto-encoder
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Fig. 7. Three-layer NN with a hidden layer that is sparse or constrained,
which forces the network to learn certain features in making the output match
the input. This is an autoencoder.

will try to learn the output function h, such that hW b(x) ≈ x’
is satisfied to make the output match the input, which means
that it is trying to estimate the identity function.

Putting constraints on the autoencoder NN forces the
autoencoder to learn the structure (patterns) in the data. For
instance, with some of the color and texture features of grass
correlated, the Autoencoder detects this pattern.

There are several ways to put constraints on the network.
One is to limit the number of units in the hidden layer. Another
is to place a sparsity constraint on the hidden units in the
network. With a sparsity constraint, the auto-encoder will still
be able to detect interesting structures in the data even if the
number of hidden units is large. If we use a sigmoid function

al
i =

1

(1+ e−x)
(7)

as our activation parameter, we can think of a given feature
as being active if its activation for feature i at layer l , al

i
is close to 1 and inactive if it is close to 0. We want each
feature node in the hidden layer to be inactive most of the
time. We want that location to activate only when there is
sufficient correlation in the data. Therefore, the algorithm puts
a constraint on the cost function that drives this condition.
We add this sparsity constraint parameter to our cost function
to place a penalty on a neuron activating when the image
region lacks correlation to the region of interest. This will
be the case if the feature is not present. The activation al

i
represents the activation of the hidden node at the l th layer
for a given input x(i), as shown in the following equation:

p̂ j = 1

m

m�
i=1

al
j x

(i). (8)

We then enforce the constraint that p̂ j = ρ, where ρ is the
sparsity parameter. We constrain the activation function to be
small and close to zero, such that the output matches the input
within the convergence error. Our cost function will then be

J (W, b;x, y)=1

2
�hW,b(x)− y�2. (9)

Fig. 8. First fusion architecture with two autoencoders feeding into a two-
layer CNN with max pooling layers.

We then apply the L1-regularization (10) constraint to
penalize p̂ j the farther it diverges from zero

L1 = λ

nl�
j=1

ω j (ρ||ρ̂). (10)

This will force p̂ j ≈ ρ and our cost function becomes

Jsparse(W, b) = J (W, b)+ λ

nl�
j=1

ω j (ρ||ρ̂). (11)

To learn the weights for the nodes in the network, we con-
duct a forward pass with initial weights, and then use back-
propagation to refine the weights to match the output to the
input streams from the O-D IR and visual cameras. We use
backpropagation to adjust the weights as follows:

δl
j =

⎛
⎝

⎛
⎝

nl�
j=1

W l
jiδ

l+1
j

⎞
⎠+ λ

nl�
j=1

ω j (ρ||ρ̂)

⎞
⎠ ´f

�
zl

i

�
. (12)

Due to the L1 sparse constraint on the network, as the
network converges to the optimum it learns the new weighting
on the hidden layers to match the output to the input. Since we
have placed the L1-regularization constraint on the network,
the algorithm suppresses less important features. The network
will learn the features in the data, and key structures in the
two input streams will emerge. We feed these key structures
into a pretrained CNN to fuse the features. Finally, we feed the
two autoencoder outputs into the final deep CNN to fuse their
features and provide a fused sensor output as shown in Fig. 8.

D. Deep-CNN Feature Extraction

Our second algorithm applies two-stream multilayer kernel
filter deep CNN feature extractors to extract salient thermal,
color, and texture features from the two different visual and
IR input streams. We then use the final DeepFuseNet to merge
the feature-vector weights.

The deep CNN will consist of a sequence of two sets: a
convolution (conv) kernel layer, a rectified linear nonlinearity
(ReLU) layer, and then a max-pooling layer. At each conv
layer, the following equation denotes the feature map from

the previous layer
	ml−1

1
i=0 Y l−1

i convolved with the learnable
kernel filter K l

i j for the current layer. The result becomes the
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input to the activation function to form the i th feature map in
layer l of Y l

j

Y l
j = f

⎛
⎝Bl

j +
ml−1

1�
i=0

Y l−1
i ∗ K l

i j

⎞
⎠ (13)

where the output at layer l , Y l
j , is a function of the matrix

Bl
j , which is the matrix of bias at each layer l added to the

sum of the spatial conv of the output of layer l − 1, Y l−1
i with

the matrix of Kernel, K l
i j at layer l over an i × j window.

The following equation gives the size of the output feature
map:

Ml
x =

Ml−1
x − K l

x

Sl
x + 1

+ 1; Ml
y =

Ml−1
y − K l

y

Sl
y + 1

+ 1 (14)

where each layer has M maps of equal size (M x , M y). The
kernel filter shifts over the image such that it does not go
outside the image. The kernel is of size (K x , K y), where the
index l indicates the layer number, and each map in layer Ll

is connected to a subset of maps in the previous layer L(l−1).
The max-pooling layer is a down-sampling layer that applies

a k × k pooling window to reduce the dimensionality of the
image. It also improves the spatial invariance by reducing the
resolution of the image. In our case, we take the maximum
value and apply it to the k × k kernel patch by

m j = max
K×K

�
mkxk

i u(k, k)
�

(15)

where each pixel in the new window is assigned the value
m j , which is the maximum value of the search of window
u(k × k).

Each of the kernel layers provides a refinement of the
image representation, with each layer being more invariant
than the previous. These kernel layers define the feature maps
of the image. Each of these kernel-image feature maps has
normalized coordinates, both in the image and in the Hilbert
space (H). The higher dimensional kernel-feature map is the
dot product of similar layer features. Applying the multi-
layer convolutional kernel to the image-feature map results in
patches of like features and the fusion of the kernel prefilters.
This represents a spatial convolution (conv) over the image.
The resulting semantic feature vector is the input to the 2-D
vegetation classification algorithm.

The following parameters characterize each conv layer: size
and number of maps, the kernel window size, the stride (step
over or skipping factor), and the connection strategy. The conv
layers of our network have the following key parameters in line
with the findings of [27]. We further define these parameters
below.

Stride—The spacing between patches for feature extrac-
tion, or in other words, the number of pixels skipped before
again applying the receptive field. The results show the best
performance at a stride of S = 1, with a clear downward
trend in performance as step size increases. This is a tradeoff
between accuracy and computation time.

Kernel Size—The size of the window or field over which
feature extraction is applied. Coates et al. [27] used 6, 8, and
12 pixels, with generally 6 pixels working the best. In our

experiments, we use 2, 3, and 6 pixels, again with 6 pixels
working the best.

Number of Features—Coates et al. [27] evaluated 100,
200, 400, 800, 1200, and 1600 learned features. On average,
the algorithms performed better by learning more features,
although the increase above 800 was gradual.

Image Registration—The matching of features in the two
images to align them. In this work, the DL algorithm itself
accomplished this. We apply DL directly to learn the key fea-
tures and the resulting geometric transformation (homography)
to align the two images.

We conducted a study looking at the performance of various
model architectures and parameters to define the optimum
combination for our research. Architectures evaluated were
AlexNet, SqueezeNet, ResNet50, VGG16, ResNet101, and
ResNet152. Parameters evaluated were learning rate (LR) η

and momentum m. LR η is the rate at which the network learns
and updates the network weights. The following equation
shows the weight update process:

w
update←− w − η

∂L(x, y)

∂w
(16)

where ((∂L(x, y))/∂w) is the backpropagation method of
updating the weights in the network by comparing the actual
output to the desired output with the partial derivative of the
error with respect to the weights, and L(x, y) is the cross-
entropy loss function given by

L(x, y) = −

y log x + (1− y) log (1− x)

�
. (17)

We evaluated LRs of 1e-1, 1e-2, 1e-3, 1e-4, and 1e-5,
adjusting the LRs to minimize overfitting.

Momentum m—helps to drive the algorithm through a
local minimum to find the true minimum. It is similar to
physical momentum, but in DL, the momentum is resisting
the gradient descent update to the training weights near a
local minimum. We evaluated momentum values of 0.9, 0.8,
0.75, and 0.7 when evaluating the above architectures that we
trained on ImageNet. We also applied Dropout d to reduce
overfitting by randomly dropping out neurons in the network
at probability p.

E. DL Fusion Network (DeepFuseNet)

Our architecture (layer level depiction Fig. 9) for the DL
fusion network (DeepFuseNet) uses two bottleneck feature
extractors (BFEs) fed into two DL VGG 16-layer conv net-
works, one for the visual stream and one for the IR stream,
trained on ImageNet, with 1 million images and 1000 classes.
We then apply transfer learning by freezing the lower 15 layers
and training a new fully connected top layer, the new head
model, trained on our smaller vegetation data set. The transfer
learning method leverages the patterns learned from ImageNet
and refines the learned weights in the top layer using our
vegetation-specific training data.

Each layer will perform conv, followed by ReLU nonlinear
layer and a max-pooling layer with a 2 × 2 window and
down sample. We conducted a series of experiments to fine-
tune the parameters of the new top of the VGG feature
extracting networks before concatenating into the final top
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Fig. 9. Model block diagram with two VGG16 inputs with visual and IR
input.

Fig. 10. DeepFuseNet fusion architecture with two CNN feature extractors
feeding into a seven-layer CNN with max pooling and a classification layer.

two dense and softmax classifier layers. Fig. 9 presents the
layer architecture for the two parallel VGG 16 models with
five convolutional/max pooling blocks and the concatenated
input into the final two dense layers. The two concatenated
feature extraction networks feed into a top network of two
dense convolution layers and a softmax classifier.

Fig. 10 represents the concept-level depiction of the Deep-
FuseNet. Fig. 10 shows the visual and IR image streams into
a feature extractor and then feeding the DeepFuseNet. The
output of the network feeds into a softmax classifier to output
the image with the vegetation areas semantically detected and
classified.

We utilized network-filter visualization techniques [41] to
highlight the features that activate the network activation
filters. Fig. 11 presents the conv filter maps for the first
conv layer and three representative channels. Fig. 11 shows
the original image, channel 3, and channel 13 activating on
different features in the image. We can see from Fig. 11 that
the various activation filters are learning (activating) on differ-
ent feature sets. Fig. 11(a) shows the original visual image.
In Fig. 11(b), the filter is learning vertical edges in the
vegetation; in Fig. 11(c), the filter is learning primarily the sky
and road surface, which are both a gray color in this example.

Fig. 11. First conv layer feature maps for three out of the 32 channels. (a)
Original image. (b) Feature map for layer 1 channel 3. (c) Feature map for
layer 1 channel 13. (d) Feature map for layer 1 channel 19.

Finally, in Fig. 11(d), the filter is learning tree trunks and
splotches of leaves.

IV. EXPERIMENTS

The experimental results are organized into five sections.
Section IV-A gives details of the O-D camera data setting. In
Section IV-B, the results of the baseline methods, FIR/visual
modified vegetation index, thermal region, and traditional
machine learning approaches are described. Section IV-C
describes the results of the autoencoder feature extractor-
CNN fusion of O-D IR and visual streams. Section IV-D
describes the results of the authors’ deep CNN trade studies.
Section IV-E describes the results of our bottleneck CNN
feature extractor/DL fusion network, which is the preferred
method of O-D IR and visual stream fusion using our Deep-
FuseNet approach.

A. Omni-Direction Camera Data Setting
We have five data sets used in this work. The first two

data sets 1 and 2 captured images from the O-D FIR camera
and Kinect visual camera systems with 38 images each; we
later captured additional IR and visual data from our O-D IR
and O-D visual cameras, data set 3 with 13 730 images. Data
set 4 is the ImageNet data set consisting of 1 231 167 images
and over 1000 classes. Data set 5 consists of images of
vegetation, trees, and grass extracted from the internet using
a web scraper with 900 images in each of three classes.
We summarize the data sets in Table VI. The ImageNet data
set had 48 238 validation images, and 50 000 test images
out of 1 231 167 training images. Our vegetation training set
includes 280 validation, and 200 test images.

We process the resulting data first with the three base-
line approaches: the MNDVI, the infrared thermal-based
region segmentation (ITRS), and traditional machine learning.
We then compare the results to the authors’ two approaches:
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TABLE VI

CAMERA DATA SETTINGS

TABLE VII

BASELINE AND SENSOR FUSION RESULTS

the autoencoder feature extractor-CNN fusion network and
the deep transfer learning fusion network (DeepFuseNet).
To address the issue of training on our limited data set,
we apply transfer learning from the larger generic ImageNet
data set. Our approach also applies semantic learning to extract
the vegetation features in the data.

B. Baseline Visual and IR MNDVI, TRF, and Machine
Learning Vegetation Detection

The results from the baseline index-based MNDVI, TRF,
and traditional machine learning-based approaches are pre-
sented in this section.

Stone et al. [47] demonstrated that the accuracy of the
MNDVI approach is obtained as 85.6% for the true positives
and 32.5% for the false positives. The accuracy of the TRF
approach is 75.16% for the true positives while the false
positives are obtained at 11.75%.

We also compare our methods to a few traditional machine-
learning approaches. We compare to results from [48] and [49]
and to ML experiments with our data on our own implemen-
tation of SVM, RF, and K -means clustering.

Table VII, rows 3–7 present results from [48] and [49] for
SVM, RF, and ANN. The authors’ implementation of SVM∗,
RF∗, and K -means cluster∗ are presented in Table VII, rows
8–10. SVM achieves accuracies of 68.0% and 70.7% in [48]
and [49] and a false positive rate of 31.6%. SVM∗ achieves an
accuracy of 64.4%. RF achieves an accuracy of 62% in [48]
and RF∗ an accuracy of 57%. ANN achieves an accuracy
of 77% and 69.7% in [48] and [49]. ANN [49] had a false
positive rate of 32.8%. The others did not present the false
positive rate. K -means achieves an accuracy of 68% in [48],
70.7% in [49], and K -means clustering∗ achieves an accuracy

Fig. 12. Results of applying transfer learning and fine-tuned on our vegetation
data set in order to extract vegetation features. Fusion model trained with
autoencoder input. Final accuracy 79% and loss 46%. Results show the method
does not generalize well.

of 62.7% with a false positive rate of 46.3%. (Note: ∗ The
authors’ traditional machine learning results.)

The low accuracy and high false positives from these meth-
ods highlight the need for a new fusion method, which is why
we moved to the deep transfer learning approach. We sum-
marize the results of these baseline methods and our two
methods in Section IV-E (see Table VII). We conclude from
these results that we need a more robust method to detect the
vegetation.

C. Autoencoder—CNN Fusion of O-D IR and Visual Stream
The SAFE applies an autoencoder and bottleneck CNN to

extract salient features from the image. We achieve nearly 99%
accuracy and low loss when trained on the ImageNet data set,
but the network does not generalize well when applied to our
data.

The unsupervised learning SAFE-CNN autoencoder
approach captured the features well when trained on
ImageNet, but it was not as effective when trained with
our data on the fusion network. Fig. 12 shows the training
and validation results, after applying transfer learning and
fine-tuning on the authors’ data set. The SAFE-CNN only
achieves a training accuracy of 86% and a validation accuracy
of about 79%. We will continue to explore why this occurred
and how we can fine-tune the model to better utilize this
approach.

We hypothesized that the positive impact of using unsu-
pervised learning with two sparse autoencoder neural network
feature extractors into a CNN would be that we would more
effectively capture the vegetation pattern. However, we did
not achieve this. Once successful, we believe this will provide
better performance and less false positives.

D. Deep CNN Trade Studies

Since the authors did not have a large data set from which to
train, we applied transfer learning to the problem. We utilized
the large ImageNet [42] data set with over 1.2 million images
and 1000 classes to get an initial trained model and then
applied transfer learning and fine-tuning to refine the model
to our smaller data set. The transfer learning process freezes
the weights of the lower layers of the network trained on the
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Fig. 13. Training loss and accuracy for ResNet trained on ImageNet data
set.

Fig. 14. Training loss and accuracy for VGG16-based BFE leveraging
ImageNet transfer learning and fine-tune trained on our vegetation data set.

larger ImageNet and adds a new top fully connected section;
we then trained the top layers of the network on our smaller
data set. This allows the network to retain the learned features
of the lower activation filters, and to refine the learning in the
upper layers based on the new training data.

Based on our literature search, our initial hypothesis was
that the best learning would come from the use of the
deeper networks of ResNet50, ResNet101, or ResNet152.
However, after our trade studies comparison of these vari-
ous methods trained on ImageNet, we saw that ResNet50,
ResNet101, ResNet152, and VGG16 all had similar perfor-
mance, with VGG16 having less overfitting. As a result,
we chose VGG16 as the DL primary network model that we
modified for application of transfer learning and bottleneck
feature extraction. Fig. 13 is a representative ResNet model
trained on ImageNet showing the accuracy improvement at
Epoch # 45 after adjusting the LR for fine-tuning. We similarly
evaluated the other models to determine the best architecture
for our research. Fig. 14 shows results for the BFE CNN for
tuning the starting weights of our process. The BFE does not
perform as well as the SAFE on initial ImageNet learning.
The BFE-CNN only achieves 94%–95% feature extraction
compared to the 99% achieved with SAFE. However, the
BFE-CNN with DeepFuseNet training achieves better gener-
alization than the SAFE-CNN fused model. As a result, the
BFE-CNN-DeepFuseNet applied to our data performs better

Fig. 15. Rank 5 accuracy across the various models with different
momentum. Again, there were slight improvements for the deeper models
at momentum = 0.75 and 0.70.

Fig. 16. Training and validation cross-entropy loss across the various models
with different momentum. A test curve is not presented since test was a
prediction from an image and did not have a loss.

than the SAFE-CNN fusion model with higher classification
accuracy. Fig. 14 shows the training/test accuracy and loss for
the VGG16-based BFE. The trade study comparison results
for the AlexNet, SqueezeNet, ResNet50, ResNet101, VGG16,
and ResNet 152 models evaluated are presented in Figs. 15 and
16. We trained several models to find the best performance for
our transfer learning experiment.

For the initial assessments, we held the LR the same (1e-3)
and compared all the models at the same momentum = 0.9.
Our findings were that AlexNet and SqueezeNet had lower
performance than the other models, and ResNet50, ResNet101,
ResNet152, and VGG16 had comparable results. We then
looked at the deeper ResNet models and varied the momentum
to see if that would improve the accuracy. There were slight
increases but not significant enough to accept the increased
processing requirements.

Fig. 15 is the Rank 5 accuracy. The Rank 5 accuracy is
the percentage of the assessments that the target is in the
top five highest probability predictions. Again, the results
were repeatable with AlexNet and SqueezeNet being lower
at about 80% and the accuracy of the others ranging from
about 90%–92%. Fig. 16 presents the training and validation
cross-entropy loss for the models evaluated. Similarly, other
than AlexNet and SqueezeNet, the performance for the deeper
models is very consistent.
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Fig. 17. Fine-tuned merged model trained on vegetation data.

From this series of fine-tuning experiments with AlexNet,
SqueezeNet, VGG16, ResNet50, ResNet101, and ResNet152,
we selected VGG16 for our transfer learning and fine-tuning
adaptation, as it had reasonable performance and less overfit-
ting without the computing cost of the deeper networks. We
initially trained the models on ImageNet data and then did
transfer learning to train on our smaller data set.

E. DeepFuseNet
For our DeepFuseNet approach, we merged two transfer

learning VGG16 BFE-CNN models, one for the visual image
stream and one for the IR image stream. We chose a two-
stream approach rather than a stacked band approach to allow
the two BFE to extract the different characteristics unique to
the stream type. For instance, color and texture from the visual
stream and thermal signature regions from the IR stream. The
outputs of the two models were concatenated and fed into
our DeepFuseNet with two fully connected dense layers and a
softmax classifier to highlight the semantic region of interest.

Fig. 17 shows the training results for the merged
DeepFuseNet model. The training accuracy achieves 95%
in 50 epochs. The validation test accuracy is about 92%.

Fig. 18 shows representative samples of vegetation recog-
nition with the DeepFuseNet. The capture accuracy is high at
95.6%. We reduced false positives to 1%–2% compared to the
baseline approaches.

Table VII shows the comparison between the base-
line MNDVI, TRF, the traditional machine learning,
the SAFE-CNN, and the DeepFuseNet approaches. Table VII,
row 1 shows the visual MNDVI vegetation detection
approach. Row 2 is the ITRS or TRF approach. We present the
traditional machine learning results in rows 3–10, and finally
the SAFE-CNN and DeepFuseNet results in the last two rows
of Table VII.

The authors found the DeepFuseNet fusion approach to have
both the best accuracy and relationship between true positives
and false positives. The DeepFuseNet has the best accuracy
with 95.6% true positives and reducing the false positives to
less than 2%, which is a 16× improvement over the index
based alone. The reason for this improvement in false positives
is the ability of the DL and feature fusion approach to learn the
key features in the data. The DeepFuseNet approach utilized
O-D FIR and visual sensors to cover wider view rather than

Fig. 18. Vegetation detection results. (a) Tree lined street image 1. (b) Vegeta-
tion Mask 1. (c) Virginia Commonwealth University (VCU) entrance image 2.
(d) Vegetation Mask 2. (e) City scape image 3. (f) Vegetation Mask 3.
(g) Forest image 4. (h) Vegetation Mask 4.

limited view in the traditional vision systems. In terms of
computational efficiency, our DeepFuseNet approach, with the
ability of processing wider area, outperforms the approaches
that require multiple iterations or vision sensors for the same
real-time robotic applications.

V. CONCLUSION

It is clear that the DeepFuseNet approach provides the best
overall results, with the best generalization from ImageNet
data set to our smaller vegetation data set. The SAFE and
CNN Fusion approach did not give as good a result as we
expected because it did not generalize well from ImageNet
to our small data set. Results for the baseline methods of
the MNDVI approach, TRF, and traditional machine learning
approaches ranged from 57% to 86% accuracy with high false
positives.

The authors’ DeepFuseNet approach demonstrated a 95.6%
accuracy for true positives and a 93.8% reduction in false
positives. This improvement is due to the deep layers of feature
encoding that employ a large spatial context of the network
for learning the salient characteristics of the vegetation and
nonvegetation features.

We will apply this DeepFuseNet approach to our Pioneer
robot platform for follow-on experiments. Future studies will
refine the DeepFuseNet method, and further explore the
SAFE-CNN approach. We will augment our DeepFuseNet
approach with texture analysis and context-based reasoning
algorithms to better distinguish surrounding in a spatial scene
that contain objects such as grass, trees, and bushes. We will
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apply this approach to future robot platforms in urban and rural
environments for object detection classification and tracking
for autonomous navigation in tough conditions.
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