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Abstract

In this paper, we study the problem of minimum con-
nected dominating set in geometric k-disk graphs. This
research is motivated by the problem of virtual backbone
construction in wireless ad hoc and sensor networks, where
the coverage area of nodes are disks with different radii.
We derive the size relationship of any maximal independent
set and the minimum connected dominating set in geomet-
ric k-disk graphs, and apply it to analyze the performances
of two distributed connected dominating set algorithms we
propose in this paper. These algorithms have a bounded
performance ratio and low communication overhead, and
therefore have the potential to be applied in real ad hoc and
sensor networks.

1 Introduction

Let V be the set of points denoting the set of nodes
randomly placed in the Euclidean plane. Associated with
∀u ∈ V is a radius ru such that 1 ≤ ru ≤ k, where k is a
constant. Let Gk(V,E) be the disk graph constructed from
V such that an edge (u, v) ∈ E if and only if the distance
between u and v is at most min{ru, rv}. We call Gk a ge-
ometric k-disk graph or a geometric k-disk graph. When
k = 1, Gk is a unit-disk graph.

∗This material was based on work supported by the National Science
Foundation, while working at the Foundation.

Geometric k-disk graphs have been widely adopted to
model wireless ad hoc and sensor networks, in which two
nodes can communicate with each other successfully via
a two-way handshake (DATA-ACK) if they reside in each
other’s transmission range. Due to different power capaci-
ties or for the reason of interference mitigation, nodes may
have different transmission ranges, resulting in disks with
different radii.

In this paper we study the problem of constructing min-
imum connected dominating sets (MCDS) in geometric k-
disk graphs. One significant application of this problem is
the virtual backbone construction in ad hoc and sensor net-
works, where a virtue backbone is utilized to decrease the
protocol overhead [4,10]. Computing a MCDS in Gk(V,E)
is a NP-hard problem since its special case, MCDS in unit-
disk graphs, is NP-hard [7]. In this paper, we first figure out
the size relationship between any maximal independent set
(MIS) and the minimum connected dominating set in Gk.
Then we report two distributed approximation algorithms
for connected dominating set construction.

Our major contributions are three folds. First, we prove
that the maximum number of independent neighbors a
node may have in a geometric k-disk graph is at most
5 + 9� ln k

ln(2 cos( π
5 ))�. Second, we derive the size relation-

ship between any MIS and the MCDS in geometric k-disk
graphs, which is (82

3� ln k
ln(2 cos( π

5 ))� + 4 5
6 )opt, where opt is

the size of the MCDS. Note that the best results in the lit-
erature were reported by Thai et al. in [14], which stated
that when k > 1, each node has at most 10+10� ln k

ln(2 cos π
5 )�

number of independent neighbors and the size of any MIS
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is at most (10 + 10� ln k
ln(2 cos π

5 )�)opt. Notice that our results
work for unit-disk graphs too, where k = 1.

The third contribution of this paper is the two proposed
distributed approximation algorithms, for which we conduct
rigorous theoretical performance analysis. In the first al-
gorithm, we grow a CDS from a leader. This algorithm
requires each node know the ids of its neighbors. In the
second algorithm, we construct an MIS first then find out
connectors to connect all nodes in the MIS. This algorithm
takes node degree into consideration and therefore has a
higher message overhead but achieves a better performance
compared to the first one.

This paper is organized as follows. We first introduce the
preliminary definitions in Section 2. Related works are also
surveyed in this section. Then we derive the size relation-
ship between any maximal independent set and the mini-
mum connected dominating set in geometric k-disk graphs
in Section 3. The two distributed approximation algorithms
are reported in sections 4 and 5, respectively. We conclude
this paper with a brief summary and a brief discussion on
future research in Section 6.

2 Preliminaries And Related Work

2.1 Preliminaries

Given any graph G = (V,E), two vertices are in-
dependent if they are not neighbors. For ∀ u, v ∈ V ,
hop count(u, v) is the number of edges (hops) in the
shortest path from u to v. For any vertex v, N1[v] =
{u | hop count(u, v) ≤ 1} is the one-hop (close) neigh-
bor set of v; N2[v] = {u | hop count(u, v) ≤ 2} is the
two-hop (close) neighbor set of v.

An independent neighbor set of v, denoted by NI(v), is
a subset of N1[v] such that any pair of vertices in NI(v) are
independent. An independent set S of G is a subset of V
such that for ∀ u, v ∈ S, (u, v) /∈ E. S is maximal if any
vertex not in S has a neighbor in S.

A dominating set D of G is a subset of V such that each
node not in D has at least one neighbor in D. For any
edge (u, v), if u ∈ D and v /∈ D, then u is v’s domina-
tor and v is u’s dominatee. If both u and v are ∈ D, one
can specify the other as its dominator. An optimal dominat-
ing set has minimum cardinality. If the induced subgraph
of D is connected, then D is a connected dominating set
(CDS). Among all CDSs of graph G, the one with mini-
mum cardinality is called a minimum connected dominating
set (MCDS). A maximal independent set is also a dominat-
ing set.

2.2 Related Work

To our best knowledge, Thai et al. [14] was the first and
the only one to tackle the problem of MCDS construction in
geometric k-disk graphs. In that work, the authors proved
that any node can have at most 10+10� ln k

ln(2 cos π
5 )� indepen-

dent neighbors when k > 1. Thai et al. [14] also proposed
three centralized approximation algorithms together with
their performance analysis. Our work is motivated by [14]
but improves [14]. In addition, we focus on the design of
distributed algorithms for the geometric k-disk graphs.

There exist abundant works investigating the problem of
MCDS construction in unit-disk graphs and general graphs.
For a recent literature survey, we refer the readers to [10]
and the references therein. In the following we briefly sum-
marize several major works.

The NP-Completeness of MCDS in general graphs was
studied in [8]. The MCDS remains NP-hard for unit-disk
graphs [7]. In 1998, Guha and Khuller proposed two CDS
construction strategies in their seminar work [9]. These two
greedy heuristic algorithms have performance ratios 2(1 +
H(∆)) and 3+ln ∆, respectively, where ∆ the largest node
degree and H is the harmonic function. Ruan et al. [13]
proposed a one-step greedy approximation algorithm with
a performance ratio of 2 + ln ∆. Wu and Li [16] proposed
the first localized algorithm for MCDS in general graphs
but their algorithm does not have a bounded performance
guarantee [15].

For unit-disk graphs, Wu et al. [17] studied the size re-
lationship between MCDS and MIS and reported that the
size of any MIS is at most 3.8 times of that of MCDS plus a
constant 1.2. With this result, the performance ratio for the
approximation algorithms in [1,3,15], which connect a MIS
with a spanning tree, is improved from 8 to 7.8. Li et al. [12]
designed the algorithm of connecting an MIS with a Steiner
tree, and achieved a performance ratio of 5.8 + ln 4. Note
that all the above-mentioned works require a MIS satisfy-
ing the follwing property: any subset of the MIS is two-hop
away from its complementary. The construction of such a
MIS relies on a spanning tree. The works by Wan et al. [2]
and Cheng et al. [4] removed this restriction with a tradeoff
of a larger performance ratio. MCDS in unit-disk graphs has
a polynomial time approximation scheme [5], which means
that MCDS in unit-disk graphs can be approximated to any
degree.

The research reported in this paper is motivated by [4]
and [14] and we target the geometric k-disk graphs. To our
knowledge, the results reported in this paper are the best in
the literature.



3 Maximal Independent Set and Minimum
Connected Dominating Set in Geometric k-
disk Graphs

Given Gk(V,E), a geometric k-disk graph as defined in
Sec 1, let NI(x) be the set of independent neighbors of x
for ∀x ∈ V . We have

Lemma 3.1. |NI(x)| ≤ 5 + 9� ln k
ln(2 cos( π

5 ))�.

Proof. Our proof is motivated by [14]. Denote by rx the
radius of x. Let α be a real number such that 0 < α <
π
3 . For easier elaboration we assume that 2π

α is a constant
integer and we set α = π

5 . We will explain at the end of the
proof that this α value is a reasonable choice. Note that the
entire proof procedure only requires 0 < α < π

3 .
We first draw circles centered at x with radii (2 cos α)0,

2 cos α, (2 cos α)2, · · · , (2 cos α)ns−1, and (2 cos α)ns , re-
spectively, such that (2 cos α)ns−1 < rx and (2 cos α)ns ≥
rx. Therefore ns = � ln rx

ln(2 cos α)�. By this way the disk of
x is partitioned into ns annuluses plus the unit-radius cir-
cle centered at x, as shown in Fig. 1. We claim that each
annulus contains at most 2π

α − 1 nodes in NI(x).
Consider any annulus H, as shown in Fig. 1(a). Let u and

v be two independent neighbors of x in H. We must have
∠uxv > α. To prove this claim, we draw two lines xb and
xd crossing the inner and outer sides of H at a and b, and c
and d, respectively, such that u resides in xb and ∠bxd = α.
Since |xb|

|xc| = |xd|
|xa| = 2 cos α, we have |cb| = |ad| = |xa| =

|xc|. Therefore |yx| > |yb| holds true for any point y in the
closed area abdc of H, which means all nodes in the closed
area of abdc in H are neighbors of u. Thus v must be out
of the area of abdc, and therefore ∠uxv > α. Based on
this argument, we conclude that there exist at most 2π

α − 1
independent neighbors of x in the annulus H.

Since there are ns annuluses, the total number of in-
dependent neighbors of x in all the annuluses is at most
ns · [ 2π

α − 1] = � ln rx

ln(2 cos α)� · [2π
α − 1]. Let f(α) =

� ln rx

ln(2 cos α)� · [ 2π
α − 1]. When 0 < α < π

3 , f(α) yields
a minimum when α is close to π

5 .
Now consider the unit disk D centered at x, as shown

in Fig. 1(b). Let u and v be two independent neighbors
of x. Then we must have ∠uxv > 60◦, since otherwise,
|uv| ≤ max{|ux|, |vx|} ≤ 1, contradicting the indepen-
dence of u and v. Therefore there exist at most 5 indepen-
dent neighbors of x at D.

Taking into account the unit-disk area and all the an-
nulus areas, we have |NI(x)| ≤ 5 + 9� ln rx

ln(2 cos( π
5 ))� ≤

5 + 9� ln k
ln(2 cos( π

5 ))�.

In the following analysis, we denote � ln k
ln(2 cos( π

5 ))� by nk.
Now we have derived the upper bound of the number of in-
dependent neighbors for any node x in Gk(V,E), which
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The annulus H

Figure 1. (a) If u and v are independent neigh-
bors in the annulus H, then ∠uxv > α. Note
that only part of H is shown. (b) When u and
v are independent neighbors in the unit-disk
area of x, ∠uxv > 60◦.

is 5 + 9nk. Next, we are going to answer the following
question: how many independent neighbors a pair of neigh-
boring nodes may have? The following lemma answers this
question by giving an upper bound.

Lemma 3.2. Let u and v be any pair of neighboring nodes
in Gk(V,E), i.e. u ∈ V , v ∈ V , and (u, v) ∈ E. Then the
total number of independent neighbors of u and v is at most
9 + 16nk.

Proof. Let ru and rv be the radii of u and v, respectively.
Without loss of generality, we assume ru ≥ rv . Assume the
disks of u and v intersect at x and y, as illustrated in Fig. 2.
We have |ux| = ru and |vx| = rv . Since |ux| ≥ |vx|
and |ux| ≥ |uv|, we have ∠uvx ≥ π

3 . Similarly we have
∠uvy ≥ π

3 . Therefore ∠xvy ≥ 2π
3 . Thus the area in v’s

disk that could cover nodes in NI(v) but not in NI(u) is the
right sector x̂vy of v with an angle of at most 4π

3 .
Now we can take the same procedure as that in

Lemma 3.1 by drawing circles centered at v with radii 1,
2 cos α, · · · . Since the angle at v formed by any two inde-
pendent neighbors of v in the same annulus is larger than α,
the overlapping area of the right sector x̂vy and all the an-

nuluses can contain at most (� 4π
3
α �)nk = 7nk independent

neighbors of v. With a similar argument, the intersection
of the unit-disk centered at v and the right sector x̂vy may

contain at most
4π
3
π
3

= 4 independent neighbors. Therefore
the total number of independent neighbors of u and v is at
most 9 + 16nk.

Lemma 3.2 indicates that a neighbor can bring in at most
4 + 7nk independent nodes. This motivates us to prove the
following lemma addressing the size relationship between a



u
β
β v

x

y

ru

ru

rv

rv

α

Figure 2. If u and v are neighbors in Gk(V,E)
and ru ≥ rv, then ∠xvy > 2π

3 .

minimum connecting dominating set and any maximal in-
dependent set of the same Gk.

Let S ⊂ V be any MIS of Gk(V,E). Denote by opt the
size of any MCDS in G. We have

Theorem 3.1. |S| ≤ (4 5
6 + 82

3nk)opt.

Proof. Let C be any MCDS in Gk(V,E), and opt denote
its size. Compute a spanning tree τ traversing all nodes in
C. Let u1, u2, · · · , uopt be the nodes decreasingly ordered
by radius in τ .

Given an arbitrary node ui in τ , letting size(ui) be the
maximum number of independent neighbors it dominates in
S that are not dominated by its neighbors, we have

• Case 1: size(ui) ≤ 5 + 9nk, if i < j for any of
its neighbors uj in τ (namely ui has the lowest index
(largest radius) among its neighbors in τ );

• Case 2: size(ui) ≤ 4 + 7nk, otherwise.

In case 1, according to Lemma 3.1, ui will dominate at
most 5 + 9nk independent nodes in S. In case 2, let uj be
one of the nodes with lower index (larger radius) than that
of ui. Based on Lemma 3.2, since j < i, ui will dominate at
most 4+7nk independent nodes in S that are not dominated
by uj .

Let t denote the number of nodes belonging to case 1.
We are going to prove t

opt−t ≤ 5
1 . Given an arbitrary node

u in τ , each of its neighbors belonging to case 1 will domi-
nate at least 2π

3 sector of u’s disk. Therefore, u has at most
� 2π

π/3+ε	 = 5 neighbors belonging to case 1 (otherwise they
are within each other’s disk and contradict the condition of
case 1).

Since C is a connected dominating set, each node in
S will be either in C, or dominated by one node in C.
Therefore |S| ≤ (opt − t)(4 + 7nk) + t(5 + 9nk) ≤
(4 5

6 + 82
3nk)opt.

In the following sections, we propose two distributed
CDS algorithms and analyze their performance theoreti-
cally. Note that for both algorithms, we assume that each
node has a unique id, known to its neighbors within a two
hops distance.

4 Algorithm I: Growing A CDS from A
Leader

Algorithm I starts from a leader node. For simplicity, we
assume that the node with the smallest id is the leader. We
associate a color with each node. Strictly speaking, color
is not a parameter in our algorithm. It is retained in the
algorithm description for the purpose of easier elaboration.

Initially all nodes are colored white. In the first step,
leader u colors itself black and becomes a dominator. Then
all nodes in N1[u] \ {u} color themselves gray and become
dominatees, and all nodes in N2[u]\N1[u] color themselves
yellow and become active. In the next step, neighboring ac-
tive nodes compete with each other and the winners, whose
ids are the smallest among their yellow neighbors, become
dominators. Each of the winners also specifies its own dom-
inator, the gray neighbor whose id is the smallest among all
gray neighbors. This step will repeat until nodes are either
gray (dominatees) or black (dominators). All black nodes
form a CDS.

Note that the procedure described above grows a CDS
from the leader. In the first step, only the leader is included
in the CDS. In each of the other steps, two nodes are in-
cluded in the CDS, with one turning color from yellow and
one from grey.

Theorem 4.1. The size of the CDS generated by Algorithm
I is at most (9 2

3 + 171
3nk)opt − 1, where opt is the size of

the minimum connected dominating set.

Proof. We can partition all the dominators into two sets:
A and B. Set A contains all vertices with color changing
from white to black directly and B contains all vertices with
color changing from white to gray then to black. The first
step adds the leader to A. Each of the other steps adds one
node to A and one node to B. Thus |A| = |B| + 1.

Now we claim that A is an independent set. This is
obvious since each vertex u in A is colored black from
white or yellow. This means u has no black neighbors
because each neighbor of a black node has gray color.
From Theorem 3.1, |A| ≤ (4 5

6 + 82
3nk)opt. Thus

|A| + |B| ≤ (9 2
3 + 171

3nk)opt − 1. �

Remarks: (i) Algorithm I grows a tree from the leader in a
step-by-step fashion. At any time, all the inner nodes of the
tree are colored black while all the leaf nodes are colored
gray. In the first step, the leader and all of its neighbors are
added to the tree. In every other step, a leaf node v and
one of its yellow neighbors u are colored black (added to
the tree). All the white/yellow neighbors of u and v are
colored gray and added to the tree as leaves. This algorithm
terminates when no white/yellow node is left. All the black
nodes form the CDS. (ii) If we use node cost instead of id



as the criteria for dominator selection, Algorithm I is cost-
aware. For example, if the cost is the inverse of the residual
power of each node, the output CDS has a higher power
capacity; if the cost is the incoming bitrate (load), the output
CDS has a lower load; if the cost is the inverse of the node
velocity, the induced graph by the output CDS has a more
stable topology.

4.1 Distributed Implementation

Each node u maintains the following parameters: domu,
which is the dominator, or the parent of the node in the
tree; ranku, which defines a relative relationship among
neighboring nodes1; childrenu, which contains all domi-
nated nodes, or the children of the node in the tree. These
parameters are updated by the exchange of the following 3
messages.

< dominator(u, domu, ranku) > — node u, whose
dominator is domu and whose rank is ranku, broadcasts
this message to all neighbors. u is a dominator.

< dominatee(u, domu, ranku) > — node u, whose
dominator is domu and whose rank is ranku, broadcasts
this message to all neighbors. u is a dominatee.

< active(u) > — node u broadcasts this message to
all of its white/yellow neighbors when it becomes active.
A white node becomes active after it receives the first <
dominatee > message from one of its neighbors.

The state transition diagram of Algorithm I is given in
Figure 3. Each node u runs a copy of the algorithm. At any
time, u can be in one of the 4 states: S0, S1, S2, and S3. The
directed arc from Si to Sj , where i, j = 0, 1, 2, 3, represents
the transition from state Si to state Sj . Each transition is
labeled by a number. These transitions will be explained
latter.
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Color=yellow
       S1

Color=gray
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Figure 3. The state transition diagram of Algorithm
I for any node u.

State S0 is the initial state. A node in this state has white
color. All nodes are in S0 at the beginning of the algorithm.
State S1 is the dominatee state. A node in this state is a
dominatee and has gray color. State S2 is the active state.

1In Algorithm I, rank is the level of the node in the tree

A node in this state has at least one neighbor in S1 and has
yellow color. An active node is a candidate dominator in
next step. State S3 is the dominator state. A node in this
state is a dominator and has black color. All nodes in S3

form the connected dominating set. Each node u in state
S0 or S2 also maintains a parameter Wu including its all
yellow neighbors. Initially Wu = ∅. If u has the smallest id
compared to its yellow neighbors in Wu, u will become a
dominator in the next step. The transition steps are detailed
below.

1. u is in state S0. If u is the leader, then domu =
u, ranku = 0. u will broadcast message <
dominator(u, u, 0) > and go to state S3.

2. u is in state S0 or S2 and receives message <
dominator(v, d, l) > from neighbor v. If d is a neigh-
bor of u, then domu = d, ranku = l; otherwise,
domu = v, ranku = l + 1. u will broadcast mes-
sage < dominatee(u, domu, ranku) > and go to S1.

3. u is in state S0 and receives message
< dominatee(v, d, l) > from neighbor v. u
will broadcast message < active(u) > and go to state
S2. u temporarily sets domu to v and ranku to l + 1.
If v is in Wu, it will be removed.

4. u is in state S2 and receives message
< dominatee(v, d, l) >. Remove v from Wu if
it is in Wu. If idv < iddomu

, then domu = v and
ranku = l + 1. u will go back to S2.

5. u is in state S0 or S2 and receives message <
active(v) >. Wu = Wu ∪ {v}. u remains in the
original state.

6. u is in state S2 and there is no broadcasting in N1[u]
for T0 time unit (which is a design constant). If u has
the smallest id compared with all nodes in Wu, it will
broadcast message < dominator(u, domu, ranku) >
and go to S3.

7. u is in state S1 and receives message
< dominator(v, d, l) > from v. If d = u, u will
broadcast message < dominator(u, domu, ranku) >
and go to state S3.

8. u is in state S3. If u finds that none of its neighbors
takes u as the dominator, u will broadcast message
dominatee(u, domu, ranku) and go to state S1.

Remarks: (i) The leader can be elected by the distributed
leader election algorithm proposed in [6]. (ii) The parame-
ter T0 is used to force the start of next step in nearby envi-
ronment be strictly after the end of the current step. T0 is



a design parameter, which could be predetermined via sim-
ulation. (iii) We assume the message broadcast is reliable.
For reliable broadcasting, we refer the readers to [11](iv)
When u receives a message < dominator(v, u, l) > or
< dominatee(v, u, l) >, u will put v into its children list
if v is not there. (v) In state S1, a gray node will select
the black node with the lowest rank as its dominator. This
can help to optimize the generated CDS. For example, if a
black node u’s dominated children are also dominated by
dom(u), then u can become a dominatee and go to state S1.
(vi) Step 8 is an optimization to remove those dominators
with no dominatees.

Theorem 4.2. Algorithm I has a message complexity O(n),
where n is the total number of vertices.

Proof. We have 3 types of messages: < dominator >,
< dominatee >, and < active >. Each node broadcasts
each message at most once. Thus the total number of
broadcastings is at most O(n). �

Note that the above message complexity analysis does
not consider the leader election, whose message complexity
is Ω(n log n) [2].

5 Algorithm II: Connecting A Maximal Inde-
pendent Set

Algorithm I could be improved if node degree is taken
into consideration. In Algorithm II, instead of growing a
CDS from a leader, we first compute a MIS, then connect
all nodes in the MIS. Accordingly Algorithm II contains
two phases.

In Algorithm II, each node needs to maintain two more
parameters: the effective degree d∗, which is defined to be
the number of white/yellow neighbors, and the black de-
gree d∗b , which is used by a gray node to record the num-
ber of black neighbors with a higher rank. The distributed
implementation of algorithm II is detailed in the following
subsection.

5.1 Distributed Implementation

The state transition diagram for the first phase is shown
in Figure 4.

Initially all nodes are colored white. During the execu-
tion of phase 1, each white/yellow node keeps track of its
effective degree d∗, which will be updated when a neighbor
changes color. To keep the degree information up-to-date,
we need a new message < degree(u, d∗) >, by which u
tells its neighbors that its effective degree is d∗. We also
need the message < blackdegree(u, d∗b) >, which is broad-
casted by u, a dominatee. The “rank” information will be
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Figure 4. The state transition diagram for the first
phase of Algorithm II for any node.

used in phase 2 to connect all members in the generated
MIS. The transitions are explained below. Initially d∗ = d,
where d is the degree whose value is |N1[u]| − 1.

1. u is the leader and is in state S0. u will broadcast mes-
sage < dominator(u, u, 0) > to its neighbors and go
to state S3.

2. u is in state S0 or S2 and receives <
dominator(v, x, l) > from neighbor v. Here
x is either the leader or null. u will broadcast
< dominatee(u, v, l) > and go to S1.

3. u is in state S0 and receives the message <
dominatee(v, d, l) >. u will update d∗ to d∗ − 1,
removes v from Wu if v ∈ Wu, set ranku to l + 1,
broadcast < active(u) >, and then go to S2.

4. In S2, u will keep track of all < dominatee(v, d, l) >
messages broadcasted in N1[u] and remove those dom-
inatees in Wu. u updates d∗ and ranku accordingly
(ranku = 1 + maxv{l}). If there is no broadcasting
in N1[u] for T0 time unit, u will broadcast message
< degree(u, d∗) > if d∗ is changed after last broad-
casting of < degree > message.

5. u is in state S0 or S2. If u receives message <
active(v) >, then Wu = Wu ∪{v}; if u receives mes-
sage < degree(v, d∗) >, u updates the local record of
v’s effective degree.

6. u is in state S2 and there is no broadcasting in N1[u]
for T0 time unit. If u has the biggest (d∗, id) com-
pared with all nodes in Wu, u will broadcast <
dominator(u, null, ranku) > and go to state S3.

7. u is in state S1. u keeps track of the number of higher
rank black neighbors (number of higher rank domina-
tors in N1[u], denoted by d∗b ). When all of its neigh-
bors are either in S1 or in S3, u broadcasts the message
< blackdegree(u, d∗b) >.



8. u is in state S3. u keeps track of the gray neighbor
with a lower rank whose (d∗b , id) is the biggest, in lex-
icographic order. This is u’s candidate dominator in
phase 2.

Remarks: (i) Phase 1 generates many stars. Each star con-
sists of one black node, which serves as the center, and
many gray nodes dominated by the center. Each gray node
in a star sets its dom to the center. All nodes in a star have
the same rank, which is also the rank of the star. The dom-
inator of a gray node is its first black neighbor. In other
words, a gray node u resides in the star centered at the black
neighbor which is the first to go to state S3. (ii) The star
centered at the leader has rank 0. The rank of any other
star s centered at u is one plus the highest rank of u’s gray
neighbors not in s. (iii) We can also understand phase 1 in
the following way: phase 1 contains multiple steps. Each
step generates a star. At each step except the first one, an
active node (in S2) u with the maximum effective degree
compared with all of its active yellow neighbors is colored
black. All of u’s 1-hop white/yellow neighbors (in state
S1 or S2) are colored gray. All of u’s 2-hop white neigh-
bors (in state S0) will go to state S2. (iv) < degree >
message is used to announce the number of white/yellow
neighbors of node u to all of u’s white/yellow neighbors.
With this information, a dominator will be elected in next
step. < blackdegree > message is used by gray node u
to announce the number of black neighbors whose rank is
higher than u to all higher rank black neighbors of u. With
this information, a black node v can select a gray neighbor
with a lower rank than v that connects with many stars.

After phase 1, each node is either in state S1 or state
S3. A node in state S1 has a dominator in S3 while a
node in S3 does not have any dominator (except the leader).
Phase 2 will designate a dominator for each black node u (in
S3). u’s dominator will be the gray node v in S1 such that
rank(v) < rank(u) and v has the largest (d∗b , id) among
all lower-ranked gray neighbors of u. The transition dia-
gram for phase 2 is shown in Figure 5. We elaborate the
details below.

       S1

Color=gray
       S3

Color=black3 1
2

4

Figure 5. The state transition diagram for the second
phase of Algorithm II for each node.

1. After a black node u (in S3) received
< blackdegree > from all of its lower-
ranked gray neighbors, it broadcasts message
< dominator(u, domu, ranku) >, where domu

is the lower-ranked gray neighbor with the highest
(d∗b , id). Here ranku was set in phase 1.

2. After a gray node u (in S1) received
< dominator(v, u, rv) > from v, it will broad-
cast < dominator(u, domu, ranku) > and go to
state S3. Here the domu and ranku parameters for u
were set in phase 1.

3. A gray node u in S1 will keep track of the
black neighbor v with the lowest rank by listen-
ing to all < dominator > broadcastings. Af-
ter all black neighbors (generated in phase 1) deter-
mine their dominators, u will broadcast message <
dominatee(u, v, rankv) > if v is different from its
original dominator domu. Note that here u will be a
dominatee after phase 2.

4. If u is in state S3 but no gray node selects u
as the dominator, u will broadcast message <
dominatee(u, domu, ranku) > and go to state S1.

Remarks: (i) Phase 2 assigns a dominator v to the cen-
ter u of each star generated in phase 1 except the star cen-
tered at the leader. v is a gray node satisfying the following
conditions: v is located in a star with a rank lower than u
and v is adjacent to the maximum number of stars with a
higher rank than v. (ii) After phase 2, the dominator of a
gray node u is always the black neighbor with the lowest
rank. (iii) Phase 2 is a local process which occurs among
adjacent stars with different ranks. After a black node u re-
ceived < blackdegree > from all of its lower-ranked gray
neighbors, it can select its dominator and broadcast message
< dominator(u, domu, ranku) >. This means a black
node can initiate phase 2 immediately after all necessary in-
formation is available. There is no explicit start time for
phase 2. Phase 2 is used to connect all stars.

5.2 Performance analysis

In this subsection, we study the performance of Algo-
rithm II.

Lemma 5.1. In phase 2, the gray node with the maximum
(d∗b , id) will connect with d∗b number of lower-ranked stars.

Proof. Let u be the gray node with the maximum
(d∗b , id). Phase 1 ensures that u belongs to the star whose
center is the first black neighbor of u. For all other black
neighbors (centers of some stars) of u, their ranks must be
greater than that of u since a black node in phase 1 always
assigns its rank to be one plus the rank of its highest rank
dominatee neighbor. Thus all these d∗b nodes will select u
as their dominator in phase 2. In other words, u connects
with d∗b number of lower-ranked stars. �



Theorem 5.1. The connected dominating set generated in
Algorithm II has a size of at most (171

3nk + 9 2
3 )opt − 2,

where opt is the size of any optimal MCDS for the given
instance.

Proof. Phase 1 computes a MIS. Let A be this MIS with
a size |A|. From Theorem 3.1, |A| ≤ (45

6 +82
3nk)opt. Note

that in phase 2, at most |A| − 1 nodes in state S1 will go to
state S3. Now we consider two cases here.

First, if there exists a gray vertice with d∗b ≥ 2 at the
beginning of phase 2, from Lemma 5.1, the gray vertex
u with the maximum (d∗b , id) will connect d∗b stars to the
higher rank star u resides in phase 2. Therefor the number
of nodes changing state from S1 to S3 in phase 2 is at most
|A|−2. Thus the total number of nodes in state S3 is at most
|A|+ |A| − 2 ≤ (45

6 + 82
3nk)opt + (45

6 + 82
3nk)opt− 2 ≤

(171
3nk + 92

3 )opt − 2.
Secondly, if all gray vertices have d∗b ≤ 1 at the

beginning of phase 2, then the number of nodes changing
state from S1 to S3 in phase 2 is exactly |A| − 1. Since the
dominator of any gray vertex u is its first black neighbor,
and all other black neighbors of u have a higher rank
than u, thus the total number of black neighbors u has
is at most 2. In other words, any node in an optimal
MCDS is either in A or adjacent to at most 2 vertices in
A and any vertex in A is dominated by a vertex in the
MCDS. Therefor in this case, |A| ≤ 2 · opt. Thus the total
number of black nodes will be 2·opt+2·opt−1 < 4·opt. �

Theorem 5.2. Algorithm II has message complexity
O(n∆), where n is the total number of vertices and ∆ is
the maximum node degree.

Proof. In Algorithm II, the message complexity is
dominated by the < degree > messages broadcasted by
white vertices in S2 in phase 1 since each node broadcasts
each of the other messages at most twice. Therefore the
message complexity is O(n∆). �

6 Conclusion

In this paper, we studied the problem of constructing
minimum connected dominating set in geometric k-disk
graphs. We first derived the upper bound of the size of
any maximal independent set compared to that of a MCDS.
Then we proposed two distributed approximation algo-
rithms and studied their performance theoretically.

As a future research activity, we intend to improve the
upper bound and design better approximation algorithms
for MCDS in geometric k-disk graphs. Note that a poly-
nomial time approximation scheme (PTAS) exists for unit-
disk graphs [5] but whether a PTAS exists or not for the

general geometric k-disk graphs is still open. This is an-
other problem we intend to target in the future.
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