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Abstract—Collaborative spectrum sensing is a key technology
in cognitive radio networks (CRNs). Although mobility is an in-
herent property of wireless networks, there has been no prior work
studying the performance of collaborative spectrum sensing under
attacks in mobile CRNs. Existing solutions based on user trust for
secure collaborative spectrum sensing cannot be applied to mobile
scenarios, since they do not consider the location diversity of the
network, thus over penalize honest users who are at bad locations
with severe path-loss. In this paper, we propose to use two trust
parameters, location reliability and malicious intention (LRMI),
to improve both malicious user detection and primary user de-
tection in mobile CRNs under attack. Location reliability reflects
path-loss characteristics of the wireless channel and malicious in-
tention captures the true intention of secondary users, respectively.
We propose a primary user detection method based on location re-
liability (LR) and a malicious user detection method based on LR
andDempster-Shafer (D-S) theory. Simulations show thatmobility
helps train location reliability and detect malicious users based on
our methods. Our proposed detection mechanisms based on LRMI
significantly outperforms existing solutions. In comparison to the
existing solutions, we show an improvement of malicious user de-
tection rate by 3 times and primary user detection rate by 20% at
false alarm rate of 5%, respectively.

Index Terms—Cognitive radio network, spectrum sensing, mali-
cious secondary users, mobility and trust.

I. INTRODUCTION

W ITH THE ever-increasing wireless applications and
traffic demand, spectrum shortage becomes a more

severe and urgent problem. Cognitive radio technology [1] is
considered as a promising solution to improve the spectrum
utilization and alleviate the spectrum shortage. The basic idea
of cognitive radio networks (CRNs) is that when the primary
(licensed) users are absent, the secondary (unlicensed) cog-
nitive users can opportunistically access the primary users’
spectrum, but have to evacuate when the primary users emerge.
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The DARPA’s Next Generation Program [2] is based on spec-
trum sensing and dynamic spectrum utilization. FCC has men-
tioned the need of cognitive radio [3] for emergency situations.
Thus, CRNs will play an important role in the future communi-
cations for both tactical military forces and emergency respon-
ders. A CRN deployed and operated by the military or govern-
ment emergency units could be hampered or interfered by an
adversary. The CRNs should have the capability to overcome
any security threat.
The collaborative spectrum sensing paradigm in CRN opens a

hole to the attackers who can falsify the sensing results. The mo-
tivation of an attacker can be either selfish or malicious. Being
selfish, an attacker may report the presence of the primary user
when there is actually none in order to deny the legitimate users’
access to the spectrum (Denial of Service attack). While being
malicious, an attacker may report an absence of the primary user
when there is one, thus causing chaos and interference for pri-
mary and secondary users.
Existing solutions to detecting the sensing falsification at-

tacks have focused on identifying the attackers as abnormal
or outlier nodes within a small cell [4]–[10]. Basically, when
a user’s report deviates from common readings beyond a cer-
tain threshold, its trust value is degraded. A dishonest attacker
can thus be identified, and its negative impact on the spectrum
sensing can be weakened or eliminated. However, these solu-
tions have two major limitations. First, they assume the whole
area has the same channel propagation characteristics, which is
not practical. It has been found that the path-loss are different
at different sensing regions [11]. Second, they assume the users
are static and cannot be directly applied to mobile scenarios. For
example, existing trust-based solutions tend to over penalize an
honest user who is at a bad location with large path-loss. Even
when the user moves to a good location later on, its contribu-
tion to the spectrum sensing will be limited since it has been
assigned a low trust value.
In this paper, we propose to use two trust parameters, Loca-

tion Reliability and Malicious Intention (LRMI), to improve
both malicious user detection and primary user detection in
mobile CRNs under attacks. Location Reliability (LR) reflects
path-loss characteristics of the wireless channel and Malicious
Intention (MI) captures the true intention of secondary users,
respectively. We therefore, propose to evaluate the reports at
the fusion center using Dempster-Shafer (D-S) Theory based on
two sources of evidence associated with each report—cell from
which the report is generated (Location Reliability) and who
has generated the report (Malicious Intention). Location Re-
liability captures trust over different positions as distributions
of path-loss are not identical although they are independent.
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Malicious Intention defines how much trustworthy a user is.
To the best of our knowledge, no prior work has studied the
impact of mobility on the collaborative spectrum sensing under
attacks or provided applicable solutions.
Our basic idea is as follows. For an honest user, when it moves

from a good location to a bad location, we should give low
weight to its report or even ignore it, since the report will not be
reliable because it is now in a bad location. While at the same
time, we should not decrease its credibility because it happened
to be in a bad location. Considering an attacker, when it is in a
good location, if it just blindly lies on the sensing result, it will
be detected with a better chance since it is supposed to report
a high quality result. When the attacker is in a bad location, its
damage will be limited if we do not count much on the report
from a bad location. Therefore, we should separate location re-
liability from user trust in mobile CRNs.
The major contributions of this paper are summarized as fol-

lows:
• We propose to evaluate collaborative spectrum sensing in
mobile CRN based on location-trust and user-trust. Our
novel solutions for trusted collaborative spectrum sensing
takes into consideration both location-diversity and mo-
bility of secondary users.

• We study the performance of our solutions in terms of re-
ceiver operating characteristics for both malicious users
detection and primary user detection.

• We conduct extensive simulations to evaluate our proposed
mechanisms and compare their performance with existing
solutions. We find that with increase in number of users,
mobility and system observation time, performance of our
proposed scheme improves. Our proposed detection mech-
anisms based on LRMI significantly outperform existing
solutions in terms of improving the malicious user detec-
tion rate by 3 times and primary user detection rate by 20%
at false alarm rate of 5%, respectively.

The rest of this paper is organized as follows. Section II dis-
cusses the related work. The system model is introduced in
Section III followed by the problem formulation and our pro-
posed solutions in Section IV. We evaluate the impact of mo-
bility and our solutions and conclude this paper in Sections VII
and VIII, respectively.

II. RELATED WORK

The performance gains, achieved by collaborative spectrum
sensing in CRNs is well established in literature. The central-
ized collaborative spectrum sensing has been included in the
IEEE 802.22 standard draft [12]. The secondary users report
sensing results to a base station (fusion center) on a periodic
or on-demand basis about the presence and absence of primary
user using spectrum sensing. The secondary user trust is critical
for such a cooperative systems to operate reliably. Trust-based
mechanisms have been widely suggested for collaborative spec-
trum sensing under report falsifying attacks, where dishonest at-
tackers lie on their sensing results.
The calculation of the trust of secondary users has been ad-

dressed using different techniques in the literature. The trust

values can be calculated from the reports received from the sec-
ondary users, comparing deviation suffered by each from av-
erage [5]. The secondary users are penalized according to the
deviations calculated. In another paper by the same authors [8],
outlier techniques are studied in detail and based on the knowl-
edge of partial primary user activity, malicious user(s) identifi-
cation is done. Among other techniques, the Bayesian rule can
be applied to compute the a posteriori probability of being an
attacker for each secondary user. When the posteriori proba-
bility of a certain secondary user exceeds the suspicious level
threshold, it is claimed to be an attacker and is removed from
the collaboration [10]. For multiple attackers, the large number
of combinations of attackers and honest users is removed by
using an onion-peeling based approximation to reduce compu-
tational complexity.
Abnormality detection algorithm based on proximity, which

is widely used in the field of data mining has been introduced in
[4], to solve the problem of malicious users in the system using
history reports of each secondary user. The proposed architec-
ture in [6], needs to collect spectrum sensing data from multiple
sources or equipment on consumer premises. This process is
known as crowdsourcing. In [6], the area of interest is divided in
to cells and the credibility of these devices are kept in check by
corroboration among neighboring cells in a hierarchical struc-
ture to identify cells with significant number of malicious nodes.
In the solution proposed by authors in [9], focus is on a small

region for enhancing the primary user detection by exploring the
spatial diversity in user reports. In another paper by the same au-
thors, [13], impact of mobility in spectrum sensing is analyzed.
The authors show that because of mobility, the secondary user
sensing results get uncorrelated faster thus giving better perfor-
mance compared to spectrum sensing performed by static sec-
ondary users.
To the best of our knowledge, none of the existing work

studied the impact of mobility on the malicious user detection
and primary user detection under attack in CRNs. None of the
existing trust-based collaborative spectrum sensing solutions
are directly applicable for mobile scenarios, either. Our pro-
posed solutions [14] are different from all the existing solutions
that we separate the location reliability from the user trust, thus
achieve better performance on malicious user detection which
in turn improve the primary user detection under attacks in
mobile scenarios.

III. SYSTEM MODEL

We divide the area of interest into a grid (Fig. 1) and each
cell in a grid is assumed to experience path-loss exponent and
shadowing characteristic of that cell. The assumption is reason-
able since some areas will have deep fade caused by buildings,
trees etc. compared to others. We use the term location and cell
interchangeably in the rest of the paper for cell in the grid. In
Fig. 1, we divide the grid into equal size cells, but our approach
supports any cell shape with any size. In other words, the area of
interest can be divided into any number of cells in any manner
depending on the granularity required. Note that it is not nec-
essary to have tiny size cells as the signal attenuation is gen-
erally stable in a small area. We therefore, target mainly urban
areas less than 5000 square meters, where building, trees etc.
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Fig. 1. System model with static primary user and mobile secondary users.

TABLE I
MAIN SYMBOLS USED

will cause deep fadings and cells are approximately more than
street block size i.e., approximately 300–500 square meters.
Let there be (Table I) finite cells in the area of interest.

be the set of cell identification numbers of
cells in the grid. Let be set of
users in the area. The secondary users are mobile and may

be present at different cells at different times. They use energy
detection for spectrum sensing and report their measurements to
fusion center. Fusion center uses these spectrum sensing reports
to determine primary user status. Let the system be observed for
total observation slots and any slot .

A. Energy Detection

The secondary users sense the spectrum to identify if the
primary user is active or idle in the area of interest. There has
been three main spectrum sensing techniques suggested in liter-
ature—energy detection, matched filtering and cyclostationary
feature for primary user detection by the secondary users [1].

Out of these three techniques, energy detection is the most
promising solution due to its simplicity in implementation and
its capability to detect any shape of waveforms. We choose
energy detection at secondary users, as the underlying spectrum
sensing scheme.
The primary user detection is modeled as a hypothesis test.

The null hypothesis indicates the primary user is idle, while
the alternative hypothesis indicates the primary user is ac-
tive. We further assume that the time the system is in either of
the states and follow exponential distributions as com-
monly used in the literature [1], and that durations of successive
active and inactive periods are independent of each other.
We assume the secondary users sense the spectrum periodi-

cally slot by slot by using energy detection. Assume the band-
width of the primary user signal is , at each sensing slot, each
user takes samples with the sample interval of . Then,
the output of the energy detector for secondary user , present
at cell for the th sensing slot is [15],

where is the time at the beginning of the th sensing slot.
is the channel gain for secondary user in cell during

th sensing. Assuming the noise, and primary signal, to
be uncorrelated, the distribution of the energy detector output is
given as

(1)

where is referred as instanta-
neous signal-to-noise ratio experienced by a secondary user
for transmit power and channel gain . and

denote central and noncentral chi-square distri-
butions with degrees of freedom, respectively.
Assuming channel bandwidth is much larger than the co-

herent bandwidth, the effect of multipath fading is negligible.
The received primary user power at secondary user at a dis-
tance from primary user can be expressed as [16] in dB:

(2)

where is a path-loss at a reference distance in dB and
is close to , where is wavelength. Path-loss ex-
ponent for cell ranges from 2 to 5 [11]. Empirical mea-
surements support the log-normal distribution where in dB -

(3)

At each sensing slot , each user reports along with their
coordinates or current cell id (each cell has a unique cell id)
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to the fusion center. A secondary user can find its current co-
ordinates, based on localization techniques [17]. For detection
threshold at the fusion center, if , the fusion center
concludes the primary user is active otherwise primary user is
idle. Hence, the probability of detection and probability of
false alarm for a sensing report, [18]:

(4)

(5)

(6)

(7)

where is marqum-function, is a gamma function and
is the detection threshold. Probability of false alarm is inde-
pendent of SNR since under there is no primary signal
present. Since the channel gain, is varying due to shad-
owing or fading for each sensing report, probability of detection
is conditioned on instantaneous SNR .

B. Collaborative Spectrum Sensing

The uncertainty in a sensing report due to fading may be mit-
igated at the fusion center by considering spectrum sensing re-
sults from multiple users. Such collaboration to decide on pri-
mary user occupancy has been widely studied [19], [18] and
is a part of IEEE 802.22 standard draft [12]. Commonly used
techniques in the literature for collaborative spectrum sensing
are soft-combining and hard-combining. In soft-combining, raw
sensed signal power values are sent from secondary users to
the fusion center, whereas in hard-combining techniques a 0/1
decision from each secondary user is considered. We consider
soft-combining in this paper because its performance is much
better than hard-combining with only a slightly higher commu-
nication overhead [18].
As we consider soft-combining, fusion center will process the

reports and make a decision whether there is an active primary
user or not. Let be the soft-combined spectrum sensing report
processed by the fusion center. The probability of detection and
false alarm per slot for collaborative spectrum sensing will be
given as

(8)

(9)

We will detail our solution on how to combine the user’s re-
port and how to evaluate the performance of primary user de-
tection and malicious user detection in Section IV.

C. Attack Model

We assume a very strong attack model where malicious users
lie about their sensing reports and locations (i.e., the cell in
which they are present during sensing). A malicious user is
aware of the primary user status. Our approach works even if

the malicious users are not always aware of the primary user
status and lie intermittently. The difference will be in the detec-
tion time of malicious users in such cases which is out of the
scope of our work. Each malicious user thwarts the system per-
formance by-
• Reporting an increased observation when the
primary user is inactive, thus increasing the false-alarm
rate.

• Reporting a decreased observation when the
primary user is active, thus increasing the missed-detection
rate.

• Reporting incorrect cell number.
The deviation is any random value chosen by malicious user
for each observation. Faulty nodes are not a part of the system.
The fusion center is unaware of attack strategy by malicious
users. It is also unaware of primary user location and primary
user transmit power. We assume that each malicious user acts
alone and the attack strategy is independent during each sensing
slot. If the reliability of a user assigned by fusion center drops
below a certain threshold , the user report is not considered.
The number of malicious secondary users are always less than
the number of honest users in the system.
Note that a malicious user may either take all the above at-

tacks or randomly choose some of them. In either cases, the re-
port received at the fusion center is erroneous. In this paper, we
primarily consider the strongest attackmodels, and the proposed
approaches can be applied to the simpler attack models as well.

IV. LOCATION RELIABILITY (LR)

In this section we propose our algorithms for evaluating loca-
tion reliability and malicious intention in mobile CRNs. One of
the key cognitive radio application addressed in, FCC report [3],
is the capability of public safety enhancements. For such mobile
ad-hoc emergency networks it is therefore, more realistic that
the secondary users in mobile CRNs can be turned on at any lo-
cation and at any time. It is not feasible to have prior knowledge
of fading and shadowing characteristics of the area of interest
at the fusion center neither availability of large training-data for
data-mining approach seems feasible. Moreover, such networks
when set-up at urban locations can have a high variance in shad-
owing and fading characteristics within a few feet. To add to
the uncertainty imposed by different path-loss at different loca-
tions, the spectrum sensing reports received at the fusion center
can be corrupted by the malicious users, from the very onset of
the system.
In this section we discuss the evaluation of location trust in

mobile CRNs. The papers, [18] and [11] have studied the perfor-
mance of collaborative spectrum sensing under different shad-
owing and fading characteristics. Large-scale propagation loss
depends significantly on the users positions and in practical sit-
uations, it is almost impossible that the effects would occur with
identical distribution in different geographical locations. It is
therefore, very important to know the reliability of location from
where the sensing result is generated. Apart from the cell char-
acteristics, the sensing reports are affected by two other reasons
) primary user activity and 2) malicious secondary user ac-

tivity. We need to understand the impact of these two activities
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before deriving LR from spectrum sensing report as there is no
training period.

A. Primary User Activity

We are interested in the sensing measurement from
each cell in order to determine its reliability. Let

be a sequence of reports from the cell ,
the fusion center receives in slots where as secondary
users may not be present in each cell during a sensing slot .
From (1), each element of is an independent and identi-
cally distributed random variable generated at different times
from different secondary users. The elements follow central
or noncentral chi-square distributions depending on the status
of primary user. Let and be the probability that primary
user is active or idle respectively . The sum of
such random reports from cell

(10)

Since the sum of such random variables ( [19], [9]) follow
a central limit theorem, the distribution of spectrum sensing
measurements from cell .

(11)

where and is the mean and variance of power received
from cell due to active primary user. and is the mean
and variance of the noise. Thus and are determining
factors for the trust level of cell . Since is same for all
cells, determines location reliability of a cell. We take 600
consecutive samples (sensing results) for different path-loss and
shadowing, with primary user on-off model. From Fig. 2, it is
evident that follows Gaussian.

B. Malicious User Activity

The spectrum sensing measurements from a cell, will be fur-
ther infected with malicious data. There is no closed form rela-
tion between velocity and spectrum sensing for variable large-
scale propagation losses. We find that as the user speed varies
for a fixed area of interest, the type of users (honest or malicious)
visiting a cell keeps varying. In other words, the user diversity
in a cell increases over the time with increase in speed. It shows
that for different speed of the mobile users the average cell
change rate increases with increase in speed [20]. We further,
simulate the behavior of mobile nodes in Fig. 3 to validate if
the number of distinct users visiting a cell during a given period
depend upon speed. For and 20 at m/s,
10 m/s, 20 m/s and 30 m/s, the average distinct users per cell
increases with and . Moreover, we formally analyze the
impact of malicious data on sensing results in mobile CRNs as
follows.
In static setting, malicious users would have dominated the

location reliability for the infected cell. However, in mobile
CRNs, their attack gets distributed across all the cells over time.

Fig. 2. Distribution of average sensing measurements from cells with
different path-loss exponent. dB; is the distance from primary user.

Fig. 3. Average number of distinct users visiting a cell.

On the other hand, mobile honest users help to train location re-
liability of each cell. As a result, the reports generated from a
cell at different times are from different users, and the reliability
of the report should be able to converge to a stable value even
with the presence of malicious nodes in the system.
Theorem 1: Given the mobility models of users in a mobile

CRN, the malicious users’ impacts on the sensing reports con-
verge to a stable value.

Proof: Assuming that user is traveling with velocity
in the network, the distance travelled by the user after
time can be represented by

The number of cells visited by in time is , where
is the parameter that is related to ’s mobility model, and

is the cell size. Consequently, given a cell , its expected
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number of time of being visited by is . Then, ex-
pected number of time, denoted as , which is visited by
all the users in time, is:

Therefore, the number of reports generated by is a func-
tion of the user’s mobility model ( and ). We define ’s
impact on sensing result as the number of reports generated
by him over the number of all the reports in the cell.

Then, the impacts of all the malicious users on cell ’s report
in time can be represented by (12), where is the index of
malicious users.

(12)

Note that is only determined by the user’s mobility model.
Therefore, is a stable value when the mobility models are
given.
Assuming that all the users have similar mobility models, we

can have (13) according to (12).

(13)

It means that the sensing results are still trustable if the mali-
cious users are minority and the time is long enough.
From (11), the average sensing result from a cell will be

higher for location with less attenuation and fading and can be
evaluated as,

(14)

(15)

for user in cell at time slot otherwise is 0.
represents number of reports received from the

cell .
According to the analysis from (13), we group the cur-

rent reports with past reports based on the cell location
informed by the secondary users. The steps of evaluating

have been detailed in Algorithm 1. At the beginning
of the Algorithm 1, all cells are given same trust values.

is the set
of evidences received in sensing slots. is the of
the cell .

Algorithm 1 Location Reliability (LR)

Initialize
For and

For each
for do
if has then

of reports from cell .

end if
end for

V. MALICIOUS INTENTION (MI)

Locations do not lie but users may. At the same time, a user’s
performance may be hampered because of its instantaneous
position during spectrum sensing. The true intention of a
secondary user cannot be captured entirely by their respective
sensing reports as honest users can be in bad locations experi-
encing deep path-loss and shadowing or malicious users can be
in good locations and vice versa.
We use Dempster-Shafer (D-S) theory to evaluate trustworth-

iness in collaborative spectrum sensing in mobile CRN. D-S
theory is a mathematical theory of evidence. It can be viewed
as a method for reasoning under uncertainty (epistemic uncer-
tainty) to logically arrive at decisions based on available knowl-
edge [21]. In dynamic mobile cognitive radio networks, the D-S
theory is well suited for two reasons ) it reflects uncertainty
and the D-S theory rule of combination, 2) combines evidences
from two or more sources to form inferences. In a finite dis-
crete space, D-S theory can be interpreted as a generalization
of probability theory where probabilities are assigned to sets as
opposed to mutually exclusive singletons.
The frame of discernment denotes a set

of mutually exclusive and exhaustive hypotheses about the
problem domain—if user is trustworthy or malicious. The
power set is . The Belief Mass
Assignment (bma), represented by , defines a mapping of the
power set to the interval between 0 and 1. For each ,

(16)

Intuitively, trust bma should be lesser when the deviation in-
creases. However, since this deviation is not limited, for nor-
malization we choose trust bma to be negative exponential. This
limits the trust bma in [0 1]. Based on (16), the bma function for
th sensing,

(17)

(18)

(19)
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where , is the deviation in the user report depending upon its
location. As the deviation decreases, our belief in increases
and vice versa. The uncertainty due to the noise level experi-
enced by the user is incorporated into .
The trust penalty or deviation, of evidence from average be

for user for any location .

(20)

stands for average and stands for standard deviation.
Some users are more vulnerable to misreading due to their in-
stantaneous location. The evidence received from a user in a cell
is discounted based on location reliability , computed in
Algorithm 1, to reflect the user’s credibility. Hence, the devia-
tion in the user trust for sensing slot is discounted based on
the location-

(21)

where reflects the unreliability of the reported loca-
tion. In the trust computation, the deviation in users reports will
reduce more if location unreliability is higher and vice versa.
This discounting of deviation, thus, incorporates unreliability
of the locations. Since the user trust is evaluated and updated
based on current and past reports, we use D-S rule of combina-
tion for updating subsequent bma in each sensing slot.

(22)

where and is obtained from (17)–(19).
Elaborating (22), the bmas for sensing slot will be updated

as in (23) where it incorporates past and present evidences. At
slot where
is evaluated as in (23), shown at the bottom of the page.
The formalized function of user trust evaluation at each slot
, will be

(24)

VI. LRMI—RECEIVER OPERATING CHARACTERISTICS

We evaluate (7)–(12) proposed in [5] against our algorithm.
We address this approach as Malicious Detection (MD) in our
paper. MD assigns trust factors such that they are exponentially
decreasing according to their distance from the median. The ap-
proach is similar to LRMI (algorithm 2) in terms of using expo-
nential function for trust evaluation but does not take into con-
sideration location reliability.

Algorithm 2 LRMI

Initialize

For each
Evaluate LR based on Algorithm 1
for do
Evaluate Equation (20)–(24)
if then
Remove from

end if

end for
for in do
Apply Equation (26)

end for
if then

else

end if

We analyze the performance of our solution in terms of Re-
ceiver Operating Characteristics (ROC) for both primary user
and malicious users detection. ROC is the plot of probability of
detection vs. probability of false alarm rate.
Primary User Detection: The existing method used for soft

combining is Equal Gain Combining (EGC) [18], which gives
equal emphasis to all the individual measurements. For N users
in collaborative spectrum sensing, with EGC rule at the fusion
center

(25)

For , the primary user status is otherwise
. Since we know the weight of each cell, we apply

(26)

We need to normalize the location weights at each sensing slot
as there may not be any report originated from a cell(s). The
probability of detection and false alarm per slot for collaborative
spectrum sensing under LRMI is given as

(27)

(28)

(29)

(23)
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where . is log-normally distributed. The

probability of detection and false alarm for the system
based on LRMI overall is

(30)

(31)

if the primary user is active at slot and
if primary user is inactive at slot .
Malicious User Detection: ROC for malicious user detection

for user ,

(32)

(33)

is the set of malicious users. where is the probability
primary user is detected by the fusion center applying LRMI and

is the corresponding false alarm rate. There is no closed
form solution for for log-normal fading [18] and therefore,
we evaluate the system numerically.

VII. PERFORMANCE EVALUATION

In this section, the performance of LRMI is compared with
MD both in terms of ROC for malicious user detection and ROC
for primary user detection. Results demonstrate that LRMI con-
sistently outperformsMD inmobile CRN. The impact of collab-
orative secondary users, malicious users, secondary users mo-
bility and cell-size is investigated.We useMATLAB to simulate
the system.

A. Simulation Settings

Cognitive Radio Network Settings: We consider the region
of interest to be 1000 m away from primary user. The region is
1000 m 1000 m and is divided into grid with cells of equal
area. We take average velocity m/s, cells and
sensing time s for all simulation results unless other-
wise mentioned. The secondary users send their location coor-
dinates along with the sensing report during each sensing slot.
The noise power is dBm and primary user transmit power
is 200 mW. We assume the users never pause. The sensing du-
ration of all secondary users is 1 ms [12] and the users sense
after every 1 s. We choose users to sense after every 1 s, as FCC
requires secondary users to evacuate the spectrum in 2 s when
primary user becomes active. The time-bandwidth product for
our simulation is 5. The path-loss exponent is selected randomly
from 3 to 6 for each cell and shadowing between 2 to 20 dB. For
simulation purpose, we assume the attack strength is
( dBm, dBm) which fusion center is oblivious of. is
used to denote the number of malicious users in the system. We
evaluate the system numerically. The malicious users detection

threshold, . We take dBm to dBm with
a step size of 0.5 dBm for primary user ROC.
Mobility Settings: Since the sensing duration ( ms
ms) is so small, we assume the users locations remain un-

changed during each sensing. The IEEE 802.22 needs spectrum
evacuation to be in 2 seconds by the secondary users when pri-
mary user become active. Hence, the time between two sensing
is small ( seconds), it will be unrealistic to consider the
mobility models with sudden and uncorrelated change in speed
and direction during each sensing slot. Therefore, we consider
Smooth Random Mobility Model [22], which considers the
two stochastic processes, speed and direction to
have their values correlated to the previous one in order to
avoid unrealistic patterns. The speed/direction changes occur
according to a Poisson process over the time. The acceleration
of all secondary users are m/s . The speed changes on an
average every 25 seconds.

B. Impact of Secondary Users

In this scenario, we use the settings described in the previous
section. We study the performance LRMI andMD for malicious
user detection in Fig. 4 in mobile CRNs with average velocity
of secondary users being m/s. We vary number of sec-
ondary users in collaborative spectrum sensing. From Fig. 4, it
is obvious that as the total number of secondary users increases

keeping percentage of malicious users constant
(20% malicious nodes), the system performance improves. For

, with decrease in number of malicious nodes in the
system , LRMI performance im-
proves. MD gives a very high false alarm rate. It ignores the
information that honest users can be at poor locations at times
due to their mobility.

C. Impact of Mobility

Due to mobility, the number of cells changes per unit time
for mobile users increases with the speed for a fixed cell-area
and cell-size [20], increasing user-diversity in a cell. We see the
impact of mobility in evaluation of location trust in Fig. 5. The
maximum average error is the
maximum error incurred in calculating sensing measurements
for location reliability across all cells where is the av-
erage sensing measurement evaluated at slot . We find that as
the speed is increased, the average error decreases faster with
increase in sensing slots with 20% malicious nodes. The lower-
bound is evaluated with no malicious nodes in the
system.
To see the effect of user diversity in a cell with respect to

ROC, we further evaluate the performance of LRMI with mali-
cious and nonmalicious data for calculating LR in Fig. 6. Note
for MI, the data contains reports from malicious users. LR-H is
for evaluation of LR with honest users in the system and LR-M
is for the evaluation of LRwith malicious data in the system.We
find that the performance in both LR-H and LR-M cases differ
only when the number of malicious nodes in the system is as
high as 40%.
We study the performance of LRMIwith different average ve-

locity of secondary users. Fig. 7 evaluates system performance
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Fig. 4. Impact of secondary users—ROC for malicious user detection at
m/s.

Fig. 5. Maximum average error in LR measurements for .

for m/s, m/s and m/s. As the average
velocity of users is increased, performance of LRMI improves.
MD performs better than LRMI at m/s but for mobile
secondary users, LRMI outperforms MD (Fig. 7). Performance
of LRMI further increases when the average speed of the mobile
users is increased from 20 m/s to 40 m/s. Thus mobility aids in
malicious user detection in collaborative spectrum sensing.

D. Impact of Number of LR Sensings

We find from Fig. 8, that for a fixed setting of and
, as the is increased, the performance of malicious detec-

tion using LRMI increases. Implicitly, with increased number of
sensings, the converges to the actual weight of each
cell. For m/s, sec
performs better than sec and sec. Similarly
for the same settings for , the system with sec
performs better than sec. In addition, it is interesting
to observe that there exists a performance upper bound for each

Fig. 6. Comparison of ROC curves for malicious user detection with LR eval-
uated both with honest data (LR-H) and malicious data (LR-M) for .

Fig. 7. Impact of velocity—ROC for malicious user detection with secondary
users .

. In other words, increasing the number of sensing will no
longer help to increase the performance after the convergence
time, which should be between sec and sec
for . Note that the convergence time for may be
larger than sec, and this may be the reason why we
cannot observe the upper bound for . Moreover, the per-
formance of is generally better than the one of ,
which is reasonable as the increasing number of attackers will
make them become less minority.

E. Impact on Primary User Detection

We evaluate complementary ROC for primary user detection
for LRMI and MD approach with different number of malicious
users in the system. For 10 secondary users at average speed of

m/s in the system, we increase the number of mali-
cious nodes and simulate the performance of both
LRMI and MD. We take threshold value, and filter out
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Fig. 8. Impact of LR sensings—ROC for malicious user detection.
m/s.

Fig. 9. Complementary ROC for primary user detection with
m/s.

user reports whose is below . The Fig. 9 shows LRMI
performs better than MD for all cases.

VIII. CONCLUSIONS AND FUTURE WORK

We studied the performance of spectrum sensing under dif-
ferent path-loss and fading conditions and came up with a solu-
tion fitting for mobile CRNs. The numerically simulated results
showed that our approach (LRMI) greatly improves malicious
detection in mobile CRNs and hence, performance of collabora-
tive-spectrum sensing for primary user detection. Thus mobile
CRNs, need to be evaluated considering both the location from
where the report was generated and who has generated the re-
port. Mobility is also found to be an aiding factor in malicious
users detection. The simulation results also show that as the av-
erage velocity of the secondary users in the system increases,
the ROC curves for the system improves.

An interesting extension of the work will be to evaluate how
malicious users can exploit mobility to their advantage and
avoid getting detected. The primary user is static in our current
model. Another future work will be to study the malicious
detection in a scenario when primary user is mobile.

APPENDIX A

The basic concepts of D-S theory used in formulation are
1) Frame of discernment denotes a set of mutually exclu-
sive and exhaustive hypotheses about problem domains.
is the power set of .

2) Belief mass assignment (bma), represented by , defines
a mapping of the power set to the interval between 0 and 1.

3) Rule of bma combination for elements in the
power set, the D-S rule of combination is given as
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