
IJCA, Vol. 14, No. 4, Dec. 2007

ISCA Copyright© 2007

1

Evaluation of iPVFS: A High Performance Parallel File
System over iSCSI for Cluster Computing

Li Ou* and Xubin He*
Tennessee Technological University, Cookeville, TN, 38505, USA

Abstract

 In this paper we propose a high performance parallel file
system over iSCSI (iPVFS) for cluster computing. iPVFS
provides a cost-effective solution for heterogeneous cluster
environments by dividing a set of I/O servers into two groups.
One group, with higher performance, serves as I/O nodes, while
the other group, with relatively lower performance, serves as
storage target nodes. This combination provides a higher
aggregate performance because of the cooperative cache among
different target nodes. We have developed a model to analyze
iPVFS. Our simulation results show that using the same
number of nodes, iPVFS outperforms PVFS for both small and
large requests under most cases.
 Key Words: Parallel file system, iSCSI, distributed I/O,
cluster computing, cache.

1 Introduction

 Cluster computing [20] has become one of the most popular
platforms for high-performance computing today. Similar to
traditional parallel computing systems, the I/O subsystems of
clusters are a bottleneck to overall system performance. An
efficient way to alleviate the I/O bottleneck is to deploy a
parallel file system, which utilizes the aggregate bandwidth and
capability of existing I/O resources on each cluster node, to
provide high performance and scalable storage service for
cluster computing platforms.
 The Parallel Virtual File System (PVFS) [4], developed at
Clemson University and Argonne National Lab, provides a
starting point for I/O solutions in Linux cluster computing.
Several recent works have studied how to improve parallel I/O
performance of PVFS. A kernel level cache is implemented in
[24] to reduce response time. In [14, 18] several scheduling
schemes are introduced in I/O nodes to reduce disk seek times.
A better interface is presented in [6] to optimize noncontiguous
I/O access performance. CEFT-PVFS [28] increases the
availability of PVFS, while still delivering a considerably high
throughput. In [10] software and hardware RAIDs are adopted
in PVFS I/O nodes to achieve higher aggregate I/O bandwidth.

* Department of Electrical and Computer Engineering. Email: {lou21,
hexb}@tntech.edu.

 In this paper we propose a parallel file system, iPVFS, based
on PVFS [4] and iSCSI (Internet SCSI) [1, 15], for cluster
computing platforms. We have designed the iPVFS and
developed a model to simulate it. We compare the I/O response
time of iPVFS with the original PVFS under various
configurations. The results show a considerable performance
gain of iPVFS over PVFS.
 The rest of this paper is organized as follows. Background
information is presented in Section 2. Section 3 gives the
architecture of iPVFS. In Section 4, we describe a queuing
model for iPVFS. Simulation and I/O response time analysis
are presented in Section 5. We examine related work in Section
6. Section 7 concludes the paper.

2 Background Review

2.1 PVFS

 PVFS [4] is a popular parallel file system for Linux cluster
computing. It provides high-speed access to file data for
parallel applications. Figure 1 [4] shows a typical PVFS
architecture and the main components. There are three types of
nodes in PVFS. The metadata node maintains the metadata of
the file system. I/O nodes store file data on local storage
devices. Clients, or compute nodes, read or write file via
sending requests to the metadata server and I/O servers.

Figure 1: PVFS system diagram. The number of I/O nodes is N.

Since all storage nodes are used as I/O nodes, the total
number of nodes is N.

 IJCA, Vol. 14, No. 4, Dec. 2007

2

2.2 iSCSI and iRAID

 iSCSI [1, 15] is a newly emerging protocol with the goal of
implementing the storage area network (SAN) technology over
the better-understood and mature network infrastructure: the
Internet (TCP/IP). iSCSI encapsulates SCSI commands/data
within TCP/IP connections using Ethernet, which brings
economy and convenience, as SANs now can be implemented
using less expensive, easily manageable components. iSCSI
provides a block level data interface which is independent of
any file systems.
 iRAID [9] is introduced to improve the performance and
reliability of iSCSI storage systems by organizing the iSCSI
storage targets in such a way similar to RAID [5], using striping
and rotated parity techniques. In iRAID, each iSCSI storage
target is a basic storage unit in the array. All the units in the
array are connected through a high-speed network. iRAID
provides a direct and immediate solution to boost iSCSI
performance and improve reliability.

3 Architecture of iPVFS

 In a typical cluster environment nodes can be used as
block-level storage providers and be grouped together to form
distributed RAID system [21]. Combining iRAID and PVFS
together improves parallel I/O performance because iRAID
provides high bandwidth storage level services for parallel file
systems.
 The above observations motivate us to propose iPVFS to
improve I/O performance by utilizing iRAID to provide local
storage for the I/O nodes of PVFS. In iPVFS, each I/O node
includes an iSCSI Initiator, which is supported by multiple

target nodes to form an iRAID group (Figure 2). With iRAID,
the I/O nodes stripe PVFS data across multiple target nodes.
The local I/O performance of I/O nodes is improved because of
possible parallel accesses to data blocks. In iPVFS, all nodes,
except the compute nodes and metadata nodes, are divided in
two groups. The nodes in the first group are configured as I/O
nodes of a PVFS system, providing file level services for cluster
computing platforms. The others are used as target nodes of the
iRAID system, exposing block level services to upper-level I/O
nodes.
 In traditional iSCSI design, the I/O requests are serialized by
the SCSI scheduler of the operating system kernel. This is
reasonable for traditional hard disks, because internally such
devices cannot support concurrent accesses. In iPVFS, since
several target nodes within an iRAID group are exclusively
designated for one I/O node, we modified the scheduler in the
I/O nodes, so the multiple requests directed to different targets
could be concurrently submitted by the SCSI drivers. Since all
requests from an iSCSI initiator have to be sent to targets
through a single network card (in the current design), the
requests will be queued at the sending buffer of the network
interface, no matter how many requests are submitted
concurrently through the SCSI driver. Even with the queuing
overhead of the network interface, the throughput of new
scheduler is better than the old one, because it makes the
network and targets as busy as possible and thus utilizes the
potential of the iRAID system. Parts of the requests may be
quickly satisfied by the buffer caches of the target nodes. If the
requests must be sent to the disks of the target nodes, a local
scheduler is used to serialize the concurrent accesses.
 In iPVFS, buffer caches are organized as two-level cache
hierarchies: the upper level caches reside in I/O nodes, and

Client Client

I/O
Node Initiator I/O

Node Initiator

Target
Node

Target
Node

Target
Node

…

Data DataData

Target
Node

Target
Node

Target
Node…

Data DataData

Target Group

Manager

I/O Node Group

….

…..

Figure 2: iPVFS Architecture. The number of I/O nodes is ioN , the number of target nodes of each iRAID group serving for one
I/O node is tN , and the total number of nodes is)1(tio NNN += .

IJCA, Vol. 14, No. 4, Dec. 2007

3

the lower level caches reside in target nodes. We refer to the
upper level storage client caches as L1 buffer caches and the
lower level storage caches as L2 buffer caches [27]. L1/L2
buffer caches are very different from L1/L2 processor caches
because L1/L2 buffer caches refer to main-memory caches
distributed in multiple machines. The access patterns of L2
caches show weak temporal locality [3, 8, 27] after filtering
from L1 caches, which implies that a cache replacement
algorithm, such as LRU, may not work well for L2 caches.
Additionally, local management algorithms used in L2 caches
are inclusive [25], which try to keep blocks that have been
cached by L1 caches, and waste aggregate cache space. Thus,
in iPVFS, we introduce a Unified Multiple-Level Cache
(uCache) algorithm [16] to manage aggregate cache space
efficiently and increase cumulative hit ratios.
 The uCache algorithm unified together the cache spaces of
the I/O node and the corresponding target nodes. The LRU
algorithm is used in the L1 cache of an I/O node. The FBER
algorithm [16] is deployed in the L2 caches of the target nodes
to make them exclusive to the L1 cache. There is no built-in
cache consistency mechanism for the I/O nodes and
corresponding target nodes. In iPVFS, a group of target nodes
are exclusively used by one I/O node, and it is impossible for
two cache lines in different I/O nodes to map to the same disk
block. We keep the consistency semantics of PVFS for the
client caches. It does not implement POSIX semantics, but in
typical parallel I/O applications, each client is responsible for
reading and writing part of the non-overlapping I/O data (for
example, stride I/O), and simple consistency semantics improve
system performance. In the case that multiple clients really
need to read and/or modify the same data blocks, applications
may implement their own consistency semantics, for example,
using the synchronization mechanisms of MPI [22].

4 A Queuing Model for iPVFS

 In a cluster environment, if the number of servers is given, the
utilizations of servers of PVFS and iPVFS are different. In
PVFS all servers, except the metadata server, are used as I/O
nodes, but in iPVFS, as mentioned in Section 3, some nodes are
configured as target nodes to speed up performance of I/O
nodes. With a given number of nodes, which design could
deliver better I/O performance?
 We develop a queuing model to analyze the performance of
PVFS and iPVFS with respect to average I/O response time
(Figure 3). The model includes two queues: one for I/O nodes
and the other for target nodes. We use some assumptions made
by [7]. The number of I/O requests follows a Poisson process
with a mean arrival rate of λ . The loads on I/O nodes and
target nodes are balanced.
 We assume that there are N storage nodes in a cluster. The
number of I/O nodes is ioN . The number of target nodes in an
iSCSI group serving one I/O node is tN . In PVFS, ioNN = . In
iPVFS,)1(tio NNN += , since there are ioN groups, with each
group consisting of one I/O node and tN target nodes. For
each I/O node, the arrival request rate is λiP , where iP is the

probability that the request is redirected to I/O node i . When
the request data size ipL is smaller or equal to the striping

size B , iP is equal to ioN/1 .
 When the request data size is larger than BNio , the request is
sent to all I/O nodes and iP is equal to 1. Thus, the typical
range of iP is []1,/1 ioN , and we calculate iP by

[])1,//min(ioipi NBLP = . If a request is not satisfied by the
I/O node cache, it is redirected to the iRAID initiator hosted in
the I/O node, and the effective arrival rate to each iRAID system
is λ−=λ **)1(iioci Ph , where ioch a cache hit ratio for an I/O
node.
 After requests arrive to the iRAID system, the initiator
redirects them to target nodes. For each target node, the arrival
rate is iijP λ , where ijP is the probability that the request is sent
to a target node j , which belongs to the iRAID system of I/O
node .i Similar to the probability that requests are redirected to
I/O nodes, the typical range of ijP is []1,/1 tN , and we calculate

ijP by [])1,//min(tirij NBLP = , where irL is the request data
size from the I/O node to the target node. If the request is not
satisfied by the target node cache, it is redirected to the local
disks, and the effective arrival rate to each disk is

iijtcij Ph λ−=λ **)1(, where tch is the cache hit ratio for the
target node.
 Request delays are mainly caused by network and memory
delays independent of cache hits and misses. We assume that
the network service time and the cache service time are
exponentially distributed [7] with average times being ionetT
and iocT , respectively.

netio

ip
ionet BWN

L
T

*
=

cacheio

ip
ioc BWN

L
T

*
=

where netBW and cacheBW are bandwidth of the network and
memory caches, respectively. Therefore, the request residence
times in the network and cache are modeled using the M/M/1
queuing model [7], and the average residence times of request in
the network and cache of I/O nodes are modeled as:

ioneti

ionet
ionet TP

T
W

**1 λ−
=

ioci

ioc
ioc TP

T
W

**1 λ−
=

 If a request is not satisfied by the memory cache, it must be
handled by iRAID system, with a probability of ioch−1 . Thus,

 IJCA, Vol. 14, No. 4, Dec. 2007

4

I/O Node

λ1P

λiP

λ2P
λRequest

from
Compute

Nodes

Network
iiP λ1

iλ
Request

from
iRAID

initiator

iiP λ2

iijP λ

Target Node

Network Cache
iRAID 1λ

Read hit /
Write buffer

Host
Process

Network Cache
iRAID 2λ

Read hit /
Write buffer

Host
Process

Network Cache
iRAID iλ

Read hit /
Write buffer

Host
Process

Cache
1iλ

Read hit /
Write buffer

Disk

Host
Process

Cache
2iλ

Read hit /
Write buffer

Disk

Host
Process

Cache
3iλ

Read hit /
Write buffer

Disk

Host
Process

Figure 3: Queuing Model for iPVFS

the average response time of the iPVFS system is expressed as:

nodeiRAIDiociocionet WWhWWT +−++= *)1(

where iRAIDW is the request residence time in the iRAID
system, and nodeW is the processing overhead of each node.
The overhead includes the time of protocol processing, and the
time that messages go from the receiving buffer to the sending
buffer of the network interface. Normally an I/O node acts as a
server with a certain service rate. We assume that the server
processing time is exponentially distributed with the average
time nodeT , and the request residence time in the node, nodeW ,
is modeled using the M/M/1 queuing model.

nodeiij

node
node TP

T
W

**1 λ−
=

 Although each iRAID system is designated to one I/O node,
additional overheads are introduced when requests travel
through the network between I/O nodes and target nodes,
especially at the time multiple requests from the modified SCSI
scheduler are queued at the sending buffer of the network
interface, as explained in Section 3. We assume that the
network service time of the iRAID is exponentially distributed
with the average time tnetT , and the request residence time in
the network, tnetW , is modeled using the M/M/1 queuing
model.

IJCA, Vol. 14, No. 4, Dec. 2007

5

nett

ir
tnet BWN

L
T

*
=

tnetiij

tnet
tnet TP

T
W

**1 λ−
=

Another possible overhead of iRAID is the service time of
memory caches in the target nodes. We assume that the cache
service time is exponentially distributed with average times tcT ,
and the request residence time in the cache of iRAID, tcW , is
modeled using the M/M/1 queuing model.

cachet

ir
tc BWN

L
T

*
=

tciij

tc
tc TP

T
W

**1 λ−
=

 If a cache miss occurs, the request is redirected to the hard
disks, with a probability of tch−1 . The real disk service times
are generally distributed [13] so we adopt the M/G/1 model to
analyze the disk response time.

)(
))(*1(*2

)(* 2

diskio
diskioij

diskioij
disk TE

TE
TE

W +
λ−

λ
=

where)(diskioTE is the average disk access time for a request.
Thus, the average response time for an iRAID system is
expressed as:

nodedisktctctnetiRAID WWhWWW +−++= *)1(

5 I/O Response Time Analyses

 Based on the above queuing model, we simulate and compare
the response times of iPVFS and original PVFS under various
workloads and application environments for both fixed and
dynamic cache hit rates. Some parameters are as follows: the
available network bandwidth is about 75MB/s and the memory
access rate is about 500MB/s. A 64KB data striping size is
chosen for both PVFS and iRAID. The disks are Seagate SCSI
disks (model ST318452LW), with a data transfer rate of
51MB/s, an average seek time of 3.8ms, an average latency of
5ms, and 18,497 cylinders.

5.1 I/O Response Time for Fixed Cache Hit Rates

 We assume that the cache hit rates of both I/O nodes and
target nodes are fixed, and that the read request percentage is 53
percent, which is based on our observations of existing disk I/O
traces and previously published data [11, 19].

 In PVFS, all storage nodes are used as I/O nodes ioNN = . In
iPVFS, we have various choices. In this section, for each I/O
node, we configure an iRAID group with two target nodes

2=tN . Other choices are discussed in Section 5.1.3.
 Given a fixed number of storage servers for both PVFS and
iPVFS, the number of I/O nodes in iPVFS is always smaller
than that of PVFS since some nodes are used as targets, so lower
cache hit rates are predicted for I/O nodes in iPVFS when the
memory sizes of each node are the same. Since the hit ratios of
I/O nodes are more important than those of target nodes, the
cache sizes of I/O nodes are expected to be larger than those of
target nodes. In our simulation, we compensate for the hit ratios
of I/O nodes by adding more caches for I/O nodes, but we
maintain the same cache size for the whole system by reducing
the cache sizes of the target nodes. Even with the configuration,
we still expect that the hit ratios of I/O nodes in iPVFS are lower
than I/O nodes for PVFS in real applications, so in the following
simulation, we set the cache ratios of iPVFS to be 0.1 lower than
their PVFS counterparts.

 5.1.1 Small I/O Requests. Small requests have sizes of at
most the striping block size 64KB, so that each request can be
satisfied by a single node. We assume that the request data size
is equal to 64KB. To validate the model with a large scale
system, we set the number of storage nodes to 300
(i.e., 300=N). In iPVFS, the number of I/O nodes is 100 (i.e.,

2,100 == tio NN), and the arrival rates to an I/O node and a
target node are ioN/λ and)/(tio NNλ , respectively. In PVFS,
the arrival rate to an I/O node is N/λ .
 Figure 4 compares the performance of iPVFS and PVFS. It
shows that the average I/O response time increases steadily with
the increase of the request rate. At the point where PVFS is
saturated by a large number of requests, iPVFS still provides
acceptable service. We believe that the cache makes the
difference, since compared to the network, the disk access time
accounts for most of the total response time.
 In PVFS, when cache misses occur in I/O nodes, the requests
must be redirected to disks. In iPVFS, in case of cache misses
in I/O nodes, the requests are first directed to the target nodes, in
which they may be satisfied by the target node caches. When
the hit ratios are high enough, the disk access time is not
dominant because most requests are satisfied by caches. Thus,
the network bottleneck is the main factor affecting the
performance. Since the number of I/O nodes in iPVFS is
smaller than that in PVFS, there is a point where the network is
saturated by the requests in iPVFS.

 5.1.2 Large I/O Requests. If the data request size is much
larger than the striping block size 64KB, each request is striped
over several nodes. The extreme case is that the request is large
enough to be striped over all nodes. For iPVFS, the arrival rates
to an I/O node and to a target node are all λ ; for PVFS, the
arrival rate to an I/O node is λ too. To ensure that the request
is large enough to be striped over all nodes, we did not choose a
real large scale system; otherwise, the request size did not

 IJCA, Vol. 14, No. 4, Dec. 2007

6

 (a) Cache hit ratios of iPVFS and PVFS (b) Cache hit ratios of iPVFS and PVFS
 are 0.2 and 0.3, respectively. are 0.5 and 0.6, respectively.

(c) Cache hit ratios of iPVFS and PVFS are 0.7 and 0.8, respectively.

Figure 4: I/O response times with various cache hit ratios for small requests. The request size is 64KB, with
 2,100 == tio NN and 300=N

choose a real large scale system; otherwise, the request size is
too large to be real. Instead, we use a 640KB request size, 30
storage nodes (30=N), and an ioN of 10 in iPVFS (Figure 5).
 In large I/O request situations, each node receives much more
requests, which quickly saturate the cache; thus, most requests
must be redirected to disks. If the hit ratio is very low (Figure
5(a)), the disk access is the key factor. iPVFS is easier to
saturate because a single server experiences a larger request rate
than in PVFS. When the hit ratio is high enough, the network
bottleneck dominates the system performance (Figure 5(c)),
similar to the simulations for small requests (Section 5.1.1).

 5.1.3 Performance of Various iPVFS Configurations.
When the number of storage nodes is fixed for iPVFS, how
should we organize our system to achieve maximum I/O
performance? We may have various configurations because the
selection of ioN and tN is not unique, as long as the equation

)1(tio NNN += is satisfied. We measure the saturated

request rate at which the system cannot accept and service
requests any more. We choose the same simulation parameters
(Section 5.1.1 and Section 5.1.2) for small requests and large
requests, but compare the saturated request rates of all possible

ioN values in a system (Figure 6).
 The request rates of large requests to each server are much
higher than those of small requests. Generally the larger
number of I/O nodes provides better performance, since the
request rate of an I/O node decreases with an increasing number
of I/O nodes. With small requests, while the request rates are
balanced by multiple I/O servers, the hit ratios begin to
influence the performance of different system configurations.
Generally, performance improves with a larger number of I/O
nodes, but the peak performance does not always occur in the
configuration in which as many as possible storage nodes are
configured as I/O nodes. The extreme case is when half of the
nodes are I/O nodes, and each I/O node is only supported by
one target node (most right points of Figures 6(a) and 6(b)).

IJCA, Vol. 14, No. 4, Dec. 2007

7

 (a) Cache hit ratios of iPVFS and PVFS (b) Cache hit ratios of iPVFS and PVFS
 are 0.2 and 0.3, respectively. are 0.5 and 0.6, respectively.

(c) Cache hit ratios of iPVFS and PVFS are 0.7 and 0.8, respectively.

Figure 5: I/O response times with various cache hit ratios for large requests. The request size is 64KB, with
 2,10 == tio NN and 30=N

(a) Small request. The request size is 64KB and N=300

(b) Large request. The request size is 640KB and N=30

Figure 6: Saturated I/O request rates for various iPVFS configurations under different cache hit ratios. h is the cache hit ratio

 IJCA, Vol. 14, No. 4, Dec. 2007

8

This configuration does not provide best performance for both
large and small requests, because the iRAID configuration with
only one target node could not take advantage of parallel access;
and thus degrade the I/O performance.

5.2 I/O Response Time for Dynamic Cache Hit Rate

 In real application environments, cache hit rates are
dynamically influenced by many factors. To obtain more
accurate performance comparisons, it is necessary to predict
cache hit rates dynamically for both iPVFS and PVFS.

 5.2.1 Simulation Methodology. We use trace-driven
simulations to evaluate the cumulative hit ratios of iPVFS and
PVFS. We have developed a simulator to simulate two-level
buffer cache hierarchies with multiple clients and storage
servers. For PVFS, LRU is used as the replacement algorithm
in the caches of I/O nodes, but for iPVFS, uCache [16] is
implemented to manage the two-level cache hierarchy. We
assume a cache block size of 64KB. The striping size is 64KB.
The traces for the simulations are described in Table 1. The hit
ratios generated from the simulator are used in our two-level
queuing model to calculate average response times.

Table 1: Characteristics of traces
Trace Clients IOs (millions) Volume
Cello92 4 0.5 per day 10.4GB
HTTPD 7 1.1 0.5GB
DB2 8 3.7 5.2GB

 The HP Cello92 trace was collected at Hewlett-Packard
Laboratories in 1992 [19]. It captured all L2 disk I/O requests in
Cello, a timesharing system used by a group of researchers to do
simulations, compilation, editing, and e-mail, from April 18 to
June 19. The Cello92 is a serial workload. To test a parallel file
system, we use trace files collected within four days as the
workload for one client, and simulate multiple clients using
trace files collected within one month.
 The HTTPD workload was generated by a seven-node IBM
SP2 parallel web server [12] serving a 524MB data set.
Multiple HTTP servers share the same set of files.
 The DB2 trace-based workload was generated by an
eight-node IBM SP2 system running an IBM DB2 database
application that performed join, set and aggregation operations
on a 5.2GB data set. [23] used this trace in their study of I/O
on parallel machines. Each DB2 client accesses disjoint parts of
the database. No blocks are shared among the eight clients. We
use the DB2 workload as the low-correlated workload for the

multiple-client simulation.
 The cache size of HP 9000/877 server is only 10-30MB,
which is very small by current standard. The Cello92 trace and
the HTTPD trace show high temporal locality, and a small client
cache may achieve a high hit ratio. In our simulation, the cache
size of each client is 16MB for both traces for PVFS, providing
a cache hit ratio of more than 70 percent.
 The DB2 trace shows very low temporal locality, because the
reuse distances [27] of most blocks are less than 150K. We
assume the cache size of each client is 128MB in PVFS,
providing a cache hit ratio of about 45 percent.
 To compare the average response times of PVFS and iPVFS
under different configurations, we vary the total number of
storage servers to be 6

or 12 for the HP Cello92 and HTTPD
traces, and to be 40 or 50 for the DB2 traces. For iPVFS, each
I/O node is supported by two targets. The request size is limited
to 64KB to simulate small I/O requests.
 In Section 5.1 we explained that a lower cache hit rate is
predicted for I/O nodes in iPVFS when the memory size of each
node is the same. In our simulation, the aggregate cache sizes of
PVFS and iPVFS are the same, but the organization of the
caches is different. With Cello92 and HTTPD traces, in PVFS,
the cache size of each I/O node is 16MB. In iPVFS, since each
I/O node is supported by two targets, we increase the cache size
of each I/O node to 24MB, and decrease the cache size of the
target nodes to 12MB. With the DB2 trace, in PVFS, the cache
size of each I/O node is 128MB, and in iPVFS, the cache sizes
of each I/O node and target node are 256MB and 64MB,
respectively.

 5.2.2 Simulation Results. First we get the cache hit ratios
using the simulator under the Cello92, HTTPD, and DB2 traces.
The results are given in Tables 2, 3, and 4. Although the hit
ratios of I/O nodes in iPVFS is lower than in PVFS, the
cumulative hit ratios provided by both the I/O nodes and targets
in iPVFS are higher.
 The response times of iPVFS and PVFS under the Cello92,
HTTPD, and DB2 traces are presented in Figures 7, 8, and 9.
With the small number of storage servers, both the PVFS the
and iPVFS cannot sustain larger number of requests because of
the bottleneck from disks. The iPVFS has better performance
(Figure 7(a), Figure 8(a), and Figure 9(a)) because the service
rate of the I/O nodes are not the major bottleneck. With the
large number of storage servers, systems could handle more
requests. The iPVFS performs well when the number of
requests is relatively small, but the PVFS is better than iPVFS
with really large number of requests, because the service rate of
the I/O nodes is truly a bottleneck in such cases (Figure 7(b),
Figure 8(b), and Figure 9(b)).

Table 2: Hit ratios of PVFS and iPVFS under the Cello92 trace
Hit Ratio of iPVFS

Storage Servers Hit Ratio of PVFS I/O Node

Target

Cumulative

 6 0.782 0.714 0.42 0.834
12 0.835 0.782 0.512 0.894

IJCA, Vol. 14, No. 4, Dec. 2007

9

Table 3: Hit ratios of PVFS and iPVFS under the HTTPD trace
Hit Ratio of iPVFS

Storage Servers Hit Ratio of PVFS I/O Node

Target

Cumulative

 6 0.731 0.664 0.32 0.772

12 0.777 0.77 0.372 0.856

Table 4: Hit ratios of PVFS and iPVFS under the DB2 trace
Hit Ratio of iPVFS

Storage Servers Hit Ratio of PVFS I/O Node

Target

Cumulative

40 0.42 0.22 0.38 0.51

50 0.48 0.39 0.2 0.52

(a) 6 storage servers

(b) 12 storage servers

Figure 7: I/O response times for various iPVFS configurations

under the Cello92 trace

(a) 6 storage servers

(b) 12 storage servers

Figure 8: I/O response times for various iPVFS configurations

under the HTTPD trace.

 IJCA, Vol. 14, No. 4, Dec. 2007

10

40 storage servers

50 storage servers

Figure 9: I/O response times for various iPVFS configurations

under the DB2 trace

 From above simulations we found that when the number of
storage nodes is fixed in PVFS, performance is improved by
adding more memory to each node. However, in our solution, if
iPVFS is deployed, performance is improved by only increasing
the memory of the I/O nodes, which are often small parts of the
total storage servers. Furthermore, memory size of target nodes
can be reduced to decrease the entire cost, while maintaining
performance improvement.

6 Related Work

Recent studies have shown how to improve the I/O performance
of PVFS. Kernel level client and global caching are
implemented in [24] to improve the I/O performance of
concurrently executing processes in PVFS. Apon et al. [2]
analyzed the role of sensitivity of the I/O nodes and compute

nodes and concluded that the overall I/O performance is
degraded if a node serves both as an I/O client and as a data
server. To reduce disk arm seek time, several scheduling
schemes [14, 18] are introduced in I/O nodes to re-order
requests according to their desired locations in the space of
logical block addresses. CEFT-PVFS [28] increases the
availability of PVFS by adopting a RAID-10 architecture. It
delivers a considerably high throughput by carefully designing
duplication protocols and utilizing mirror data in read
operations. In [10] software and hardware RAIDs are used in
PVFS I/O nodes to achieve higher aggregate I/O bandwidths.
To eliminate communication bottlenecks of networks, Wu et al.
[26] use the RDMA features of high-performance interconnects,
InfiniBand, to improve the performance of PVFS. A better
interface and related implementation is presented in [6] to
optimize the performance of non-contiguous I/O accesses. Our
work in parallel file systems is different from previous studies
because iPVFS builds a two-level I/O architecture using iSCSI
and iRAID.
 Researchers have used mathematical models to analyze the
performance of I/O systems. Feng et al. [7] built a queuing
model to estimate the response time of CEFT-PVFS. Using
approximate analysis, [13] provides a simple expression for a
maximum delay of asynchronous disk interleaving and then
verifies it by simulation using trace data. Our work uses a
two-level queuing model to evaluate the performance of iPVFS.

7 Conclusions

 In this paper, we present a parallel file system (iPVFS), based
on PVFS and iRAID, for cluster computing environments, and
develop a queuing model to measure and compare the system
response times of both iPVFS and PVFS with the same number
of nodes for various workloads. Our simulation results indicate
that iPVFS improves performance under most cases.
 In our design, all storage nodes are divided into two groups:
one group with more powerful servers acts as the I/O nodes,
while the other group with relatively lower performance servers
acts as the target nodes to provide a cost effective solution. In a
cluster environment, iPVFS can be deployed to improve I/O
performance, as long as we provide high performance servers
for I/O nodes.

Acknowledgments

 This work was supported in part by the US National Science
Foundation under grants SCI0453438 and CNS-0617528. The
authors would like to thank the associate editor and the
anonymous referees for their insightful comments towards the
improvement of this work. They are also grateful to Stephen
Scott, Zhiyong Xu, and Yung-chin Fang for discussion on the
initial ideas and Martha Kosa for proofreading the manuscript
and providing many constructive suggestions. A short and
preliminary version of this paper was presented at the 30th
Annual IEEE Conference on Local Computer Networks
(LCN2005) [17], Sydney, Australia, November 15, 2005.

IJCA, Vol. 14, No. 4, Dec. 2007

11

References

[1] S. Aiken, D. Grunwald, A. Pleszkun, and J. Willeke,

“Performance Analysis of the iSCSI Protocol,” 20th IEEE
Conference on Mass Storage Systems and Technologies,
pp. 123-134, 2003.

[2] A. W. Apon, P. D. Wolinski, and G. M. Amerson,
“Sensitivity of Cluster File System Accesses to I/O Server
Selection,” ACM/IEEE International Symposium on
Cluster Computing and the Grid, pp. 183-192, 2002.

[3] R. B. Bunt, D. L. Willick, and D. L. Eager, “Disk Cache
Replacement Policies for Network File Servers,” Proc. of
the IEEE International Conference on Distributed
Computing Systems-ICDCS ’93, pp. 2-11, June 1993.

[4] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur,
“PVFS: A Parallel File System for Linux Clusters,” Proc.
4th Annual Linux Showcase and Conference, Atlanta, GA,
pp. 317-327, October 2000.

[5] P. M. Chen and D. A. Patterson, “Maximizing
Performance in a Striped Disk Array,” Proc. 17th Annual
International Symposium on Computer Architecture, pp.
322-331, May 1990.

[6] A. Ching, A. Choudhary, W. Liao, R. Ross, and W. Gropp,
“Noncontiguous I/O through PVFS,” Proc. 2002 IEEE
International Conference on Cluster Computing, pp.
405-414, September 2002.

[7] D. Feng, H. Jiang, and Y. Zhu, “I/O Response Time in a
Fault-Tolerant Parallel Virtual File System,” Technical
Report, Department of Computer Science and
Engineering, University of Nebraska-Lincoln, July 2003.

[8] K. Froese and R. B. Bunt, “The Effect of Client Caching
on File Server Workloads,” Proc. 29th Hawaii
International Conference of System Sciences, pp. 150-159,
January 1996.

[9] X. He, P. Beedanagari, and D. Zhou, “Performance
Evaluation of Distributed iSCSI RAID,” 2003
International Workshop on Storage Network Architecture
and Parallel I/Os (SNAPI’03), September 2003.

[10] J. Hsieh, C. Stanton, and R. Ali, “Performance Evaluation
of Software RAID vs. Hardware RAID for Parallel Virtual
File System,” 9th International Conference on Parallel and
Distributed Systems, December 2002.

[11] Y. Hu, T. Nightingale, and Q. Yang, “RAPID-Cache–A
Reliable and Inexpensive Write Cache for High
Performance Storage Systems,” IEEE Transactions on
Parallel and Distributed Systems, 13(2):290-307, 2002.

[12] E. D. Katz, M. Butler, and R. McGrath, “A Scalable
HTTP Server: The NCSA Prototype,” Computer
Networks and ISDN Systems, 27(2):155-164, Nov 1994.

[13] M. Kim and A. N. Tantawi, “Asynchronous Disk
Interleaving: Approximating Access Delays,” IEEE
Trans. on Computer, 40(7):801-810, 1991.

[14] W. B. Ligon III and R. B. Ross, “Server-Side Scheduling
in Cluster Parallel I/O Systems,” Parallel I/O for Cluster
Computing, ISBN: 1903996503,ISTE Publishing
Company, November 2003.

[15] Y. Lu and D. Du, “Performance Study of iSCSI-Based
Storage Systems,” IEEE Communications, 41(8):76-82,
2003.

 [16] L. Ou, X. He, M. J. Kosa, and S. L. Scott, “A Unified
Multiple-Level Cache for High Performance Storage
Systems,” Proc. of the 13th Annual Meeting of the IEEE
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 143-150, September 2005.

[17] L. Ou, X. He, S. Scott, Z. Xu, and Y. Fang, “Design and
Evaluation of a High Performance Parallel File System
over iSCSI,” Proceedings of the 30th Annual IEEE
Conference on Local Computer Networks, pp. 100-107,
November 2005.

[18] R. B. Ross, Reactive Scheduling for Parallel I/O Systems,
PhD Dissertation, Clemson University, December
2000.

[19] C. Ruemmler and J. Wilkes, “Unix Disk Access Patterns,”
Proc. of Winter 1993 USENIX Conference, San Diego,
CA, pp. 405-420, January 1993.

[20] M. Seager, “Linux Clusters for Extremely Large Scientific
Simulation,” IEEE International Conference on Cluster
Computing, 2003.

[21] M. Stonebraker and G. A. Schloss, “Distributed RAID - A
New Multiple Copy Algorithm,” Proc. Sixth International
Conference on Data Engineering, pp. 430-437, February
1990.

[22] R. Thakur, W. Gropp, and B. Toonen, “Optimizing the
Synchronization Operations in Message Passing Interface
One-Sided Communication,” International Journal of
High Performance Computing Applications,
19(2):119-128, 2005.

[23] M. Uysal, A. Acharya, and J. Saltz, “Requirements of I/O
Systems for Parallel Machines: An Application-Driven
Study,” Technical Report CS-TR-3802, Dept. of
Computer Science, University of Maryland, May
1997.

[24] M. Vilayannur, A. Sivasubramaniam, M. Kandemir, R.
Thakur, and R. Ross, Discretionary Caching for I/O on
Clusters,” ACM/IEEE International Symposium on
Cluster Computing and the Grid, May 2002.

[25] T. Wong and J. Wilkes, “My Cache or Yours? Making
Storage more Exclusive,” Proc. USENIX Annual
Technical Conference, pp. 161-175, 2002.

[26] J. Wu, P. Wyckoff, and D. K. Panda, “PVFS over
InfiniBand: Design and Performance Evaluation,
International Conference on Parallel Processing, October
2003.

[27] Y. Zhou, Z. Chen, and K. Li, “Second-Level Buffer Cache
Management,” IEEE Transactions on Parallel
Distributed Systems, 15(6):505-519, June 2004.

[28] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson,
“Scheduling for Improved Write Performance in a
Cost-Effective, Fault-Tolerant Parallel Virtual File
System (CEFT-PVFS),” Proc. of the Cluster World
Conference, pp. 730-735, June 2003.

 IJCA, Vol. 14, No. 4, Dec. 2007

12

LI OU received the Ph.D Degree in
Computer Engineering from The
Tennessee Technological University in
December 2006, and the BS degree in
information technology, and MS Degree
in Computer Science from the
University of Electronics Science &
Technology of China, in 1997 and 2003,
respectively. He is currently a

researcher at DELL. His research interests include computer
architecture, storage and I/O systems, and high performance
cluster computing.

XUBIN HE received the PhD Degree in
Electrical Engineering from the
University of Rhode Island, USA, in
2002 and both the BS and MS degrees in
Computer Science from the Huazhong
University of Science and Technology,
China, in 1995 and 1997, respectively.
He is an Associate Professor of
Electrical and Computer Engineering at
the Tennessee Technological University.

His research interests include computer architecture, storage
systems, computer security, and performance evaluation. He
received the Ralph E. Powe Junior Faculty Enhancement Award
in 2004 and the TTU Chapter Sigma Xi Research Award in
2005. He is a member of the IEEE Computer Society.

