Randomized Block Design (RBD)

Assumptions: 1. The samples from the populations under consideration are independent within each block.

- 2. The populations under consideration are normally distributed.
- 3. The standard deviations of the populations under consideration are equal; that is they are all the same value, σ .

Checking the assumptions

- Assumption 1: Be sure that the samples were taken independently of one another.
- Assumption 2: Construct side-by-side boxplots or Normal Q-Q plots by treatment to assess normality.
- Assumption 3: Construct side-by-side boxplots by treatment or perform Levene's test for homogeneity of variances to assess equality of variances (equal spreads).

RBD ANOVA Identity

$$SSTo = SSTr + SSBl + SSE$$

One-Way ANOVA Sums of Squares

Sum of Squares	Defining Formula	Short-cut Formula		
Total (SSTo)	$\sum_{i=1}^{k} \sum_{b=1}^{l} \left(y_{ib} - \overline{\overline{y}} \right)^2$	$\sum_{i=1}^{k} \sum_{b=1}^{l} y_{ib}^{2} - \frac{(T)^{2}}{N}$		
Treatments (SSTr)	$l\sum_{i=1}^{k} \left(\overline{y}_{i} - \overline{\overline{y}}\right)^{2}$	$\sum_{i=1}^{k} \frac{(T_i)^2}{l} - \frac{(T)^2}{N}$		
Blocks (SSBl)	$k\sum_{b=1}^{l} \left(\overline{b}_{b} - \overline{\overline{y}}\right)^{2}$	$\sum_{b=1}^{l} \frac{\left(B_b\right)^2}{k} - \frac{\left(T\right)^2}{N}$		
Error (SSE)	SSE = SSTo - SSTr - SSBl	SSE = SSTo - SSTr - SSBl		

 y_{ib} = sample observation from treatment *i* in block *b* (*b* = 1, 2,..., *l* and *i* = 1, 2,..., *k*)

N = total number of pieces of data (overall size of combined samples) [N = kl]

 T_i = total sum of sample data from treatment *i*

- B_b = total sum of sample data from block b
- \overline{y}_i = mean of sample data from treatment *i*
- \overline{b}_{b} = mean of sample data from block b

T = total sum of all N pieces of data (overall sum / grand total)

Post Hoc Multiple Comparisons (when ANOVA determines the means might be different)

The Tukey-Kramer Studentized Range Method (Tukey's W)

- Step 2: Find $q_{(k,df)}$, where k is the number of treatments, and df = (k 1)(l 1). Use Table VIII on page 692 to obtain the value.
- Step 3: Obtain the margin(s) of error of the confidence interval for $\mu_i \mu_j$:

$$W = q_{(k,df_{Error})} \sqrt{\frac{MSE}{l}}$$

One-Way ANOVA Testing Procedure

- *Step 0:* Check the assumptions.
- *Step 1:* State the null and alternative hypotheses.

Null $H_0: \ \mu_1 = \mu_2 = \dots = \mu_k$ Alternative $H_a:$ Not all means are equal.

- Step 2: Decide on the significance level, α . $\alpha = ____$
- Step 3: Determine the critical value and rejection region.

	<u>Classical Approach</u>	<u>P-value Approach</u>		
Critical Value:	$F_{\alpha,(df_1=k-1,df_2=(k-1)(l-1))}$	N/A		
Rejection Region:	$F \ge F_{\alpha,(df_1=k-1,df_2=(k-1)(l-1))}$	<i>p</i> -value $\leq \alpha$		
Note: $df_1 = k - 1$ and $df_2 = (k - 1)(l - 1)$				

Step 4: Construct the one-way ANOVA table.

Source	$d\!f$	SS	MS = SS/df	F-statistic	<i>p</i> -value
Treatments	k-1	SSTr	$s_{Tr}^2 = MSTr = \frac{SSTr}{k-1}$	$F = \frac{s_{Tr}^2}{s_E^2} = \frac{MSTr}{MSE}$	$P(f \ge F)$
Blocks	l-1	SSBl	$s_{Bl}^2 = MSBl = \frac{SSBl}{l-1}$		
Error	(k-1)(l-1)	SSE	$s_E^2 = MSE = \frac{SSE}{(k-1)(l-1)}$		
Total	N-1	SSTo			

Note: For the computation of the *p*-value, $df_1 = k - 1$ and $df_2 = (k - 1)(l - 1)$.

- Step 5: Make your decision. If the value of the test statistic, F, falls in the rejection region or if p-value $\leq \alpha$, then reject H_0 ; otherwise, fail to reject H_0 .
- *Step 6:* State the conclusion in words.

Reject H_0 : "At the $\alpha =$ _____ level of significance, there is enough evidence to conclude that (H_a in words)."

Fail to Reject H_0 : "At the $\alpha = _$ level of significance, there is not enough evidence to conclude that (H_a in words)."