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Abstract—The complexity of channel scheduling in Multi-
Radio Multi-Channel (MR-MC) wireless networks is an open
research topic. This problem asks for the set of edges that
can support maximum amount of simultaneous traffic over
orthogonal channels under a certain interference model. There
exist two major interference models for channel scheduling, with
one under the physical distance constraint, and one under the hop
distance constraint. The complexity of channel scheduling under
these two interference models serves as the foundation for many
problems related to network throughput maximization. However,
channel scheduling was proved to be NP-Hard only under the hop
distance constraint for SR-SC wireless networks. In this paper,
we fill the void by proving that channel scheduling is NP-Hard
under both models in MR-MC wireless networks. In addition,
we propose a polynomial-time approximation scheme (PTAS)
framework that is applicable to channel scheduling under both
interference models in MR-MC wireless networks. Furthermore,
we conduct a comparison study on the two interference models
and identify conditions under which these two models are
equivalent for channel scheduling.

Index Terms—Complexity; Channel Scheduling; Multi-Radio
Multi-Channel Wireless Networks; Maximum weight channel
scheduling; NP-Hard; Polynomial time approximation scheme;
PTAS

I. INTRODUCTION

Multi-Radio Multi-Channel (MR-MC) Wireless Networks
have attracted increasing interest in recent years. Equipped
with multiple radios, nodes can communicate with multiple
neighbors simultaneously over orthogonal channels. These
concurrent transmissions can significantly improve the net-
work throughput [9]. According to the IEEE 802.11 standard,
3 of the 11 specified channels in 802.11b/g are orthogonal and
802.11a provides 13 orthogonal channels [14].

To enable the concurrent transmissions via multiple radios
transmitting over orthogonal channels simultaneously, the key
problem is the channel scheduling, which aims to maximize
the concurrent traffics without interfering each other. Channel
scheduling in MR-MC wireless networks has been investigated
under the assumption that the communication range equals
the interference range [19]. This assumption can’t be satis-
fied since in reality, a node’s interference range, denoted by
dinter ference, 15 usually larger than its communication range,
denoted by d.,y,. This means that two nodes might interfere
with each other although they can not communicate with
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each other. In this paper, we study the complexity of channel
scheduling in MR-MC networks when d;pter ference = deom.-

Without loss of generalities, we set dinter ference = P X
deom, Where P > 1. We call this the P interference-free model.
Then, if two nodes want to launch bidirectional communica-
tions, any other node whose minimum distance to the two
nodes iS < dinter ference Must keep silent. This indicates that
the distance between any two interference-free communica-
tions should be > dinterference- A channel scheduling that
supports only interference-free concurrent communications
under the P interference-free model is called P interference-
free channel scheduling.

In this paper, we will study the complexity of interference-
free channel scheduling in MR-MC wireless networks. Intu-
itively, the channel scheduling in MR-MC networks should
be harder than that in single-radio single-channel (SR-SC)
networks. Channel scheduling is always dependent on the traf-
fic demands. Generally speaking, the traffic demands among
nodes, which are based on the underlying routing strategy, vary
from time to time. At any given moment, the traffic demands
together with the network topology form a demand graph,
denoted by G(V, E), where each edge in F is associated with
a weight corresponding to the traffic demand. Given an edge-
weighted graph G(V, E), a channel scheduling will compute
E’ C F, such that all the edges in E’ can be activated con-
currently without interference. An Optimal Weighted Channel
Scheduling under the Physical distance constraint (OWCS/P),
can be defined as follows: Given an edge-weighted demand
graph G(V,E) representing an MR-MC wireless network,
compute an optimal channel scheduling O(G) € E, such
that O(QG) is P interference-free and the weight of O(G) is
maximized under the P interference-free model.

Two interfering nodes might not realize the existence of
each other when P > 1 if no position information is
available. Therefore the OWCS/P relying on the physical
distance constraint is not practical. This is the reason why most
existing channel scheduling schemes employ hop distance con-
straint instead of the physical distance constraint. In the hop
interference-free model, two nodes interfere with each other if
and only if they are within i/ hops. Correspondingly, we can
define the problem of Optimal Weighted Channel Scheduling
under Hop distance constraint (OWCS/H). However, these two



interference models are not the same as shown in Fig. 1. Both
the physical interference-free model and the hop interference-
free model are popular but their relations have never been
addressed in literature. In this paper, we will investigate the
conditions under which these two interference models are
equivalent.

B i e e B B e

e e e e e e e e e e e e e e e e e e e ———— e

Fig. 1. The difference between physical distance constraint and hop distance
constraint. The hop distances from A to C' and from F' to C are 2 and 3,
respectively. The physical distance from A to C' and from F to C are larger
than 1 but smaller than 2. Assume deom = 1 and dinter ference = 2. Then,
C is interference-free with both A and F' under 1 hop constraint, but C' does
interfere with them.

This paper also tackles the following two open problems.
Note that from now on we use OWCS/H>; (OWCS/P>) to
represent the OWCS/H (OWCS/P) problem when H > 1 (P >
1).

1) It has been shown that OWCS/H>; is NP-Hard in SR-
SC wireless networks [18]. Since SR-SC is a special
case of MR-MC, OWCS/H>; is NP-Hard too in MR-
MC networks. However, whether OWCS/P»; is NP-hard
or not is still open. In Section IV, we close this question
by proving the NP-Hardness of OWCS/P>; in MR-MC
networks.

2) As both OWCS/P>; and OWCS/H>; are NP-Hard, it is
impossible to find out an optimal solution in polynomial
time. We are interested in the following question: is
there a Polynomial Time Approximation Scheme (PTAS)
for OWCS/P>1 and OWCS/H>1 in MR-MC wireless
networks? For a maximization optimization problem
such as OWCS/P>; or OWCS/H>;, a PTAS can find
a solution that is at least (1 — €) times of the optimal in
polynomial time for an infinitesimally small real number
€. Whether a PTAS exists for OWCS/P>; or OWCS/H>
in MR-MC wireless networks is open. Answering this
question can facilitate scheduling algorithm design and
cross-layer optimization. Motivated by the observations

that many NP-Hard problems admit PTAS when re-
stricted to geometric graphs [1], and that OWCS/H>; in
SR-SC wireless networks [17] has a PTAS, we design a
PTAS framework that is applicable to both OWCS/P»
and OWCS/H>1 in Section V.

The major contributions of the paper can be summarized as
follows:

e We study the complexity of OWCS/P>1, in both SR-
SC and MR-MC wireless networks, and prove that
OWCS/P>; is NP-Hard for both types of networks.

e We construct a PTAS for both OWCS/P>
OWCS/H>; in MR-MC wireless networks.

o We obtain the conditions under which OWCS/P>; and
OWCS/H>; are equivalent. To be specific, OWCS/P—;
and OWCS/H_; are equivalent; and OWCS/P>; and
OWCS/H-; are equivalent under a polynomial time
transformation.

o The results in this paper fill the void of complexity study
for channel scheduling in wireless networks.

and

The rest of the paper is organized as follows: Section II
discusses the related work focusing on channel scheduling in
MR-MC networks and complexity study in SR-SC wireless
networks. In Section III, we present our network model and as-
sumptions. Section IV analyzes the complexity of OWCS/Px;
in MR-MC wireless networks. Section V proposes a PTAS
framework for OWCS/P>; in MR-MC wireless networks.
Section VI argus that the PTAS framework proposed for
OWCS/P> is applicable to OWCS/H 1. Section VII conducts
a comparison analysis on the physical and hop interference-
free models. Finally, Section VIII summarizes and concludes
the paper.

II. RELATED WORK

In this section, we survey the most related research on
channel scheduling for MR-MC networks and on complexity
analysis for SR-SC networks.

The benefits of using multiple radios and channels have
been theoretically studied in [9], [12] and [8]. A topology
control approach jointly considering channel scheduling was
studied in [13]. By considering two types of traffic demands,
[20] proposed both dynamic and static channel scheduling
and link scheduling methods. Ref. [21] jointly considered
the scheduling problem with routing in MR-MC wireless
networks. This work proposed a column based approach to
decompose the original problem into sub-problems and solves
them iteratively.

The concept of employing control (or primary) channels
and communication (or secondary) channels was investigated
in many works. In [11], the multiple radios at each node are
divided into two groups, with one assigned fixed channels
for packet reception and connectivity maintenance, and the
other assigned switchable channels for capacity increasing. A
common default channel is introduced in [7], [15] and [6]
to handle the network partition caused by dynamic channel
assignment, and to facilitate channel negotiation for data



communications. Note that the primary channel does not have
to be the same for all nodes in the network [11], [10] and [14].

Another important category of related research is code based
channel assignment. The CDMA code assignment problem is
considered in [4] and [2]. In [19], we proposed a s-disjunct
code based localized channel assignment scheme for MR-MC
wireless networks.

The complexity of channel scheduling in MR-MC wireless
networks under the physical distance constraint is still open.
There exist several works targeting the scheduling complexity
of SR-SC wireless networks under the hop distance constraint
[5] [18] [16] [17]. Ref. [5] introduced a polynomial time link
scheduling algorithm under the node exclusive interference
model where no two edges incident on the same node. This
work proved that the optimal channel scheduling is reducible
to the classical maximum matching problem and can be solved
in polynomial time. Ref. [3] extended the problem by con-
sidering edge weight and proved that the maximum weighted
matching problem can be solved in polynomial time. Ref. [18]
showed that OWCS/H—-; in SR-SC wireless networks is NP-
Hard. The OWCS/H>> was shown to be NP-Hard in [16] for
SR-SC networks. Since SR-SC is a special case of MR-MC,
the OWCS/H>1 is NP-Hard in MR-MC wireless networks.
A PTAS for OWCS/H>; in SR-SC wireless networks was
proposed in [17]. The existence of the PTAS for both OWCS/P
and OWCS/H in MR-MC networks is open.

Table I summarizes the current result on the complexity of
OWCS/P and OWCS/H, where each entry indicates whether
the problem is known to be NP-Hard; and whether it is known
to admit a PTAS.

Ow<CS/- SR-SC Networks MR-MC Networks
P>1 Unknown ; Unknown | Unknown ; Unknown
H>1 NP-Hard ; PTAS NP-Hard ; Unknown

TABLE 1
CURRENT OWCS COMPLEXITY RESULTS.

In this paper, we will prove that OWCS/P>; is NP-
Hard in both SR-SC and MR-MC networks, and propose
a PTAS framework that is applicable to both OWCS/P>,
and OWCS/H>; in MR-MC wireless networks. These results
complete the complexity study for channel scheduling in
wireless networks, i.e. this paper will give answers to all the
“Unknown”s listed in Table I.

III. NETWORK MODEL AND DEFINITIONS

The network with traffic demands is modeled by an edge-
weighted graph G(V, E), where |V| = n denotes the total
number of nodes. An edge weight indicates the amount of
traffic delivered along that edge. There exists a set of C' =
{c1,¢2, -+, ¢} orthogonal channels. For V node i € V, 1 <
i < n, it is equipped with r; radios and can access a set of
C; C C channels, where |C;| = k;. For example, C' can be
the orthogonal channels in 802.11a wireless networks.

In this paper, we consider the OWCS/P and OWCS/H
problems based on geometric graphs. These problems looks

for the set of edges that can support maximum amount of
simultaneous traffic under the physical or hop interference-
free model. Let d.,,, be the uniform communication range for
all nodes. Usually, dcom < dinterfere7 where dinterference is
the uniform interference range. Without loss of generality, we
set deom, = 1 and set dipter fere = P X deom = P. Under the
physical interference-free model, two nodes interfere with each
other if and only if their physical distance is < dipter ference-
Under the hop interference-model, two nodes interfere with
each other if and only if their hop distance is < H.

Given an edge-weighted network G(V, E), let d(u,v) de-
note the distance between node u and v, where u,v € V.

Definition 3.1: Edge-physical-distance: the physical dis-
tance between edge (uj,u2) and (v1,v2) equals to
min{d(u;,v;)}, where i, j € {1,2}.

If d(u,v) < deom, u and v can reach each other in 1 hop,
where u,v € V and u # v. Let h(u, v) denotes the minimum
hop distance, which is the number of hops between node
and v, where u,v € V.

Definition 3.2: Edge-hop-distance: the hop distance be-
tween edge (ui1,u2) and (vi,v2) equals to min{h(u;,v;)},
where 4,7 € {1,2}.

The classical matching problem is to find a subgraph of
G, such that any two edges in the subgraph do not share
a common node. Next, we define two induced matching
problems for OWCS/P and OWCS/H, respectively.

Definition 3.3: A P interference-free matching G’ is a
subgraph of G, such that the edge-physical-distance between
any two edges in G’ > P.

Definition 3.4: A H-hop interference-free matching G’ is
a subgraph of G, such that the edge-hop-distance between any
two edges in G’ > H.

Let w(e) denote the weight of an edge e € E.

Definition 3.5: The Weight of a graph G, denoted by
W (@), is the sum of the weights of all the edges in G.

Definition 3.6: The optimal P interference-free matching
O(G) is a P interference-free matching of G, such that
W(O(G)) is the maximum among all the P interference-free
matchings of G.

Definition 3.7: The optimal H-hop interference-free
matching O(G) is a H-hop interference-free matching of G,
such that W(O(G)) is the maximum among all the H-hop
interference free matchings of G.

Defs. 3.7 and 3.6 give the formal definitions of OWCS/P
and OWCS/H. In the following sections, we use subscript to
indicate the value or range of values of P and H. For example,
OWCS/P_; is the problem constrained by P = 1.



IV. THE COMPLEXITY OF OWCS/P

In Section II, we have mentioned that the complexity of
OWCS/P is still open. In this section, we will first prove that
OWCS/P is NP-Hard in SR-SC wireless networks. This result
can be directly generalized to MR-MC networks as SR-SC is
a special type of MR-MC networks.

To prove the NP-hardness of OWCS/P in SR-SC networks,
we consider the complexity of OWCS/P_; first. We claim that
OWCS/P-; is equivalent to OWCS/H—-; in SR-SC networks.

Lemma 4.1: The problems OWCS/P—; and OWCS/H_; are
equivalent in SR-SC wireless networks.

Proof: Let OPT/P_; be the set consisting of all the
edges of any optimal solution to the OWCS/P—; problem for
a SR-SC network G(V, E). According to the definition of
the OWCS/P—; problem, for Ve;,e; € OPT/P—;, their edge-
physical-distance is > 1. This indicates that the two incident
nodes of e; can not communicate with the two incident nodes
of ey, which means that the edge-hop-distance of e; and es is
> 1. Therefore OPT/P_; is a feasible solution to OWCS/H_,
for G.

For Ves € E but ¢ OPT/P_;, there exists an edge e4 €
OPT/P—; such that the edge-physical-distance between es and
e4 1s at most 1, which means that at least one incident node of
e3 has a direct edge connecting to one of the incident nodes of
e4 in G. Therefore the edge-hop-distance between e3 and ey
is at most one hop, which means that e3 could not be placed
in OPT/P—; under the hop-distance interference model. Thus
OPT/P—; is an optimal solution to OWCS/H_;.

Based on a similar argument, an optimal solution to
OWCS/H-; for network G is also an optimal solution
to OWCS/P_; for the same G. Therefore, The problems
OWCS/P—-; and OWCS/H-; are equivalent for any SR-SC
wireless network. |

We can also prove Lemma 4.1 based on the concept of
interference graphs. Given an edge-weighted graph G(V, E),
the interference graph is a node-weighted graph G;(V7, Ey),
where Vi = {e|e €V}, E; = {(e1,e2) | e1 and ey interfere
with each other in G}, and the weight of node e in G equals
the weight of the corresponding edge e in G. When P = 1 and
H =1, the corresponding interference graphs are the same for
the same network G. Therefore the optimal scheduling, which
is equivalent to computing a maximum weight independent set
in G for SR-SC wireless networks, will be the same.

Since OWCS/H_; is NP-Hard in SR-SC wireless networks
[18], we can derive the following theorem from Lemma 4.1:

Theorem 4.1: OWCS/P—; is NP-Hard in SR-SC wireless
networks.

As SR-SC wireless networks is a special case of MR-MC
wireless networks, we conclude that OWCS/P—; is NP-Hard
in MR-MC wireless networks. This is summarized by the
following theorem:

Theorem 4.2: OWCS/P—; is NP-Hard in MR-MC wireless
networks.

Now we have proved that the OWCS/P problem is NP-hard
when P = 1 for both SR-SC and MR-MC networks. In the
following, we will investigate the complexity of OWCS/P- ;.

Theorem 4.3: OWCS/P~1 is NP-Hard in SR-SC wireless
networks.

Proof: To prove the NP-hardness of OWCS/P~; in SR-
SC wireless networks, we will show that OWCS/P~; is
polynomial-time reducible to OWCS/P—; in SR-SC wireless
networks.

Let G(V, E) be an edge-weighted graph for an instance of
OWCS/P-;. We can construct G'(V’, E’), a problem instance
of OWCS/P_,, in the following way: For each node u € V,
we create a corresponding node v’ in G'. All u’s form V.
An edge (u/,v’) exists in E’ if and only if d(u,v) < P in G.
The weight of an edge (v',v’) in G’ is set to —oo if (u/,v') ¢
E; otherwise, its weight remains the same as in the original
grant G. Let G’ be an instance of OWCS/P_;. It is obvious
that this construction procedure takes polynomial time. An
example illustrating the transformation from G to G’ is given
in Figs. 2 and 3.

For any optimal solution OPT to OWCS/P—; in G, it is
also an optimal solution to OWCS/P+ in G as G is a subgraph
of G’ and G’\ G contains only the edges with the weight —oo.
None of these edges could be included in OPT that signals
maximum weight scheduling.

Similarly we can argue that any optimal solution to
OWCS/P5; in G is also an optimal solution to OWCS/P_;
in G'. This completes the proof. |

Fig. 2. A Traffic Demand Graph G with edge weight not shown. Here P = 2
(dcom =1 and dinterference = 2dcom).

Since SR-SC is a special case of MR-MC, we obtain the
following theorem:

Theorem 4.4: OWCS/P~1 is NP-Hard in MR-MC wireless
networks.



Fig. 3. The transformed graph G’, where the dash lines are the new edges
whose length is greater than 1 and < 2 in the original graph G. The weight
of each sold edge remains the same as in G and the weight of each dashed
edge is —co. In G', P = 1.

By combining the results of Theorems 4.2 and 4.4, we
conclude that OWCS/P>; is NP-Hard in MR-MC wireless
networks.

Note that we could not construct an interference graph and
then compute a maximum-weight independent set for MR-
MC networks due to the special constraints resulted from the
number of radios per node: a node can transmit on all radios
over different orthogonal channels simultaneously.

V. A POLYNOMIAL TIME APPROXIMATION SCHEME FOR
P-INTERFERENCE-FREE SCHEDULING IN MR-MC
WIRELESS NETWORKS

In Section IV, we have proved that OWCS/P>; in MR-
MC wireless networks is NP-Hard. In this section we will
construct a Polynomial-Time Approximation Scheme (PTAS)
for this problem. In other words, we will propose a procedure
that can compute a polynomial-time approximate solution
with a performance ratio (1 — €) for an arbitrarily small
positive number €. Let Py,s(G) denote the solution given by
the PTAS procedure and O(G) the optimal solution for the
OWCS/P>; problem in a MR-MC network G. We will prove
that W (P..s(G)) > (1 — e)W(O(G)).

A. Summary of the PTAS Construction

The PTAS construction procedure is summarized by the
following four steps. We will detail steps 3 and 4 in the
following subsections.

1) Griding: Let A be the smallest square aligned along the
2 and y axes that can cover the network G. Partition A
into small grids with each having a size of (P + 2) x
(P +2). For simplicity, we assume that the size of A is
a multiple of (P +2). Now we label each grid by (a, b),
where a,b=10,1,--- N — 1, with N the total number
of grids at each row or column. Then the id of the grid
at the lower-left corner can be denoted by (0,0). We

2)

3)

also denote the ith row and the jth column of the grids
by Row; and Col;, respectively.

Shifted Dissection: Partition vertically the area A by
columns of the grids Col;, where j = ki, k1 +m +
1,ky +2(m+1),---, and k; = 0,1,--- ,m. Then
partition horizontally A by rows of the grids Row;,
where i = ko,ko + m + 1, ko + 2(m + 1),---, and
ke = 0,1,--- ,m. We obtain a number of super-grids
with each containing exactly m x m grids if it resides
in the inner area of A, or less than m x m grids if it is on
the boundary. Since each of k; and k5 has m+1 choices,
we will have in total (m + 1)?> number of different
partitions. Each partition can be treated as shifting
right the leftmost column of grids (column Coly) kq
positions' and/or shifting up the lowest row of grids
(Rowg) ko positions. Therefore we call this partition
procedure shifted dissection. Denote each dissection by
P, , where a, b indicate that P, ; is obtained by shifting
Coly to column b and Rowg to row a. Figs. 4, 5, and 6
illustrate Py o, P19, and Py 1, respectively.

0 1,2 m-1, m

Fig. 4. Partition Py .

Computation and Performance Analysis: Consider a
specific partition P, ;. For each super-grid B in P, ;,
denote by GG the subgraph induced by all edges incident
to at least one node residing in B. Now compute an
maximum weight channel scheduling Sp for Gg. The
union of all Sp’s generated from all super-grids in
P, 4, denoted by S,;, form an approximate solution
to the original OWCS/P problem given (G. We repeat
this procedure for each partition and output the result
that have the maximum weight, i.e. W(Pis(G)) =
argmax, ,{W(Syp) | a,b = 0,1,--- ,m}. We will
prove that W (P,,s(G)) > (1 — €)W (O(G)) for a given
small positive real € in Subsection V-B.

'Each position corresponds to one grid size.
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Since S, is an optimal solution to G, (see Observation 1
mentioned in the above),

W (Sap) = W(O(G)[ ) Ean)-
Therefore,
W(Sap) + W(E; ) = W(O(G)), (2)
which yields
W(Sap) = W(O(G)) = W(Eqp). 3)

Now consider all the (m + 1)? partitions. Since a grid will
not be included in any super-grid for 2m + 1 times in total
(Observation 4), it will be excluded from the S, ;, computation
for 2m + 1 times. Therefore we have

S W(E;,) < 2m+1)W(0(G)), )
a,b

where a,b=0,1,2,--- ,m.
Based on the Pigeon hole principle and Eq. (4), we obtain

(2m+1)

argmin,, , {W(E; )} < CESE

wo(@) 6

Let P;™ be the partition that yields argmin, ,{W(E}, ,)}
for a,b = 0,1,--- ,m. Then, from Eq. (3) and Eq. (5), we
have

v

W(O(S55™) W(O(G)) = W(E) (6)

)

Y
S
8

= 1)
where B/, = E,,"NO(G).

Note that in our algorithm we will examine all the (m+1)?2
partitions and output the S, ; that has the maximum weight.
Denote this S, by Pias(G). Based on Eq. (6), we can obtain
Lemma. 5.1 easily.

Lemma 5.1: W(Pys(G)) > ﬁil)zW(O(G))

Now it is the time to compute m. Given an error parameter
€, we require that

>1—e (8)

flo= ©)

Summarizing the above analysis, we obtain the following
procedure to compute a PTAS for the maximum weight
P-interference-free channel scheduling in MR-MC wireless
networks:

Algorithm 1 A PTAS For P-Interference-Free Channel
Scheduling

Input: An edge-weighted graph G(V, E) and a positive small real
number e.

Output: P,.s(G), a set of edges that can support simultaneous
communications in G over orthogonal channels..

1: function Piqs(G)=PTAS(G, ¢ )

2: Compute m = [f(e)] based on Eq. (9).

3: Do shifted dissection to obtain the (m + 1) partitions.
4: for each partition P, ;, where a,b =0,1,---
5.

6

7

,m do
Compute S,
end for
Pias (G) = Salﬁl such that W(Sa/,b’) =
argmax,, , {W(Sa.)}

8: Output Pqs(G)
9: end function

C. Complexity analysis

Algorithm 1 summarizes the procedure to compute a PTAS
for the OWCS/P>; problem in MR-MC networks. In this
subsection, we will analyze its time complexity.

From Algorithm 1, we realize that the dominating compo-
nent in the time complexity analysis is the loop containing
line 5, which computes an optimal solution for the subgraph
G, for a partition P, ;. We will first prove that computing
an optimal Sp for any super-grid B takes polynomial time.

Since the side of a grid is P + 2, the area of a super-grid
is < (m(P + 2) + 2)2. Let C; denote the set of orthogonal
channels available for node ¢, and r; the number of radios
node ¢ has. Let k = max{|C;|} and r = maz{r;} for i =
1,2,--- ,n, where n is the total number nodes in G.

Consider any super-grid B and the corresponding graph
Gp(Vp, Ep), the induced graph of all edges incident to at
least one node residing in B. Construct Gz by replacing
each edge (u,v) € Ep with min {|C,, (" Cy|, ry,r,} parallel
edges. We have |E5| < (max {k,r})|Eg|. Let Sp be the
set of edges corresponding to an optimal solution for Gp.
Since the area of B is at most (m(P + 2) + 2)2, the total
number of edges received the same channel in the schedule
Sp is O(m?). Therefore there exist |E§\O(m2) candidate sets
of edges for each channel. Considering all channels, we have
in total k - \Eg|o(m2) candidate sets of edges. Therefore we
can employ brute-force to find out the optimal scheduling for
Gp by trying all |E}[*©(m") combinations. In summary, we
have

Lemma 5.2: 1t takes polynomial time to find out Sp for
each super-grid B.

. .. . 2 .
Since each partition contains O(%) number of super-grids
(Observation 3 in Subsection V-B), we have

Lemma 5.3: It takes polynomial time to find out S, for
any partition P, .

From all the above analysis, we can obtain the following
Theorem:



Theorem 5.1: A PTAS for P interference-free channel
scheduling in MR-MC wireless networzks does exist. Given
¢, the PTAS can be computed in |E|°(™"), where m = [f(¢)].

VI. A PTAS FOR H-HOP INTERFERENCE-FREE MATCHING
IN MR-MC WIRELESS NETWORKS

In Section V, we have proposed a PTAS for OWCS/P> in
MR-MC wireless networks. In this section, we will propose a
PTAS for OWCS/H>; in MR-MC wireless networks. Actually
the whole PTAS procedure and its analysis in Section V
can be transplanted directly to compute a polynomial time
approximation scheme for the OWCS/H>; problem in MR-
MC wireless networks.

First, the idea of constructing a PTAS is the same as that
illustrated in Subsection V-A, except that we set P = H and
replace the concept of P interference-free matching with H-
hop interference-free matching. Note that the shifted dissection
and the procedure to compute an optimal scheduling for each
super-grid remain unchanged. Furthermore, the performance
analysis in Subsection V-B is also applicable under the H-hop
interference-free model. Thus the function f{€) is the same as
the one shown in Eq. (9), and Lemma 5.1 also holds true for
the H-hop interference model.

As the area of a super-grid is < (m(H + 2) + 2)2, the
maximum number of edges in O(Gpg) in one channel is
O(m?). Therefore, with a similar argument as that of Lemma
5.2, we have:

Lemma 6.1: The optimal H-hop interference-free matching
for one super-grid can be found in polynomial time

In conclusion, according to Lemmas 5.1 and 6.1, we can
obtain the following theorem:

Theorem 6.1: The PTAS for H-hop interference-free chan-
nel scheduling in MR-MC wireless networks does exist. Given
€, the time complexity of the PTAS procedure is |E |O(mz),
where m = [f(e)].

From the above analysis, we can conclude that the proposed
PTAS for OWCS/P» is a framework that is applicable to the
OWCS/H>; problem in MR-MC wireless networks.

VII. DiscussioN OWCS/P AND OWCS/H

In this paper, we have studied the complexity of OWCS/P,
and proposed PTASs for both OWCS/P»; and OWCS/H>
in MR-MC wireless networks. We have considered two inter-
ference models: the Physical interference-free model and the
Hop interference-free model.

In the physical interference-free model, two nodes interfere
each other if and only if their distance is < P X deom,
where P can be any real number that is > 1. In the hop
interference-free model, two nodes interfere with each other
when they are within H hops. Thus, H is an integer that is > 1.
Therefore, in common sense, the physical interference-free
model is more precise than the hop interference-free model.
However, we have shown that the two models are equivalent

when P = H = 1 in Lemma 4.1, and any instance of
OWCS/P~; is polynomial time reducible to an instance in
OWCS/P-; in the proof of Theorem. 4.3. Therefore, we can
conclude that OWCS/H—, is equivalent to OWCS/P>; under
the polynomial transformation. Thus in theory, focusing on the
OWCS/H-,; problem suffices to obtain the results for channel
scheduling under either model.

However, it is interesting to observe that the hop
interference-free model is not as precise as the physical
interference-free model, as shown in Fig. 1. A careful study
indicates that the foundation supporting the polynomial trans-
formation in the proof of Theorem. 4.3 is the position informa-
tion. Without position information, a node can not distinguish
all the other nodes that might interfere with it. Nevertheless,
given the position information, the two models are equivalent
in practice. However, when no position information is avail-
able, hop interference-free model can be employed as the hop-
distance does not require the physical position information.

In conclusion, the physical interference-free model repre-
sents the channel scheduling problem more clearer. However,
the hop interference-free model is easier to study and imple-
ment in practice.

VIII. SUMMARY AND FUTURE WORK

In this paper, we have solved the following two open
problems:

1) Is the OWCS/P>; problem NP-Hard in MR-MC wireless
networks?

2) Are there polynomial time approximation schemes for
OWCS/P»; and OWCS/H>; in MR-MC wireless net-
works?

We have proved that OWCS/P>; is NP-Hard and proposed
PTASs for OWCS/P>; and OWCS/H>; in MR-MC wireless
mesh networks. The major contributions of this paper are
summarized (boldfaced) in Table III.

OWCS/- | SR-SC Networks | MR-MC Networks
P>1 NP-Hard ; PTAS | NP-Hard ; PTAS
H>1 NP-Hard w/PTAS NP-Hard ; PTAS

TABLE III
OWCS COMPLEXITY RESULTS.

By comparing the physical interference-free model and the
hop interference-free model, we found that they are both
suitable for studying the scheduling problem theoretically. In
practice, when position information is unavailable, the hop
interference-free model is applicable though it becomes less
precise. Nevertheless, our results indicate that a theoretical
study on channel scheduling under the hop interference-free
model suffices.

This paper has filled the void of the complexity study
for channel scheduling in MR-MC wireless networks. We
will seek simple approximate algorithms that have guaranteed
performance in our future research.
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