0-7803-8991-3/05/$20.00 © 2005 IEEE

Efficient File Sharing Strategy in DHT Based
P2P Systems

Zhiyong Xu
Suffolk University
zxu@mcs.suffolk.edu

Xubin He

Abstract—

In Peer-to-Peer (P2F) file sharing svsiems, the participat-
ing peers share the files with others. Two steps are needed for
file sharing: First, a routing request is generated and sent to
other peers by using a routing algorithm. The feedback received
by the client contains the location information of the requested
Jiles; Second, the client reirieves the file from one or more peers
which have a copy of that file. Routing algorithms have great im-
pact on the overall system performance, disiributed Hash Table
(DHT} based routing algorithms provide an elegant and efficient
mechanism and become popular in recent years. However, two
problems exist in DHT algorithins. First, to find out the location
information, in some cases, the routing request may traverse dis-
tant peers around the world; Second, in case of muitiple copies
of the requested file stored on different peers, there’s no way to
figure out which peer is the topologically closest to the client.
Thus, the client may have to download the file from a remote
peer and suffer from long retrieve latency. In this paper, we pro-
pose a hierarchical routing and retrieving algorithm 10 relieve
these problems. The peers’ topological information is utilized.
Our aigorithm is able 10 find out the closest copy for any routing
requests. The simulation resulis show our sirategy can signifi-
cantly improve the system routing and retrieval performance.

‘I. INTRODUCTION

In recent years, Peer-to-Peer (P2P) systems attracted a great
deal of attention from both academic and industry communi-
ties. Unlike the traditional Client/Server architecture, in P2P
systems, there’s no clear separation between clients and servers.
All the peers share their resources and work cooperatively to
provide the service. P2P applications can be characterized as
distributed systems in which all the peers have the identical re-
sponsibility and ail the communications are symmetric. The fea-
tures of decentralized control, self-organization, fault tolerance
and load balancing make P2P systems very attractive for certain
environments. P2P applications became popularized through
the file sharing applications such as Napster, Gnutella, Kazaa
and BitTorrent. {1], [2], [3], [4].

In P2P systems {we use P2P systems to denote P2P file shar-
ing systems), the peers share their files with others. Two op-
erations are necessary when a client (We use client to denote
the peer who initiate a file request) wants to retrieve a file. The
first one is the routing operation. The client generates a rout-
ing request and sends to other peers according to the underlying
routing algorithm. Afier this operation is finished, it will get the
location information of the requested file. The second operation
is the real file retrieving operation. It will communicate with one
or more peers which have that specific file to start a download

Tennessee Tech University
hexb@tntech.edu

Laxmi Bhuyan
University of California, Riverside
bhuyan@cs.ucr.edu

process. Clearly, efficient routing and retrieving algorithms are
essential to achieve high system performance.

Napster uses a central facility to solve the routing problem.
The central facility keeps the location information of all the files
in the system. As a peer joins the system, the location informa-
tion of shared files on its storage is published on the central fa-
cilities. All the clients send their routing requests to the central
facility to get the file location information. Only the retrieving
processes are executed among the peers. Some P2P applications
use another approach. Gnutella uses a flood-based routing algo-
rithm. A client sends a routing request to all its neighbor peers
to check if they have the requested file, If not, these neighbor
peers will forward this routing request to their neighbors, untit
eventually, the file is found.

The central facility used in Napster creates a single point of
failure and hotspot issue as in C/S systems, while the flood-
based routing algorithm used in Gnutella generate large amounts
of unnecessary network traffic. Numerous research projects
have been conducted to address these issues. Distributed Hash
Table (DHT) based (or structured) routing algorithms such as
Chord [5], Pastry [6], Tapestry {7] and CAN [&] have been pro-
posed. They provide an efficient organization irfrastructure for
P2P systems. In DHT algorithms, each peer is assigned a unigque
identifier (nodeid) on a large name space (typically, 2™, n equals
to 128, 160 or 192 bits). Each file is also assigned a unique
identifier (fileid) on the same name space. The location infor-
mation of a file is stored on the peer whose nodeid is the numer-
ically closest to the corresponding fileid. A routing process is
converted into the process of finding the peer whose nodeid is
numerically closest to the requested fileid.

In DHT systems, the location information of all the files are
almost equally distributed on the peers, each peer only keep
1/K (K is the total number of shared files} of the location in-
formation. A routing request is guaranteed to be finished within
log(N) steps. DHT algorithms make good compromise between
the information to be stored on a single peer and the routing
overhead. It is suitable for large-scale P2P systems with hun-
dreds of thousands or even millions of peers. Many experimen-
tal P2P applications using DHT routing algorithms have been
developed, such as Oceanstore [9], PAST {10], CFS [11] etc.

The proposed DHT routing algorithms focused on generating
a logically elaborated routing mechanism for large scale P2P
system with thousands or even millions of computers. These
algorithms work well for the ideal environment: symmetric net-
work topology, identical system nodes and uniform workloads.
However, they fail to achieve the optimal performance under
the real world environment which has complex network connec-
tions, diverse peers and various service requirements. One seri-
ous issue is the mismatching between the logical routing struc-
ture and the physical distribution of peers. The nodeid generated

151

for a peer can not reflect its topological character. Bad effects
occurred with such a strategy:

First, unexpected long access latency for some routing re-
quests may occur. In extreme cases, all the routing hops for
a request may occur between two peers who are topologically
separated and result in long routing latency; '

Second, a routing request may need a large number of routing
hops to finish. This is because, in DHT algorithms, all the re-
quests must be sent to the peer whose nodeid is the numerically
closest to the fileid;

Third, a peer may have to retrieve the requested file from a
remote peer even if a near-by peer has a copy. For example,
assume there are multiple copies of a file exist on different peers,
a client generates a routing request for this file. The peer who is
responsible for storing the location information of this file does
not know the distance between the client and the peers who have
a copy. Thus, it has to randomly choose one from them. Even if
it returns all the peers’ information to the client, the client still
does not know which peer is the closest one, and it may still
choose a remote peer and send the retrieving request.

The above problems are caused by the neglect of the topo-
logical information in DHT routing structure, In this paper, we
introduce a new DHT based P2P algorithm to solve these prob-
lems. We use distributed binning scheme to figure out the topo-
logical information of each peer, and add this information to the
routing and retrieving data structures. We create a hierarchi-
cal architecture by generating multiple P2P circles in different
layers. The topologically close peers are grouped together in a
single circle. A rouling request beging at the towest layer circle
and moves up. It can be finished in any layers as soon as the
location information of the requested file is"found. Thus, the
routing overhead is reduced. Furthermore, by adding the peers’
topological characteristics to the file location information, our
algorithm can guarantee the closest copy of a requested file to
be found. The retrieving problem in DHT algorithms is solved.

The rest of the paper is organized as follows, we give the
brief introduction of a popular DHT algorithm — Chord, and ex-
plain its routing/retrieving problems in Section H. We present
a simple solution to solve the retrieving problem in Section TII.
We describe our topologically-aware routing and retrieving al-
gorithm in Section 1V, In Section V, we evaluate the efficiency
of our algorithms and compare with Chord. We describe the re-
lated works in Section VI and finally, we give out the conclusion
and the future work in Section VI

II. CHORD ROUTING ALGORITHM

Qur algorithm aims to improve the routing/retrieval perfor-
mance in DHT systems, We use the current DHT algorithms as
the underlying algorithm and build our algorithm on top. In this
paper, we choose Chord as the underlying algorithm. However,
we can build our algorithm on top of any other DHT algorithms
as well. In this section, we give a brief introduction of Chord,
and describe its problems.

A. The Base Chord Protocol

In Chord, to uniquely identify a peer, consistent hashing {12}
is used. An n-bit identifier (nodeid) is assigned to each node on
the circular name space [0, 27}. A collision free algorithm such
as SHA-1 [}13] is used to generate identifies to avoid the possible
duplication problem. The nodeid represents a peer’s numerical
position on the name space. Each file is also assigned a fileid
with the same algorithm. Chord uses finger tables to store the
information of other peers. On peer R, a finger table has (at
most) n entries, with the %% entry contains the nodeid and IP

Finger Table File Locatien Table

star| intervals | Successor Name | Fileid | Nodeid NodeIP
122 | (122,123 124 Filel 102 215 XXXX
123 | [123,125) 124 File2 | 167 131 XXXX
125 | [12519%) 131 File2 | 107 69 XXXX
129 129.137) 131 File | 7 237 XXXX
137 | [137.153) 139

153 | [153,185) 158

185 | [185249) 192
M9 | [249.121) 253 Filek | 121 4 LXXX

Fig. 1. Sample fi nger table and fi le location table for the Peer 121 on
name space [0, 256)

address information of the first peer, S, that succeads R by at
least 22~1 on the name space. It is denoted as R.fingerli]l.node.
In Chord, when a peer joins the system, its finger table is created
with all the peers can be used as candidates. Clearly, only the
numerical property is considered for the finger table construc-
tion. Though not specified directly, Chord has another table: file
location table on each peer to store the file location information
of the files whose fileids are numerically closest to this peer’s
nodeid. An entry in this table has a file name, its fileid, and the
nodeid and IP addresses of a peer who has a copy of this file.

Figure 1 shows the sample finger table and file location table
of the peer (nodeid: 121). If node 121 sends a request for a file
with the fileid 168, the first routing hop goes to node 158 who
is responsible for the interval [153, 185]. If another peer whose
nodeid is numerically closer to the fileid 168 exists, node 158
forwards the request to that peer according to its finger table.
The process continues until eventually, the request arrives the
destination peer whose node is the numerically closest than all
the other peers. A request for a file with the fileid 102, 107 or
121 from any peers will reach node 121 after several hops, and
it will check the file location table and send the corresponding
information back to the clients. More details of Chord protocol
can be found in [5].

B. Routing and Retrieving Problems

In Chord, the routing data structures record the peers’ numer-
ical characteristics only, the network topological information is
not well considered. Tt is very likely that a routing hop is taken
between two peers which are topologically separated. For ex-
ample, as shown in Figure 2, CHent A in Cincinnad, OH may
traverse distant peers in Europe, Asia and Africa before its rout-
ing request reaches the destination: Client E in Columbus, OH.
In this extreme situation, the resulting routing latency may be
tens of times higher than the actual distance between Client A
and E. However, there’s no way to detect and solve this problem
in Cherd.

Chord also has the retrieving problem. For example, if the
file requested by A has copies on Client C, J and X. Although
C is much closer than the other two peers, A does not aware of
that, it may choose X instead of C to start the download process
and result in longer retrieving time.

The reason for the routing/retrieving problems is: we gen-
erate the nodeid for each peer using SHA-1 which can not re-
flect the peer’s topological characteristic. A mismatching be-
tween the system logical organization and the peers’ topologi-
cal distribution occurs. For example, two peers with the adjacent
nodeids could be located in different continents, while two other
peers which are topologically close may have separated numer-
ical nodeids. To achieve better performance, we have to add
topological information into account when we make the routing

152

Fig. 2. A sample rouiing procedure in Chord, the routing request is
denoted by arrows. The number of routing hops is 4.

and retrieving decisions. In the following sections, we discuss
the solutions to address these problems. We do not want to de-
sign a completely new routing algorithm since DHT algorithms
are elegant, logically elaborated. We concentrate on improving
the performance on current DHT algorithm by adding topolog-
jcal features. With this strategy, we can still use the well de-
signed data structure and routing mechanisms in current DHT
algorithms,

I11. UTILlZINé TOPOLOGICAL INFORMATION TO
IMPROVE RETRIEVAL PERFORMANCE

First, we propose a simple solution to address the retrieving
problem. Unlike the previous DHT design. in our system, the
peers’ topological information is used to make the retrieve de-
cision. This information is stored together with the file location
information. After receiving a routing request, system will re-
ply the client with the nodeid and IP address information of the
peer who is the topologically closest to it. Then, the client can
download the requested file from that peer with minimal link
latency.

A. Distributed Binning Scheme

To choose the topologically closest peer, system should be
able to estimate the distance between peers. Thus, we have to
use some mechanisms to figure out the approximate topologi-
cal distribution of the peers. A simple mechanism to do this
is the distributed binning scheme proposed by Ratnasamy and
Shenker [14]). It uses link latency as the metric to measure the
distance between two machines. In this scheme, a well-known
set of machines are chosen as the landmark nodes, and they are
evenly distributed in the system to ensure accuracy. If k land-
mark nodes Li, L2, ... , Lk are used, when a peer joins the
system, it measures and records the latencies to these nodes in
the order of 1, 2, ..., k. Then we can generate an ordering link
latency information (denote as order information thereafter) for
this newly joined peer. The range of the possible fatencies be-
tween each [peer, landmark node] pair can be divided into dif-
ferent levels. For example, we can define three levels: level ¢
represents the link latencies within [0,20ms], level 1 for the la-
tencies within [20,100ms] and level 2 for the latencies greater
than 100ms. Thus, we can use a single digit with the value of 0,
1 or 2 to represent the distance to a landmark node. For k land-
mark nodes, on each peer, we can use k digits to represent the
order information. This information can be viewed as the prox-
imate topological position of a peer in a k-dimensional space.
For any two peers, the more number of digits are in common

{which means they have similar link latencies to more landmark -

nodes), the topologically closer these two peers are. The de-
tailed information about the distributed binning scheme can be
seen in [14].

We use the order information as part of the node identification

_ information. For example, Node 121:012 represents the peer

with nodeid 121. Three landmark nodes (E1, L2 and L3} are
used in the system, and the link latencies from this peer to L1,
L2 and L3 are within [0,20), [20,100) and greater than 100ms,
respectively.

B. The Simple Retrieving Solution

With the addition of the order information, the previous re-
trieving problem can be easily solved. In our simple solution,
when a client generates a routing request, it sends its order in-
formation as part of the request. After the peer who is respon-
sible for storing the file location information of that particular
file receives the request, it will use the client’s order informa-
tion and compare it with order information of al} the peers who
have a copy of that file. It chooses the peer which has the most
number in common with the client in their order information,
and returns the nodeid and IP address information of that peer
to the client as the answer of the routing request. After receiv-
ing the feedback, the client is able to download the file from the
topologically closest peer, thus, the retrieve overhead is reduced.

To implement this functionality, we have to modify the struc-
ture of the finger table and the file location table in Chord. The
sample tables for node 121: 012 are shown in Figure 3. We do
not change the routing algorithm. In this case, if peer 45: 020
requests a file with the fileid 107, the routing request will even-
tually arrive peer 121: 012 using the Chord algorithm. Peer 121:
012 checks order information of the client 45: 020 and compares
it with the peers 131: 112, 69: 012 and 237: 020 which have a
copy of that file. Clearly, peer 237: 020 is the topologically
closest to the client 45: 020 since they have the same order in-
formation. Then, peer 121: 012 sends the nodeid and IP address
information of 237 020 as the feedback to the client 45: 020.
This client can download the file from peer 237: 020, and avoid
retrieve the file from distant peers 131: 112 or 69: 012. Thus,
we can achieve satisfactory retrieval performance.

IV. TOPOLOGICAL-AWARE ROUTING AND
RETRIEVING

A. The Remaining Problem

The simple solution can solve the retrieving problem com-
pletely. However, the routing issue remains untouched. In both
Chord and the simple solution, when a client requests a file, even
if there’s a copy of that file on a peer who is adjacent to the
client, the client has no way to aware of this fact unti! the rout-
ing request reaches the peer who is responsible for this particular
fileid. Thus, the mismatching problem of DHT system logical
organization and the physical structure still exist. A routing re-
guest may traverse several distant peers before reaching the fi-
nal destination and result in significant routing overhead. Since
routing procedures are the mast frequently executed operations
in P2P file sharing systems, this problem can greatly affect the
system efficiency.

This problem is caused by the file location information
looknp and maintenance strategy used in DHT algorithms. Only
the peer whose nodeid is the numerically closest to a fileid is re-
sponsible for storing the location information of that particular
file. Thus, all the routing requests for that file must go to this
peer, no matter the client is close or far away from this peer.
Such a routing strategy is not efficient. We introduce hierarchi-
cal architecture to relieve this problem. We take advantages of

153

Finger Table
start] intervals S Y
122 {122,123) 124: 011
123 | [123,125) 124: 011
125 | [125,129) 131: 112
129 | [129,137) 131: 112
137 | [137,153) 139: (22
153 {153,185) 158: 012
185 | [185,249) 192: 001
249 | [249,121) 253: 012

File Location Table

Name | Fileid Nodeid NodelP
Filel 102 215: 210 XXXX
File2 107 131:112 XXXX
File2 107 64: 012 XX XX
File2 167 237: 020 XXXX
FileK 121 214: 111 XXXX

Fig. 3. The sample fi nger table and fi le location'table of Node 121: 012 in the simple solution

the peers’ topological characteristics to build a hierarchical P2P
infrastructure. In our system, topologically close peers are orga-
nized as small groups. For each file, multiple peers in different
groups are used to store part of the location information. If a
client requested file has & copy in a near-by peer, then this lo-
cation information will be stored on another near-by peer. The
client can get the file location information from it and avoid the
access to the remote peer. ’

B. Hierarchical Architecture

We define a P2P circle as a collection of peers with related
routing and file location data structure. A P2P circle is a self-
organized and relatively independent unit, the members ina P2P
circle are equally important and take the equal responsibility
for the workloads within this circle. In current DHT systems,
there's only one P2P circle exist, it contains all the peers. In
our system, we create a hierarchical P2P infrastructure: Besides
the biggest circle which consists of all the peers, many other
P2P circles in different layers which contain different number
of peers are generated as well. These circles are created in such
amechanism: the lower the layer, the closer the peers in this cir-
cle. Thus, the average link latency between two peers in a lower
layer circle is much smaller than the peers in a higher layer cir-
cle. We define the number of layers as the hierarchy depth. In
a m-depth P2P system, each peer belongs to m P2P circles with
one in each layer. Clearly, the lowest layer circles consist of the
set of peers which are the topologically closest to each other.

A simple illustration of a two-layer hierarchical P2P organi-
zation is shown in Figure 4. P is the Layer-1 (biggest) circle
which contains all the peers. This global layer circle has five
layer-2 circles: P1, P2, P3, P4 and P5. Each peer in the system
belongs to'the layer-1 circle P and one of the five layer-2 circles.
For example, Client A is a member of circle P1 and Client Z is
a member of circle P5. At the same time, both of them are also
members of the global circle P. Topologically adjacent peers are
grouped in the same layer-2 circle. For example, Client A, B, C,
D, E and F are located on the same continent, they are grouped
together in layer-2 circle P1.

In our system, we use the peers’ order information to gener-
ate circles. For example, if we want to create a two-layer P2P
system, we can group peers which have the same order infor-
mation into one lower layer P2P circle. Thus, Node 121: 012 is
in a circle with all the members have the ordering information
012. We denote “012” as the circleid for this circle.

C. Data Strucrure

To support the routing and retrieving operations within circles
in different layers, we have to modify the structure of the finger
table. If we create an m-depth P2P system, for each peer, m-
layer tables are needed with one in each layer. Figure 5 shows
a two-layer finger table for node 121: 012, In the higher layer

Fig. 4. A Two-layer Hierarchical System, P is the layer-1 circle, P1,
P2, P3, P4 and PS5 are layer-2 circles.

start| intervals | layer 1successor | layer 2 successor
122§ [122,123) 124: 001 143: 012
123 1 [123,125) 124: 001 143: 012
125 | [125,129) 131: 112 143: 612
129 | [129,137) 131: 112 143: 012
137] {137,153) 139: 022 143:012
153 | [153,185) 158: 012 158: 012
185 | [185,24%) 192; 001 212:0i2
249 1 [249.121) 253012 253: 012

Fig. 5. Node 121: 012’s fi nger tables in a two-layer Hierarchical P2P
system with 3 landmark nodes, name space [0, 256)

finger table, in each entry, any peer can be the successor if it has
the smallest nodeid in that interval. However, for lower layer
finger table construction, we can only pick the peers within the
same circle “012”.

We also need to modify the structure of the file location ta-
ble. Figure 6 shows the two-layer file location table for node
121: 012. The contents in the higher layer table are the same
as Chord. It records the information of the peers which have
copies of the corresponding files, no matter which lower layer
circles these peers are in. However, for the lower layer table, it
only records the information of the peers within the same layer-2
circle which store the corresponding files.

D. Routing and Retrieving Algorithm

In our systern, routing and retrieving operations are done with
a hicrarchical scheme. For a m-layer system, this process takes
1 to m loops to finish. A great advantage of our scheme is that
we use a current DHT algorithm as the underlying algorithm in
each layer. However, in different Iayers, the finger table and file
location table in that layer must be used. In our algorithm, when

154

Layer 1 Flle Location Table

™Nuame Filetd Nodeid NodelP
Filel 102 215: 210 KAXX
File2 107 131: 112 XX XX
Tile2 107 £9: 012 XX XX
File2 107 237: 020 X.X.X.X
File® 121 214: 111 HXX.X

L.ayver 2 File Location Tabke

Name Fijueid Nodefd Nodell”
Filc2 107 69: 052 KX MK
File3 IR 143: 012 XXHX
File2 118 212: 012 KAXXX
FileX 98 158: 012 XX XX

Fig. 6. The Two-layer fi le location tables of node 121: (12

a client wants to retrieve a file, it generates a routing request
with the required fileid as usual. However, it also includes its
nodeid and circleid in the request. This routing request starts
from the lowest circle where the client is in; Chord algorithm
(with the lowest layer finger table) is used to find the peer whose
nodeid is the numerically closest to the fileid. After receiving
the request, this peer checks its lowest file location table, if a
record of this file is found, it means one or more near-by peers in
this circle have the copy, the identification information of these
peers will be returned to the client. No further routing hops to
other peers are needed and the routing request terminates im-
mediately. Then, the client can retrieve the file from a near-by
peer. If there’s no record for that file exist in the lowest layer file
location table, it means no peers within this lowest circle have a
copy of the requested file, the routing request will be forwarded
to the upper layer circle. The Chord routing algorithm and the
upper layer finger table and file location table will be used to
execute the routing request in that layer. As the routing request
moves up, more and more peers will be included. At the last
step, the highest layer finger table and file location table will be
used, and all the system peers will be included. In any inter-
mediate layer, if the location information of the requested file is
found, the routing request will be terminated at that layer. The
identification information of the peer which has the file and has
the most number in common with the client’s order information
is returned to the client. The pseudo code of our routing and
retrieving algorithm is shown in Figure 7.

Compare to Chord algorithm, our new algerithm has sev-
eral advantages: First, it keeps the scalability property of the
DHT based routing algorithm, a routing/retrieving operation
definitely finishes within O(logN) (N is the total number of
peers in the system) steps; Second, it can greatly reduce the
amount of wide-area network communications. The routing re-
quest does not have to reach the final destination in some cases,
in any intermediate layer, it stops immediately after the location
information of the requested file is found; Third, with the hier-
archical architecture, we can easily find the closest peer which
has the requested file. Thus, our system can greatly improve the
routing and retrieval performance.

E. Information Maintenance

The benefits of our new algorithm come with extra cost. In
Chord algerithm, when a new peer joins the system, only one
global layer finger table and one file location table are gener-
ated. While in our system, we must execute the join operation

#uis the start clieniid
& ix the hierarchy deprh.
4 kev is the requested fileid
#c_id is the client’s lowest circlerd
findd=FALSE;
n.routing retrieving(key)
layer=m;
n'=n;
while(layerl=0)

1
n'=n"_layer_rowting_retsievingflayer.c_id.key);
ift !find)

layer=layer-1;
else
break;
return n’;

n*layer_routing retrieving(layer.c_id.Xkey)
current_finger_tabie=finger_table[layeri;
n".underlying_routing_atgorithmicurrent_finger_rtable.key):
ifikey is in n” file location table)
: # ane or more copies are found

compare c_id with the client;
n’= the node has the most number in common;
find=TRUE:

}

return o';

Fig. 7. Our Routing and Retrieving Algorithm

several times with one for each layer to create multiple-layer ta-
bles. However, the extra cost is affordable: First, the storage
space occupied by multi-layer tables is not a big issue since an
entry in a table only occupies several bytes; Second, the total
number of peers in the lower layer is smaller, the number of in-
dividual peers in the lower layer finger table is much less than
in the higher layer. Also, the peers in lower layer circles are
topologicatly closer to each other, the communication overhead
to maintain the lower layer tables is smaller than in the higher
layer; Third, the number of shared files in a lower layer circle
is also much less than in higher layer. Thus, the maintenance
overhead for these files is not very big.

In an m-layer system, for a shared file stored on a peer N, its
location information is stored in m peers’ file location tables si-
multaneously with one in each layer. The nodeids of these peers
are the numerically closest to the fileid in the corresponding lay-
ers. When a new file is inserted, our routing algorithm can be
used to find all the peers which will be used to store its location
information. The process goes through from the lowest layer to
the highest layer: In each layer, the final hop will arrive the peer
whose nodeid is numerically closest to the fileid, thus, we can
easily add the location information to the file location tables on
these peers. Thus, one request is enough to modify the file loca-
tion tables on m peers. Even in Chord, one request which will
reach the final destination peer whe is the numerically closest te
the file is needed. Thus, we do not increase the overhead for file
insert operation. For other operations such as update and delete,
the situations are similar.

F. Effects of landmark nodes and hierarchy depth

The different number of landmark nodes will affect system
performance. As more landmark nodes are used, more digits are
needed to represent the order information for each peer. More
lower layer P2P circles will be created, and the average num-
ber of peers in each circle will reduce. At the same time, the
average link latency between any two peers in the lowest layer
circles will decrease compare to the latency in the lowest layer
circles generated by using less number of landmark nodes. On
the other hand, too many landmark nodes will increase the over-
head for node join operations. More “ping” messages will be
sent. Thus, finding a suitable number of landmark nodes is im-
portant. We conducted simulation experiments to evaluate the

185

effects of different number of landmark nodes.

Hierarchy depth also affects the system performance. As
more lavers are introduced, more finger tables and file location
tables are needed, which increases the system maintenance over-
head. On the other hand, more routing and retrieving informa-
tion can help us to find a nearby copy more quickly. A tradeoff
is necessary to achieve the satisfactory performance with afford-
able maintenance overhead. In our simulations, we also evaluate
the effects of the hierarchy depth.

V. PERFORMANCE EVALUATION

In this section, we present simulation results demonstrating
the benefits of our design. First, we describe the simulation en-
vironment, including the network model to be used in our ex-
periments, the workload generation mechanism and the perfor-
mance metric used to evaluate the performance. Following this,
we present the evaluation and analysis of the experimental re-
sults.

A. Simulation Environment

We choose GT-ITM Transit-Stub (TS model} as the primary
network topology model for our simulations. TS model is an
internetwork topology model proposed by E. Zegura in [15]. A
TS network is composed of interconnected transit and stub do-
mains. Transit domains function more like [nternet backbone
while stub domains work meore like local area networks. Thus,
it can reflect the hierarchical character of the internetwork and
it is more accurate than a random network model. In cur emu-
lated networks, the total number of nodes varies from 1000 to
10000. The number of nodes in each stub domain varies from
16 to 20 according to the different total number of nodes. We
use SRS to represent the simple retrieving solution, TRR to rep-
resent our topologically-aware routing and retrieving algorithm.

- In our simulation experiments, unless specified, we use a two-
layer hierarchy system with four landmark nodes used to gen-
erate circleids for lower layer P2P circles. 100000 randomly
generated pseudo file requests are used as the system workload.

In the real world, files have different popularity. A large per-
centage of shared files are seldom accessed and only have a
small number of copies in the system. On the other hand, a
small set of hot files are requested more frequently than other
files and have multiple copies stored on different peers. To re-
flect this fact, we use the following file distribution: “10-30-60™.
Here, we define 109% of the shared files have 10 copies stored on
different peers, 30% of the files have 5 copies, and the rest 60%
of the shared files only have one copy. The location of each copy
is chosen randomly.

We use the average routing latency for one request as the per-
formance metric to evaluate the routing performance. We use
the link latency between the client and the peer from which to
retrieve the requested file as the metric to evaluate the retrieval
performance. For retrieving files, for any files which have mul-
tiple copies on different peers, Chord algorithm is unable to de-
termine the location of the closest copy, we assume it will ran-
domly choose one from these peers. While in SRS and TRR
atgorithms, the peer which has the most number of digits of or-
der information in common with the client is chosen.

B. Routing Performance

In the first set of simulation experiments, we evaluate the
routing performance. Figure 8 shows the result. For all dif-
ferent sized networks, TRR achieves the best performance. The
average routing latency in TRR is only about 43.9% to 51.2%
of Chord. For SRS, it can only reduce the retrieving overhead

H

H

:

¢

Aversge routng eancy (re)
8

H

°

PDF of routing requests

203 1 % & 7 % 9 0 1 1z 13 i1 5
Nutnber of routing hops

Fig. 9. The routing hops distribution in a 10000-node network

and can not reduce the routing overhead. SRS still uses the
same routing algorithm in Chord, thus, they have the samé rout-
ing performance. In general, as the total number of peers in-
creases, the average routing latency also increases since more
routing hops are needed to search a file. There’s one exception,
the routing overhead in a 7000-node network is smaller than in
6000-node network, however, this anomaly is caused by the dif-
ferent parameters we chosen to generate TS networks in these
two sizes.

In our experiments, the file requests are randomly generated:
Thus, the access rate for each file is the same. However, in real
world, popular files which have more copies on different peers
are-also have higher request rates than other files [16]. We can
expect TRR to achieve better performance since for hot files
with many copies, the possibility of finding a copy on near-by
peers is much higher than other files.

To better understand the benefits of using a hierarchical rout-
ing scheme in TRR, we analyze the routing cost distribution in
different algorithms. Figure 9 shows the probability density dis-
tribution (PDF) curves for Chord and TRR. The data is collected
on a 10000-node TS network. For randomly 100000 routing re-
quests, in TRR, the percentages of the requests finished within
a small number of hops [0, 6] are higher than in Chord, while in
Chord, the percentages of the requests which need more hops
[7,14] to finish are higher than in TRR. This is because, in
Chord, all the requests will reach the destination {the peer who
is responsibte for the requested key), while in TRR, the requests
can finish at different layers. In Chord, the average number of
routing hops for each request is 6.4933, while in TRR, the value
is only 5.0108.

Table 1 shows the percentage of routing requests finished in
the lower layer circles in TRR. As the total number of peers in-
creases, the percentage also increases. This is because we use
4 landmarks nodes for different network sizes. [n a large net-
work, the average number of peers in the lower layer circle is
greater than a small network. TRR have better chance to find
the location information of the requested files in the lower layer.

In TRR algorithm, the routing performance improvement
comes from two aspects: except the routing requests finished in
the lower layer circles, the requests finished in the higher layer
#lso get the benefits from a hierarchical architecture. Table I
shows in TRR, for those routing requests which can not finish in

156

TABLE |
REQUESTS FINISHED IN THE LOWER LAYER IN TRR

["Node num | 2000 | 4000 | 6000 | 8000 | 10000 |
[Percent(%) | 318] 459 [867 [1274 | 19.16 ||

- Chard
-» 8RS "~

i - TRR

w o o w0 = 7 8w 1eo
Link Wiy Gefamm D Slhert nd Ve retrieving e ()

Fig. 10. The Cumulative Distribution Function (CDF} of the link la-
tency between the client and the peer to retrieve file

the lower layer, the average number of hops for each request and
the number of hops taken in the lower layer circles. Since the
average link latency between any two peers in the lower layer
circles is much smaller than the higher layer, TRR replace a
large percentage of hops in the higher layer with the hops in the
lower layer, it also reduce the routing overhead for those routing
Tequests.

TABLE Il
ROUTING HOPS PER REQUEST DISTRIBUTION IN TRR
Node num | 2000 | 4000 | 6000 | 8000 | 10000
total | 545 594 | 626 | 643 6.59
layer-2 376 | 4.15 4.52 4.89 5.12

C. Retrieval Performance

The ultimate goal of routing procedures is to find the peers
for the retrieving operations. Thus, retrieval performance is also
very important. In this experiment, we evaluate the retrieval
performance of different algorithms. Figure 10 shows the link
latency distribution of the client and the peer which was cho-
sen for the retrieving operation. Chord does not consider the
topological information, thus, it can only randomly choose a
peer from the peers which have the requested file. For SRS and
TRR, both of them can find the closest peer to the client which
has the tongest number of digits in common on the order infor-
mation with the client. As shown in Figure 10, in SRS and TRR
atgorithms, 60% of the peers chosen for the retrieve operations
have link latency less or equal to 50ms to the client, while in
Chord, the number is only 319%. 89% of peers chosen in SRS
and TRR have link latency within 100ms to the client, however,
only 72% in Chord. Clearly, our algorithms have better retrigval
performance.

D. Effects of landmark nodes

We also evaluate the effects of the different number of land-
mark nodes. The result is shown in Figure 11. Since Chord
and SRS algorithms do not use landmark nodes for their routing
procedures, the different number of landmark nodes does not af-
fect the routing performance. While in TRR algorithm, as more
landmark nodes are used, more digits are needed to represent a
peer’s order information. For any two peers, to be grouped into
the same layer-2 circle, they must have more number of digits
in common in their order information. Thus, more layer-2 P2P
circles will be created, the average number of peers in each cir-
cle will reduce. For TRR algorithm, the average routing hops in

838 8
|
|
|
i

A
H

Aveiags routing sy (me)
¢
/
!
i
I
i
|

g
i
|
|
'

@

z 3 “ 5 s 7 . L] "
Mumbar of landmark nodes

Fig. 11. The Effects of different number of landmark nodes, 10000-
node network
=2 - TR T s f
H P i
& TRA (2 leverer i
220 R
§ r__‘f/ ‘}
X : e

Number ci paars

Fig. 12. The Effects of hierarchy depth

the lower layer per request will decrease. However, the average
latency per hop also reduces because the peers in those smaller
lower layer circles are much closer.

The decreased number of hops per request in the lower layer
means the increased number of hops per request in the higher
layer. Since the average latency per hop in the higher layer
is greater than in lower layer. thus the average routing latency
tends to grow as the number of landmark nodes increase. On
the other hand, the average latency of the hops in the lower layer
decreases as the number of landmark nodes increases, the over-
all routing latency should decrease. The actual routing latency
is determined by these two factors. As shown in figure 11, as
the number changes from 2 to 7, the system can achieve sig-
nificant performance improvement. In this case. the decreased
average latency per hop in the lower layer dominates. For the
number changes from 8 to 12, the average routing latency will
increase. Here, the first factor takes major effect. In this experi-
ment, 7 landmark nodes are the best choice for this 10000-node
network.

E. Effects of hierarchy depth

We also conduct experiments to evaluate the effects of the hi-
erarchy depth. We test the routing performance for 2, 3 and 4
layers and the result is shown in Figure 12. Clearly, hierarchy
depth also affects the system routing performance. As the num-
ber of layers increases, the routing performance is improved.
However, for small systems with 5000 peers, the difference is
trivial. For the system with more peers, when the number of
layers changes from 2 to 3, system can achieve considerable
performance improvement. However, the improvement is triv-
ial when we change the number from 3 to 4. As the number
of layers increases, more maintenance work has to be done for
more finger table and file location tables. Thus, choosing a suit-
able number of layers is also important to achieve the optimal
performance. For our experiments, 3 layers are good enough.

VI, RELATED WORKS

Chord [5] [17], Pastry [6], Tapestry [7] and CAN [8] are DHT
based routing algorithms. In these systems, an elegant and ef-
ficient routing data structure is generated. However, the negli-
gence of the peers’ topological information seriously hurts the

157

routing and retrieval performance. Although DHT algorithms
can achieve the optimal routing performance in terms of routing
hops, they can not achieve the minimal routing latency. Also, in
DHT systems, the retrieving problem is not well considered.

Ratnasamy and Shenker [14] peinted out that P2P or other
large-scale network applications could potentially benefit from
some level of knowledge about the relative proximity between
its participating nodes. They suggested allocating the topologi-
cally adjacent peers with congruent identifiers together, and they
applied this idea on CAN with significant improvement on the
routing performance. HIERAS [18) and Coral [19] also use the
topological characteristics and create hierarchical architecture
to boost the routing performance for standard DHT routing al-
gorithms. There’s two differences compare to our system: First,
in both algorithms, a routing request will terminate only when
it reaches the final destination peer which is responsible for the
requested fileid, while in our system, the routing operation can
terminates in any layers, thus our algorithm can effectively re-
duce the amount of wide-area network communications. Sec-
ond, none of the algorithms addressed the retrieving problem.
Both algorithms can not guarantee to find out the closest copy
for the client.

In Kazaa {3], superpeers are used to improve the routing per-
formance in unstructured P2P applications. SBARC [20] and
Brocade [21] also use superpeers to improve the routing perfor-
mance in DHT based systems. A superpeer is a peer which has

more computer resources {such as CPU speed, network band-'

width and storage size, etc.) than an cordinary peer. In these
systems, the routing tasks are mostly taken by superpeers. How-
ever, the failure of a superpeer will result in serious performance
downgrade. Also, the retrieving problems are not fixed in super-
peer based systems. ‘

VI, CONCLUSION AND FUTURE WORK

We started with the discussion of the routing/retrieving prob-
lems in current DHT systems followed by our new algorithms to
address these problems. Qur system takes the peers’ topological
information into account for efficient routing/retrieving opera-
tions. We use distributed binning scheme to determine a peer’s
position (topological information) in a k-dimensional space. In
the simple solution, we use this information to help the client
choose the suitable peer for file retrieving. In TRR algorithm,
we further utilize this information to reduce the routing over-
head. We generate multiple P2P circles in different layers. In
any intermediate layer, the routing procedure could be finished
as soon as the location information of the reguested file is found.
Our simulation results prove that our strategy can achieve sig-
nificant routing and retrieval performance improvement over the
current DHT algorithms. For the future work, more simulation
experiments will be conducted. We plan to use larger scale net-
" work (more peers) to evaluate the performance. Different net-
work models such as Inet [22] and BRITE [23] will also be used.
We will try to generate a formula to determine the most suitable
numbers of the landmark nodes and the hierarchy depth for a
given set of peers.

REFERENCES

[1] Napster, ‘hutp://www.napster.com.”

[2] Gnutella, “http:/fwww gnuiella.wego.com.”

[3] KaZaA, ‘http://www kazaa.com/.”

[4] BitTorrent, “hitp:/fwww.bittorrent.com/.”

{5] L Stoica, R. Morris,). Karger, M. Kaashoek, and H. Balakrish-
nan, ‘Chord: A scalable peer-to-peer lookup service for internet
applications.” Technical Report TR-819, MIT,, Mar, 2001,

fo]

[7

—

8

—

[9

—_

[10]

L]

[12]

[13] N

{14

(15}

[16]

[17}

[18]

[19]

[201

21

{22

[23

158

A. L. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object location, and routing for farge-scale peer-to-peer systems,”
in Praceedings of the 18th IFIP/ACM Internariemal Conference
orn Distributed Systems Platforms (Middleware), Heidelberg, Ger-
niany, pp. 329-350, Nov, 2001.

B. Zhao, J. Kubiatowicz, and A. Joseph, ‘Tapestry: An infrastruc-
ture for fault-tolerant widearea location and routing.” Technical
Report UCB/CSD-01-1141, U.C.Berkeley, CA, 2001.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
‘A scalable content addressable network.” Technicat Report, TR-
00-010, U.C.Berkeley, CA, 2000,

J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D, Geels, R. Gum-
madi, 8. Rhea, W. Weimer, C. Wells, H. Weatherspoon, and
B. Zhao, ‘OceanStore: An architecture for global-scale persistent
storage,” in Proceedings of the 9th international Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), Cambridge, MA, pp. 190-201, Nov. 2000.
P. Druschel and A. Rowstron, ‘Past: A large-scale, persistent peer-
to-peer storage utility,”in the 8th IEEE Workshop on Hot Topics in
Operating Systems {HotOS), Schoss Elmau, Germany, May 2001.
F. Dabek, M. F. Kaashoek, D. Karger, R. Mormis, and 1. Stoica,
*‘Wide-Area cooperative storage with CFS8,”in Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP),
Banff, Alberta, Canada, pp. 202-215, Oct. 2001,

D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. §.
Levine, and D. Lewin, ‘Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world
wide web,” in Proceedings of the 29th annual ACM syniposium
on Theory of computing ACM Sympasium on Theory of Comput-
ing (STOC), El Paso, TX, pp. 654-663, May. 1997.

. L of Standards and Technology,
“hup:/fesre.nist. gov/publications/fi ps/fi ps180-2/6 ps180-2.pdf.”
S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Topologically-aware overlay construction and server sclection,”
in Praceedings of IEEE INFOCOM'02, New York, N¥, Jun. 2002.
E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model
an internetwork,” in Proceedings of the IEEE Conference on Com-
puter Communication, San Francisco, CA, pp. 594-602, Mar.
1996.

S. Saroiu, P. K. Gummadt, and S. D. Gribble, *A measurement
study of peer-to-peer fi le sharing systems,”in Procecdings of Mui-
timedia Computing and Networking {MMCN), San Jones, CA, Jan,
2002.

F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris,
I. Stoica, and H. Balakrishnan, ‘Building peer-io-peer systems
with chord, a distributed lookup service,” in the 8th IEEE Work-
shop on Hot Topics in Operating Systemns (HotOS), Schoss Elmau,
Germany, pp. 195-206, May 2001.

Z. Xu, R. Min, and Y. Hu, "HIERAS: A DHT-Based Hierarchi-
cal Peer-to-Peer Routing Algorithm,” in the Proceedings of the
2003 International Conference on Parallel Processing (ICPP03},
(Kaohsiung, Taiwan, ROC), Octcber 2003,

M. J. Freedman and D. Mazieres, ‘Sloopy Hashing and Self-
Organized Clusters,” in Proceedings of the 2nd Inernaiional
Workshop on Peer-to-Peer Systems ({PTPS), Berkelev, CA, Feb
2003.

Z. Xu and Y. Hu, ‘SBARC: A Supemode Based Peer-to-Peer
File Sharing System.” in proceedings of the 8th IEEE Symposium
on Computers and Communications {I1SCC°03), (Kemer-Antalya,
Turkey}, June 2003.

B. Zhao, Y. Duan, L. Huang, A. Joseph, and J. Kubiatowicz, ‘Bro-
cade:landmark routing on overlay networks,” in Proceedings of
the 1st Iternational Workshop on Peer-to-Peer Systems (IPTFPS),
Cambridge, MA, March 2002,

C. Jin, Q. Chen, and S. Jamin, ‘Inet: Tnternet topology genera-
tor” Report CSE-TR443-00, Department of EECS, University of
Michigan, 2000.

A. Medina, A. Lakhina, 1. Matta, and J. Byers, ‘Brite: An ap-
proach to universal topology generation,” in Proceedings of the
International Workshop on Modeling, Analysis and Simulation
of Computer and Telecommunications Systems (MASCOTS 01},
Cincinnaii, OH, Aug. 2001.

