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Abstract—This paper addresses the problem of target count-
ing based on the Monte Carlo simulation. We rely on an
Accept-Reject process to guide the placement of virtual targets
in a virtual sensor field, which has exactly the same sensor
layout as the real one. The objective of this construction is to
generate a virtual target energy landscape whose shape is close
enough to an energy landscape estimated from the real sensor
readings. Based on the number of virtual targets placed on
the virtual field and the total virtual and real target energy
volumes, the number of real targets can be estimated. We
consider both single-epoch and multi-epoch sensor readings,
and our theoretical analysis indicates that our approach yields
an estimated target count that approximately converges to the
true target count. Extensive comparison based simulation study
has been performed and the results verify the effectiveness of
our target counting algorithms.

I. INTRODUCTION

One of the most basic and fundamental problems of
wireless sensor networks is to estimate the total number
of targets in a specific monitored region. In fact, counting
is usually the first step in other applications such as target
tracking and positioning [1]–[6]. Consider, for example, the
problem of tracking a mobile group of bison in a certain
part of the Yellowstone national park. Bio-ecologists may be
interested in the group size, location, and mobility patterns
of the bison to infer other useful information. A sensor
network could be deployed for this purpose to periodically
gather relevant data.

This paper focuses on the problem of mobile target
counting in sensor networks. The overlapping influence of
the target energies is the main challenge of estimation.
Existent research [7]–[11] has made a great effort to improve
the counting accuracy but most technical approaches yield
relatively good performance only when the number of targets
covered by each sensor is very small and the total number of
targets is significantly less than that of the sensors. In other
words, these approaches are only suitable for sparse target
counting. In dense target deployment where the number
of targets could be much larger than that of the sensors,
the overlapping influence of multiple targets is quite large,
therefore novel techniques have to be sought in order to
improve the counting accuracy.

We resort to the Monte Carlo simulation to count the
number of targets in a monitored sensor area. The Monte

Carlo simulation [12], [13] is usually employed to handle
problems with a high degree of uncertainty or multiple
coupled degrees of freedom. It is a viable approach for target
counting in sensor networks because many of the hidden
parameters, such as the sharp decrease of the sensor reading
resulted from a small increase of the distance between the
sensor and a target, are indirectly considered in Monte Carlo
simulation. In our approach, we first construct Voronoi cells
[14] based on the sensor locations, and then compute an
estimated target landscape based on the single-epoch sensor
readings. A virtual sensor field, with exactly the same shape
and same sensor layout as the original one, is utilized.
Virtual targets, whose energy decay property is the same as
that of the real targets, are placed in the virtual sensor field
following a controlled Accept-Reject [15] procedure. The
number of real targets is then computed from the energy
volumes of both the real and the virtual sensor fields and
the number of virtual targets. We also enhance the counting
accuracy by exploring sensor readings from multiple epochs,
in which the mobility of the targets results in different
sensor readings from epoch to epoch. To be specific, we
run the Monte Carlo simulation on each epoch to compute
the corresponding virtual energy volume. All the virtual
energy volumes are accumulated, and the real target count
is estimated from the cumulative virtual and real energy
volumes and the total number of virtual targets.

The energy landscape or volume of the original sensor
field has been employed to estimate the number of targets
in [7] and [8], but neither utilizes the Monte Carlo simulation
to derive the true target count. As a result, none of these ap-
proaches yields a good performance in dense target counting,
though the performance after a careful parameter calibration
is acceptable for the sparse scenario. Compared to the state-
of-the-art, in particular, the most relevant research, this paper
has the following novel contributions.

1) We propose two Monte Carlo simulation based target
counting algorithms, with one for single-epoch sensor
readings, denoted by MCTC-s, and the other for
multi-epoch sensor readings, denoted by MCTC-m, to
estimate the total number of targets. An Accept-Reject
procedure is devised to control the placement of the
virtual targets, whose positions are represented by a



two-dimensional random variable, in the virtual sensor
field such that the produced virtual energy landscape
has a similar shape to that of the real sensor field when
the number of virtual targets is large enough.

2) We perform an extensive simulation study to inves-
tigate the performances of MCTC-s and MCTC-m
and provide comparisons with those of VCTC and
Regression, two algorithms tailored from EBAM in
[7] and the heuristic in [8], which estimate the real
target energy volume based on Voronoi cells and
a polynomial regression function, respectively. Our
simulation results verify the superiority of MCTC-s
and MCTC-m over VCTC and Regression for both
sparse and dense target deployments. We also present
an in-depth analysis on the factors that affect the
counting accuracy.

3) We conduct a theoretical performance analysis to
argue that MCTC-s and MCTC-m each approximately
converges to the real target count.

The rest of the paper is organized as follows. In Section II,
we review the most related research. Our network model and
other background information are introduced in Section III.
Section IV proposes MCTC-s, the target counting algorithm
based on single-epoch sensor readings. MCTC-m, the al-
gorithm based on multi-epoch sensor readings is presented
and analyzed in Section V. Our comparison based simulation
results are reported in Section VI and this paper is concluded
with a discussion on future research in Section VII.

II. RELATED WORK

Prior efforts on target counting in sensor networks mainly
lie in four directions: (1) binary-sensing based approaches
[16]–[18] count the number of targets by assuming that a
sensor reports a value ‘1’ if one or more targets are detected
in its sensing range and ‘0’ otherwise; (2) topological
integration based approaches [19], [20] aim to obtain the
expected target count in sensor networks based on the topo-
logical integration theory; (3) clustering based approaches
[7], [8], [21] intend to identify multiple non-overlapping
clusters, each of which containing one or more targets; and
(4) statistics based approaches [9], [22] rely on probability
theory to estimate the number of targets. There also exists
an effort that considers target counting in camera sensor
networks [23]. Note that the binary sensing model and
the topological integration model report the bounds and
expectation values, respectively, while the performance of
clustering based algorithms heavily relies on the integration
and partition of the total target energy in the overlapping in-
fluence area, which results in coarse counting. Additionally,
statistics based approaches usually require a large number
of sensor readings to obtain reasonably good results.

The most relevant research to this work is reported in
[7] and [8], as they all require the computation of the
energy volume, and then divide it by the unit target energy

volume, in order to derive the estimated number of targets.
The differences are that our approach does not cluster the
sensor readings and employs the Monte Carlo simulation to
estimate the number of targets.

The EBAM algorithm proposed in [7] first partitions
all the sensors into non-overlapping clusters based on the
locations and readings of the sensors and then estimates
the number of targets in each cluster. An estimated energy
landscape is built for each cluster and the total energy
volume is computed as the sum of the energy volume of
each Voronoi cell in the cluster. By dividing the total energy
volume by the unit target energy volume, the number of
targets per cluster can be estimated. As the energy volume
per Voronoi cell is completely determined by the sensor
reading, which is very sensitive to the distance between
the sensor and the targets, a ceiling function is introduced
to upper-bound the contribution of an individual sensor
reading. However, this ceiling function may cause serious
undercounting when the targets are dense. Therefore this
approach is only suitable for the case when the targets are
sparsely located.

On the other hand, [8] takes a polynomial regression
model to build the estimated energy landscape for each
cluster. Though the estimated energy landscape from the
regression is smoother and better, it may result in energy
leakage. Therefore the unit target energy volume is multi-
plied with a fixed justification factor (0.7 in [8]). However,
the performance of this algorithm is very sensitive to the
justification factor, which is hard to determine in general
sensor network settings.

The Monte Carlo method [12], [13] has been widely
used in solving problems from difficult calculus calculation,
probability calculation, parameter estimation, etc. It provides
a useful tool to model the phenomena with a significant input
uncertainty and to study the systems with a large number of
coupled degrees of freedom. In this paper, we employ the
Monte Carlo simulation to build a target energy landscape
in a virtual sensor field whose shape is close enough to that
of the original sensor field. The estimated energy volume
from the virtual energy landscape is used to compute an
estimated number of targets in the original sensor field. Our
approach does not require clustering, and no justification
factor or ceiling function is utilized to calibrate the estimated
target count. Nevertheless, it achieves superior performance
for both sparse and dense target counting. By incorporating
the sensor readings from multiple epochs, the counting
accuracy can be further improved. In fact, we argue that our
Monte Carlo based target counting algorithms approximately
converge to the real count. In wireless sensor networks, the
Monte Carlo method is employed to tackle the problem of
target tracking and target localization in [24].

Our work can also be regarded as a type of statistics based
approaches but it does not require a large number of sensors
to count an even larger number of targets. Compressive



sensing (CS) based approach [22] relies on the CS theory
to estimate the number of targets in sensor networks. This
approach is suitable for sparse targets only. By deriving a
probability mass function (pmf) of the total target counts and
utilizing partition and compensation methods, [9] presents a
work that deals with double-counting in sensing for wire-
less sensor networks. This work assumes that each sensor
captures the number of targets under its sensing coverage
while our work requires the direct measurements of the
target energies.

III. BACKGROUND INTRODUCTION

In this section, we introduce our network model and the
relevant background information.

Let S = {s1, s2, · · · , sNs} be the set of Ns sensors
deployed in a two-dimensional (2D) monitored area R.
Assume that the physical position of each sensor is known
to us, which can be obtained by techniques such as those
proposed in [25]–[27]. Denote by Tg = {t1, t2, · · · , tNt} the
set of Nt mobile targets whose distribution in R is arbitrary
at any instant of time. We also use ti to represent the location
of the target ti when there is no ambiguity from context.
The emission of the target signal amplitude follows a decay
model captured by a function fE(d), where d is the Euclidian
distance to the target. For example, fE(d) = 1

(1+d)α , with α
being the decay factor in the range of [2.0, 5.0], is a popular
target signal amplitude decay model that has been widely
adopted [7], [8]. Following the mainstream research [7], [8],
we assume that the signal amplitude at any point p in R is
the superposition of the signal amplitudes of all targets at
that position:

E(p) =
Nt∑
j=1

fE(d(p, tj)). (1)

The reading of a sensor si, denoted by E(si), equals E(p),
where p is the position at which the sensor is placed. The
energy landscape (signal amplitude profile) over the whole
sensor field R, denoted by E(S, Tg), is given by:

E(S, Tg)(p) = E(p), for p ∈ R. (2)

Note that sensors are usually sparsely deployed and each
sensor provides only a local observation of the phenomenon
in the monitored area. Therefore it is impossible to obtain
a precise energy landscape based on the discrete sensor
readings. In the following, we propose to employ Voronoi
Cells to build an estimated energy landscape.

Given any sensor si ∈ S, its Voronoi Cell Vc(si) consists
of all the points in the sensor field that are not farther from
si than to any other sensor, i.e. a point p ∈ Vc(si) if and
only if d(p, si) ≤ d(p, sj) for any sj with sj 6= si. The
estimated energy landscape over the sensor field, denoted
by Ê(S, Tg), is then given by

Ê(S, Tg)(p) = E(si) for p ∈ Vc(si). (3)

The Monte Carlo simulation is a collection of different
methods that perform experiments using random numbers
and the probability theory to get approximate solutions to a
specific problem. In this study, the Monte Carlo simulation
is used to estimate the number of targets that could generate
Ê(S, Tg). We start from a virtual area R′ that is exactly
the same as R. R′ also contains a set of Ns sensors,
denoted by S′ = {s′1, s′2, · · · , s′Ns}, with the position of
s′i being the same as that of si in R. Therefore we have
Vc(s′i) = Vc(si) for i = 1, 2, · · · , Ns. Initially E(s′i) = 0 for
∀s′i ∈ S′. Virtual targets, denoted by T ′g = {t′1, t′2, · · · , t′N ′

t
},

which have exactly the same target signal amplitude decay
property as those of the real targets, are added to R′ one
by one following a particular distribution until the “shape”
of Ê(S′, T ′g), the estimated energy landscape of R′, is close
enough to that of R. Whenever a new virtual target is placed
in R′, all E(s′i) values are updated based on the target energy
decay function.

In the following two sections we detail our approach
regarding how to insert virtual targets to R′ and how to
estimate Nt from Ê(S, Tg) and Ê(S′, T ′g), where Ê(S′, T ′g)
is generated by N ′t virtual targets. We consider single-epoch
and multi-epoch sensor readings, respectively.

IV. MONTE CARLO TARGET COUNTING BASED ON
SINGLE-EPOCH SENSOR READINGS

In this section, we present our method to employ the
Monte Carlo simulation for estimating the total number
of targets based on the sensor readings collected within
a single-epoch. We assume that all target positions are
independent of one another and follow the same distribution.

A. Building the Virtual Energy Landscape

We view a target position in the original sensor field as a
random vector (X,Y ), whose probability density function is
f(x, y). This function f(x, y) is usually unknown. However,
it can be estimated by f̂E(x, y), which equals Ê(S, Tg)
divided by the integral of Ê(S, Tg) over R. Note that here
we use f̂E(x, y) as an estimate of the distribution of the
true target position within one epoch by treating the signal
decay function (after scaling) as the kernel function and
following the usual kernel smooth process. This known
function f̂E(x, y) is used to generate the virtual targets and
consequently establish the virtual energy landscape. The
following is the detail.

We first compute the series of ratios
E(s1)
Emax ,

E(s2)
Emax , · · · ,

E(sNs )
Emax , with Emax being the largest

sensor reading. These ratios determine where a virtual
target should be placed. Next, we repeat the following
steps until N ′t (a predetermined integer) virtual targets are
generated:

1) Generate a 2D random vector (x′, y′) according to
the uniform distribution over R′. Without loss of
generality, assume that (x′, y′) is located in Vc(s′i).



2) Generate zi ∈ (0, 1) according to the uniform distri-
bution over the unit interval.

3) A virtual target is placed at (x′, y′) in R′ if and only
if zi <= E(si)

Emax .

These three steps constitute a Monte Carlo Accept-Reject
sampling procedure, leading to N ′t virtual targets. Clearly,
these N ′t virtual targets produce Ê(S′, T ′g) that has a shape
similar to that of Ê(S, Tg) if N ′t is large enough.

Note that E(si)Emax represents the chance that a virtual target
occurs at Vc(s′i). Moreover, when the number of virtual
targets becomes larger and larger, the distribution function
f̂ ′E(x, y) (defined in a way similar to that of f̂E(x, y)) of the
location of a (random) virtual target approximates f̂E(x, y).
Combing this with the previous discussion, we see that if
both N ′t and Nt are large, f̂ ′E(x, y) is close to f(x, y), the
distribution function of the true target positions.

B. Estimating the Number of Targets

We note that the energy volume of Ê(S, Tg), denoted by
V̂ (S, Tg), can be computed by summing up the product
of each sensor reading and the area of the corresponding
Voronoi Cell: V̂ (S, Tg) =

∑Ns
i=1 E(si) · Area(Vc(si)). This

quantity V̂ (S, Tg) represents an estimated energy volume
of the original energy landscape based on Tg . Similarly,
we define V̂ (S′, T ′g) as the estimated energy volume of the
virtual energy landscape based on T ′g .

Due to the property of superposition of target signal
amplitudes, it is seen that V̂ (S, Tg) can be decomposed into
various contributions from Nt individual targets: V̂ (S, Tg) =∑Nt

j=1 V̂ (S, tj). By the strong law of large numbers, V̂ (S,Tg)
Nt

converges almost surely to E(V̂ (S, t)) when Nt →∞. Here
t is a random position of a true target and the operation E
indicates expectation taken with respect to the probability
density function f(x, y). Therefore, if Nt is large, V̂ (S,Tg)

Nt

can be used to approximate E(V̂ (S, t)). Similarly, if N ′t is

large,
V̂ (S′,T ′

g)

N ′
t

can be used to approximate E(V̂ (S′, t′)).
Here t′ is a random position of a virtue target and the
operation E indicates expectation taken with respect to the
density function f̂ ′E(x, y). From Section IV-A, when both
N ′t and Nt are large, f̂ ′E(x, y) can be used to approximate

f(x, y), and hence V̂ (S,Tg)
Nt

is close to
V̂ (S′,T ′

g)

N ′
t

. Now seting
V̂ (S,Tg)

Nt
= V̂ (S′,T ′

g)

N ′
t

yields

N̂t =
V̂ (S, Tg) ·N ′t
V̂ (S′, T ′g)

. (4)

Eq. (4) provides an estimate of Nt by using the size N ′t of
the set of virtual targets and the estimated energy volumes of
the original and virtual target fields. Algorithm 1 summarizes
the procedure of our Monte Carlo target counting based on
the sensor readings from one single-epoch.

Algorithm 1 MCTC-s: Target counting from single-epoch
sensor data

1: Compute Ê(S, Tg).
2: Run the Monte Carlo Accept-Reject sampling procedure

until a stop criterion (e.g., N ′t = 10, 000) is met.
3: Compute N̂t based on Eq. (4).

V. MONTE CARLO MOBILE TARGET COUNTING BASED
ON MULTI-EPOCH SENSOR READINGS

Algorithm 1 is designed to count the number of targets
when only the sensor readings from a single-epoch are
available. Sensor readings from a single-epoch constitute one
snapshot of the behavior of the targets. Correspondingly,
the estimate of the size of the set of targets can deviate
significantly from the true size, especially when the size of
the set of virtual targets is bounded due to certain reasons.
To improve the estimate of the number of real targets,
we consider multiple epochs that take into account the
fact that targets are moving objects. Throughout the multi-
epoch process we assume that the locations of targets are
independently distributed according to a fixed distribution
with a density function f(X,Y ).

A. The Algorithm MCTC-m

We assume that each sensor reports its reading to the
central server once every epoch. As long as the number of
targets stays unchanged, the newly available data can always
be employed to help us better estimate the total number
of targets. Note that in our consideration the position of
each sensor stays still during its life span while the targets
keep on moving. Therefore the sensor readings change from
epoch to epoch. Let Tmax be the maximum number of
epochs to be considered. Then we can compute the estimated
energy landscapes for all epochs: Ê1(S, Tg), Ê2(S, Tg), · · · ,
ÊTmax(S, Tg). Correspondingly we can obtain the energy
volume for each of the estimated energy landscapes, denoted
by V̂1(S, Tg), V̂2(S, Tg), · · · , V̂Tmax(S, Tg), respectively.
Similarly, for each epoch i, we can build a virtual energy
landscape Êi(S′, T ′g), as described earlier, and compute its
energy volume V̂i(S′, T ′g). The question is then: how can we
use the information collected at each epoch to estimate the
size of the set of targets?

Our approach is to estimate the actual number of targets
by using the total number of virtual targets generated in all
epochs, the total estimated energy volume of the original
sensor field, and the total estimated energy volume of the
virtual sensor field. Let N ′it be the number of virtual targets
at epoch i. Assume that the stop criteria of the Monte Carlo
simulation is N ′it = N ′t , where N ′t is a constant. Then with
a similar argument to that of Eq. (4), the number of the true



targets can be estimated as follows:

N̂t =
∑Tmax

i=1 V̂i(S, Tg) ·N ′t∑Tmax
i=1 V̂i(S′, T ′g)

. (5)

In Eq. (5),
∑Tmax

i=1 V̂i(S, Tg) and
∑Tmax

i=1 V̂i(S′, T ′g) are
the sums of the estimated energy volumes for the original
and the virtual target fields, respectively. Note that the for-
mula in (5) is a direct extension of that in (4). Eq. (5) reduces
to (4) when Tmax = 1. The procedure of target counting
based on the multi-epoch sensor readings is summarized by
Algorithm 2.

Algorithm 2 MCTC-m: Target counting from multi-epoch
sensor data

1: Run the Monte Carlo Accept-Reject procedure to com-
pute the estimated energy volumes of both the original
and the virtual sensor spaces for each epoch.

2: Compute N̂t based on Eq. (5) .

In the following subsection, we analyze the performance
of Algorithm 2 in terms of target counting accuracies.

B. Performance Analysis

Suppose in the ith epoch, the real targets are located at
tij for j = 1, 2, · · · , Nt, and the virtual targets reside at t′ij
for j = 1, 2, · · · , N ′t . Decompose V̂i(S, Tg) into V̂i(S, tij)
and V̂i(S, T ′g) into V̂i(S, t′ij). Then we rewrite (5) as

N̂t =

∑Tmax

i=1

∑Nt

j=1
V̂i(S,tij)

Tmax·Nt∑Tmax

i=1

∑N′
t

j=1
V̂i(S′,t′

ij
)

Tmax·N ′
t

·Nt (6)

Assume that all the locations tij of the true targets are
independent. Then {V̂i(S, tij)} and {V̂i(S′, t′ij)} are two
random samples. As in the derivation of Eq. (4), we see

that as Tmax · Nt → ∞,
∑Tmax

i=1

∑Nt

j=1
V̂i(S,tij)

Tmax·Nt converges
almost surely to the expectation E(V̂ (S, t)), where t is a
random position of a true target and the expectation is taken
with respect to the probability density function f(x, y). We

also see that as Tmax · N ′t → ∞,
∑Tmax

i=1

∑N′
t

j=1
V̂i(S

′,t′ij)

Tmax·Nt
converges almost surely to the expectation E(V̂ (S′, t′)),
where t′ is a random position of a virtue target and the
expectation is taken with respect to the probability density
function f̂ ′E(x, y). In addition, if both N ′t and Nt are
large, f̂ ′E(x, y) can be used to approximate f(x, y), so that
E(V̂ (S′, t′)) tends to approximate E(V̂ (S, t)), and thus the
right hand side of (6) tends to approach Nt. The above says
that when the size of the set of true targets and the size of
the set of virtual targets are large, the estimated size of the
set of true targets is close to the actual size.

We summarize the above into the following: When Nt,
N ′t , TmaxNt , and TmaxN

′
t are large, the estimate N̂t from

Algorithm 2 is approximately unbiased for the true target
count. Note that in general, the need of large values of Nt

and N ′t comes from the requirement that the distribution of
a random virtual target should approximate the distribution
of a true random target. If the targets meet the piecewise
uniformity, i.e., they are uniformly distributed within each
Voronoi cell, the above conclusion holds true when only
requiring Tmax to be large.

We conclude this subsection by making the following
remark: using the above argument, it is easy to see that when
Nt and N ′t are large, the estimate N̂t from Algorithm 1 is
approximately unbiased for the true target count.

VI. PERFORMANCE EVALUATION

In this section, we report our simulation results to
demonstrate the strength of our Monte Carlo simulation
based target counting algorithms (Algorithms 1 and 2). The
wireless sensor network under our study consists of Ns

sensors and Nt targets on a 100m × 100m area R, where
Ns is drawn from {100, 225, 400} and Nt is drawn from
{10, 50, 100, 225, 400, 600}. For simplicity, we set the stop
criterion of the Accept-Reject process to be N ′t = 10, 000.
We consider the following two scenarios:

1) single-epoch sensor readings
2) multi-epoch sensor readings

The first scenario tests the performance of Algorithm 1 while
the second investigates the performance of Algorithm 2.

A. Scenario 1: Single-Epoch
In this simulation study, all the Ns sensors are ran-

domly and uniformly deployed in R. The placement of
the targets is either “Random”, which indicates that all
targets are randomly deployed in R, or “Hot-Spot”, where
targets are placed according to a 2D “Hot-Spot” distribution
N (µp, σ

2I), with I being a 2× 2 identity matrix, µp being
fixed at the center of R and σ = 20. This “Hot-Spot” case
simulates a target group scattered in a focused area (hot-
spot). In fact, about 95% targets reside in a square that has
the same center as R and has an area of 6400m2. Note
that when generating targets according to N (µp, σ

2I) in our
simulation, a target is simply dropped if it appears out of
R. The target energy decay factor α is set to 2.0.

For comparison studies we consider the following two
algorithms tailored from the EBAM algorithm in [7] and
the regression algorithm in [8]:
• VCTC. VCTC stands for Voronoi cell based Target

Counting, which is similar to MCTC-s except that
no Monte Carlo simulation is performed in VCTC.
To be specific, we estimate the number of targets by
computing the energy volume for each Voronoi cell
Vc(si) and then dividing the total energy volumes
of all Voronoi cells by Et, the unit energy volume
contributed by a simple target. In other words, N̂t =∑Ns

i=1
E(si)·Area(Vc(si))

Et .



• Regression. This algorithm computes a polynomial
regression function from the sensor readings, which is
used as the estimated energy landscape Ê(S, Tg). Then
the number of targets is estimated by dividing the total
energy volume derived from Ê(S, Tg) by Et. In other

words, N̂t =
∫
R
Ê(S,Tg)

Et .
Note that VCTC is similar to EBAM [7] but it does not

apply the ceiling function to upper-bound the contribution of
each sensor reading. In fact, we have implemented EBAM
in our simulation study and found that the ceiling function
results in a significant undercounting when the number of
targets is large. This could explain the reason why in the
original study of EBAM [7], the authors consider the case of
sparse targets where Nt is less than 20 but Ns is more than
100. The Regression algorithm is related to the one proposed
in [8] but we do not utilize the scaling coefficient to calibrate
the energy level of a single target. Our simulation study
indicates that the scaling coefficient introduces a significant
overcounting for dense target deployment.

We run the simulation 50 times and the averaged results
are reported in Table I and II for the “Random” and “Hot-
Spot” cases, respectively. The performance metrics to be
investigated include the Mean and the Average Absolute

Error (AAE) of the 50 runs, where Mean =
∑50

i=1
N̂i
t

50

and AAE =
∑50

i=1
|N̂i
t−Nt|

50 , with N̂ i
t being the estimated

target count at the ith run. Note that the Mean serves as
an estimator of the true target count and the AAE can be
regarded as a metric to measure the bias of the estimation.

From Table I and II we draw the following four important
observations:

1) MCTC-s outperforms VCTC and Regression in terms
of Mean and AAE for all settings, especially when
the number of targets is large. The performances of
VCTC and Regression are comparable for both target
distribution patterns.

2) The Mean values indicate that VCTC and Regression
always report a lower count for both target deployment
patterns. Nevertheless, when targets are deployed in
a “Hot-Spot” pattern, MCTC-s yields a slight over-
count. Moreover, the undercounting problem of VCTC
and Regression is much more serious than the under-
counting or over-counting problem of MCTC-s.

3) The target deployment patterns slightly affect the
performances of all the three algorithms. The “Hot-
Spot” target pattern produces slightly better results.

4) Increasing the number of sensors does not obviously
improve the counting accuracy for all the three algo-
rithms under both target deployment patterns.

The first observation indicates that the Voronoi cells and
the polynomial regression function used to compute the
estimated Ê(S, T ) produce a similar estimation. On the other
hand, the Monte Carlo simulation does play an important

role for high-precision target counting especially when the
number of targets is large. In MCTC-s, by introducing the
virtual sensor field, the effect of sensing area boundary
that may cause counting errors is largely removed when
estimating the number of targets. From a theoretical point of
view, MCTC-s intends to estimate the expected contribution
of a single target to the observed sensor readings based on
the unknown/hidden target distribution and the known sensor
placement. In this process, the factors that might effect the
estimation of energy volumes are indirectly counted. On the
other hand, the estimated Ê(S, T ) introduces a larger error
in both VCTC and Regression because the sensor readings
drop sharply as the distance to a target increases. Therefore
MCTC-s achieves a better result.

The second observation involves the issue of under-
estimation and over-estimation. The overcounting problem
of MCTC-s when targets are deployed in a “Hot-Spot”
pattern results from the Normal distribution of the targets:
some virtual Voronoi cells have low true target count but
exhibit a high target energy because they are neighbors of the
cells that have a much larger target count. The undercounting
problem is a sign of energy leakage due to the sensor field
boundary effect and the sharp decrease of the target energy
w.r.t. distance. Notice that most existing target counting
algorithms [7], [8], [18], [22] only consider the case where
the targets are sparsely deployed. In such a case, the errors
caused by the boundary effect and the sharp decrease of
the target energy are not as severe as those in the dense
target case. To overcome the undercounting or overcounting
problem, many approaches introduce a parameter such as the
ceiling function in [7] and the scaling coefficient in [8] to
improve the counting accuracy. However, for different sensor
layouts and different sensor field shapes, the setting of the
parameter may be different and an optimal value is hard to
obtain. Therefore as indicated in [7], [8], such a parameter
can only help when the number of targets is small and
the target deployment is sparse. Nevertheless, our MCTC-
s algorithm does not need any regularity parameter but it
yields more accurate results. Note that the overcounting and
undercounting of MCTC-s is not severe because the Monte
Carlo simulation indirectly considers the causal factors,
demonstrating the strength of MCTC-s.

The third observation is in particular interesting. The
“Hot-Spot” pattern produces slightly better results because
the effect of the sensing area boundary is not significant
as targets are deployed in the center area. The fourth
observation indicates that it is unnecessary to deploy a large
number of sensors for better counting accuracy because
neighboring sensors observe similar phenomenon, which can
be easily captured by energy volume estimation based on
Voronoi cells or regression functions.



Table I
THE MEAN AND THE AAE WHEN THE TARGETS ARE RANDOMLY DISTRIBUTED IN R.

Nt = 10 Nt = 50 Nt = 100 Nt = 225 Nt = 400 Nt = 600
Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE

Ns = 100
MCTC-s 9.7 1.6 49.8 3.3 96.4 5.3 218.5 8.1 390.9 13.0 588.9 14.0
VCTC 8.7 2.0 43.8 6.2 84.5 15.5 191.8 33.2 342.3 57.7 513.4 86.6

Regression 8.6 1.9 43.7 7.1 84.3 15.7 189.5 35.5 341.6 58.4 511.4 88.6

Ns = 225
MCTC-s 10.3 1.0 48.7 2.1 98.7 3.0 219.9 5.8 391.3 9.1 586.6 13.5
VCTC 8.6 1.5 42.9 7.1 86.5 13.5 192.5 32.5 342.5 57.5 513.4 86.6

Regression 8.6 1.5 42.4 7.6 85.4 14.6 191.9 33.1 342.5 57.5 511.9 88.1

Ns = 400
MCTC-s 9.8 0.5 51.1 1.6 97.6 2.8 220.0 5.1 391.4 8.7 586.2 13.9
VCTC 8.5 1.5 43.8 8.1 86.4 13.6 192.8 32.2 342.7 57.3 512.8 87.2

Regression 8.4 1.6 44.1 8.9 85.4 14.6 191.9 33.1 341.9 52.1 512.0 88

Table II
THE MEAN AND THE AAE WHEN THE TARGETS ARE DEPLOYED IN A “HOT-SPOT” PATTERN IN R.

Nt = 10 Nt = 50 Nt = 100 Nt = 225 Nt = 400 Nt = 600
Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE

Ns = 100
MCTC-m 10.4 1.4 50.4 2.8 100.3 4.2 227.2 6.5 405.6 8.6.9 602.4 10.1

VCTC 9.4 1.1 46.6 3.9 93.8 7.0 215.4 10.2 380.4 19.6 569.7 30.3
Regression 9.2 1.2 47.8 3.0 95.9 5.1 214.5 10.9 379.8 21.1 564.8 35.4

Ns = 225
MCTC-m 10.0 0.6 50.2 1.9 101.0 2.5 225.6 3.0 402.4 5.8 602.9 5.7

VCTC 9.3 0.9 47.3 3.0 94.6 5.4 213.0 12.0 378.4 21.6 567.7 32.3
Regression 9.6 1.0 47.3 2.7 93.7 6.3 213.1 11.9 378.0 22.0 568.2 31.8

Ns = 400
MCTC-m 10.2 0.5 50.6 1.3 100.5 1.8 226.4 1.6 402.6 4.0 603.4 4.7

VCTC 9.8 0.6 47.5 2.5 94.8 5.2 213.2 11.8 378.3 21.7 569.8 30.2
Regression 9.5 0.8 47.3 2.7 94.4 5.6 212.4 12.6 379.0 21.0 568.4 31.6

B. Scenario 2: Multi-Epoch

In this subsection, we investigate the performance of
MCTC-m (Algorithm 2). The number of epochs Tmax is
set to be 200. To eliminate the effects of sensor locations
on the performance, we consider a grid structure in which a
sensor is placed at the center of each grid. For a comparison
purpose we also give the results when sensors are randomly
and uniformly deployed in R. Each simulation scenario is
repeated for 50 times and the averaged results are reported.
The performance metrics are the Mean and the AAE defined
in Section VI-A.

Our assumption for this study is that all target locations
are independently and identically distributed according to
a fixed distribution. This corresponds to the case with a
high sensor sampling rate. We will investigate other cases
in our future research. Similar to the single-epoch scenario,
we consider Random and “Hot-Spot” target deployment
patterns, which places targets randomly in R or using
N (µp, σ

2I), with σ = 20 and µp being the center of R,
respectively.

Note that investigating the sensor readings from multiple
epochs to exploit their temporal correlation has been exten-
sively studied for in-network information processing but not
for target counting. To emphasize the strength of MCTC-
m, we compare it with VCTC and Regression again. We
run VCTC and Regression over the sensor readings of each
epoch and output the running average of the estimated target
counts at each epoch. Since both VCTC and Regression
divide the total estimated energy volume by the single target

energy volume to get the number of targets, the multiple
epoch version of VCTC or Regression actually estimates the
number of targets based on the averaged estimated energy
volume. The results are reported in Tables III to VI.

We notice that all the four observations obtained from
the single-epoch scenario (tables I and II) hold true for the
multi-epoch scenario. This is reasonable as in the multi-
epoch scenario we assume that target distributions from
epoch to epoch follow the rule of i.i.d. As expected, both
the Mean and the AAE values are improved for all the three
algorithms in the multi-epoch scenario. This phenomenon
can be explained as follows. First, we achieve better results
for VCTC and Regression because a much larger number of
runs (200 × 50 for multi-epoch and 50 for single-epoch)
are performed to obtain the averaged results. Second, as
elaborated in Section V-B, MCTC-m converges to the true
target count when Tmax is large.

We also notice that when sensors are deterministically
placed at the grid centers, all the three algorithms achieve
better results compared to the case when sensors are de-
ployed randomly and uniformly in R. This is because the
initial sensor positions have some impact on the counting
accuracy. Since sensor positions remain unchanged during
the 200 simulated epochs, this impact is hardly removed.

To investigate the convergence of Algorithm 2, we plot
the AAE values of Ns = 100 in Figs. 1(a) to 4(d). It is
observed that MCTC-m quickly converges to a number that
is close to the true target count (AAE approaches to a small
value), which is consistent with our theoretical analysis, but
VCTC and Regression demonstrate a significantly biased



Table III
THE MEAN AND THE AAE WHEN SENSORS ARE PLACED AT GRID CENTERS AND TARGETS ARE DEPLOYED RANDOMLY.

Nt = 10 Nt = 50 Nt = 100 Nt = 225 Nt = 400 Nt = 600
Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE

Ns = 100
MCTC-m 10.0 0.0 49.1 0.9 98.5 1.7 221.4 3.8 393.6 6.5 590.3 9.7

VCTC 8.7 1.1 43.2 7.0 86.3 13.6 194.3 30.6 345.7 54.5 518.4 81.6
Regression 8.6 1.0 43.1 7.9 86.3 13.8 194.1 30.9 344.2 55.2 517.1 82.9

Ns = 225
MCTC-m 10.0 0.0 49.0 1.0 98.0 2.0 220.0 4.9 392.1 7.8 588.3 11.7

VCTC 8.5 1.3 42.9 7.0 85.9 14.0 191.3 31.8 343.6 53.4 515.5 84.5
Regression 8.6 1.1 42.9 7.0 85.8 14.0 193.1 31.9 343.2 56.9 514.7 85.2

Ns = 400
MCTC-m 10.0 0.0 49.0 1.0 98.0 2.0 220.3 4.8 391.6 8.4 587.3 12.7

VCTC 8.6 1.0 42.8 7.0 85.6 14.1 192.7 32.1 342.5 57.5 513.8 86.3
Regression 8.6 1.1 42.8 7.0 85.3 14.6 192.6 32.2 342.4 57.6 513.7 86.3

Table IV
THE MEAN AND THE AAE WHEN SENSORS ARE DEPLOYED RANDOMLY AND UNIFORMLY AND TARGETS ARE DEPLOYED RANDOMLY.

Nt = 10 Nt = 50 Nt = 100 Nt = 225 Nt = 400 Nt = 600
Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE

Ns = 100
MCTC-m 9.9 0.0 49.0 1.1 97.9 2.1 221.2 4.0 392.4 8.0 587.7 12.3

VCTC 8.6 1.3 42.7 7.2 86.1 13.8 193.5 31.5 344.6 55.4 517.8 82.2
Regression 8.5 1.4 42.5 7.2 85.5 14.5 192.3 32.7 342.0 58.0 511.5 88.4

Ns = 225
MCTC-m 10.0 0.0 49.0 1.0 97.8 2.2 220.0 4.9 391.2 8.9 586.7 13.2

VCTC 8.5 1.3 42.8 7.0 85.5 14.5 192.4 32.6 342.1 57.9 513.1 86.9
Regression 8.5 1.3 42.7 7.1 85.3 14.7 191.8 33.2 340.9 59.1 511.6 88.3

Ns = 400
MCTC-m 10.0 0.0 48.9 1.0 97.9 2.0 219.9 5.1 390.9 9.3 586.5 13.5

VCTC 8.5 1.3 42.7 7.0 85.4 14.6 192.2 32.8 341.8 58.1 512.4 87.6
Regression 8.5 1.4 42.6 7.1 85.3 14.8 191.8 33.1 341.2 58.7 511.8 88.2

Table V
THE MEAN AND THE AAE WHEN SENSORS ARE PLACED AT GRID CENTERS AND TARGETS ARE DEPLOYED IN A ”HOT-SPOT” PATTERN.

Nt = 10 Nt = 50 Nt = 100 Nt = 225 Nt = 400 Nt = 600
Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE

Ns = 100
MCTC-m 10.0 0.0 50.3 0.3 100.7 0.7 226.5 1.5 402.7 0.7 604.1 4.1

VCTC 10.0 0.0 47.5 2.6 95.0 5.0 213.5 11.5 379.5 20.5 569.2 30.8
Regression 9.4 0.9 46.9 3.1 93.8 6.1 211.0 14.1 375.0 25.0 562.5 37.5

Ns = 225
MCTC-m 10.0 0.0 50.1 0.1 100.6 0.6 226.2 1.1 402.4 2.4 603.2 3.4

VCTC 9.5 0.6 47.4 2.8 94.7 5.1 213.1 12.0 379.0 21.0 568.5 31.6
Regression 9.4 0.8 47.1 3.0 94.3 5.9 212.1 12.9 377.0 23.1 565.6 34.3

Ns = 400
MCTC-m 10.0 0.0 50.1 0.0 100.5 0.6 226.1 1.2 402.0 2.0 603.1 3.1

VCTC 9.5 0.8 47.3 3.0 94.7 5.1 213.1 12.1 378.8 21.2 568.2 31.9
Regression 9.4 0.9 47.2 3.0 94.4 5.7 212.5 12.5 377.7 22.3 566.6 33.4

Table VI
THE MEAN AND THE AAE WHEN SENSORS ARE DEPLOYED RANDOMLY AND UNIFORMLY AND TARGETS ARE DEPLOYED IN A ”HOT-SPOT” PATTERN.

Nt = 10 Nt = 50 Nt = 100 Nt = 225 Nt = 400 Nt = 600
Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE Mean AAE

Ns = 100
MCTC-m 10.1 0.0 50.2 0.3 101.3 1.4 227.6 2.7 404.6 4.9 604.7 4.7

VCTC 9.7 0.3 47.5 2.5 95.4 4.5 214.7 10.3 380.7 19.4 567.4 32.6
Regression 9.4 0.6 47.6 2.6 94.0 5.9 211.5 14.0 379.5 20.9 562.5 37.5

Ns = 225
MCTC-m 10.0 0.0 50.1 0.1 100.7 0.7 226.3 1.3 402.5 2.5 603.6 3.7

VCTC 9.5 0.5 47.4 2.8 94.8 5.1 213.2 11.8 379.0 21.0 568.6 31.4
Regression 9.5 0.8 47.4 2.7 94.6 5.3 212.7 12.4 378.5 21.5 567.4 32.7

Ns = 400
MCTC-m 10.0 0.0 50.2 0.1 100.6 0.7 226.2 1.2 402.2 2.2 603.3 3.3

VCTC 9.5 0.8 47.4 2.9 94.7 5.1 213.0 12.0 378.8 21.1 568.0 32.0
Regression 9.5 0.6 47.3 2.8 94.6 5.3 212.9 12.0 378.5 21.6 567.3 32.7

result (AAE approaches to a much larger value). This is
because via the Monte Carlo simulation MCTC-m captures
the target distribution more accurately. Moreover, VCTC
performs better when targets are deployed in the “Hot-Spot”
pattern compared to Regression because Voronoi cells track
the distribution of the targets more precisely compared to

the polynomial regression.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a Monte Carlo simulation based
target counting algorithm to estimate the number of mobile
targets in a sensor field. Our design relies on an Accept-
Reject process to regulate the placement of virtual targets in
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Figure 1. Sensors are placed at grid centers and targets are randomly deployed.
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Figure 2. Sensors are placed randomly and uniformly, and targets are randomly deployed.
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Figure 3. Sensors are placed at grid centers and targets are deployed in a “Hot-Spot” pattern.
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Figure 4. Sensors are placed uniformly and randomly, and targets are deployed in a “Hot-Spot” pattern.

a virtual field such that the shape of the virtual target energy
landscape can mimic the one that is estimated from the real
sensor readings. The role of the Monte Carlo simulation is to
decrease the effects of the sensor field boundary and other
hidden factors that could significantly affect the counting
accuracy, as illustrated and justified in our simulation study.
We conclude that the Monte Carlo simulation provides a
powerful tool to effectively count the number of targets for

both sparse and dense target deployments.
Our future research lies in the following three directions:

i) we intend to design a better Accept-Reject procedure
to more precisely capture the target deployment pattern;
ii) we will provide both simulation study and theoretical
performance analysis to investigate the case when target
positions are correlated from epoch to epoch and the case
when target distributions change from epoch to epoch; and



iii) we will employ regression to generalize our design to
the case when target counts change from time to time.
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