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Part II 
First Law of 

Thermodynamics 
 

Introduction 
 
The first law deals with macroscopic properties, work, energy, enthalpy, etc. 

One of the most fundamental laws of nature is the conservation of energy 
principle. It simply states that  

• during an interaction, energy can change from one form to 
another but the total amount of energy remains constant. That 
is, energy cannot be created or destroyed. Or, 

• during an interaction between a system and its surroundings, 
the amount of energy gained by the system must be exactly 
equal to the amount of energy lost by the surroundings. A rock 
falling off a cliff, for example, picks up speed as a result of its 
potential energy being converted to kinetic energy. 

 
The first law of thermodynamics is simply an expression of the 
conservation of energy principle, and it asserts that energy is a 
thermodynamic property. 
 

Energy can cross the boundary of a closed system in two distinct forms: heat 
and work. It is important to distinguish between these two forms of energy. 
Therefore, they will be discussed first, to form a sound basis for the 
development of the first law of thermodynamics. 

 
We can use the principle of conservation of energy to define a function U 

called the internal energy. When a closed system undergoes a process by which 
it passes from state A to state B, if the only interaction with its surroundings is 
in the form of transfer of heat Q to the system, or performance of work W on 
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the system, the change in U will be 
 

∆U = UB – UA = Q + W                                            2-1 
Note:  

• In Equation 2-1 we have defined W as the work done on the system and Q is added 
to the system. If we had defined W as work done by the system, Equation 2-1 
would become ∆U = Q- W. 

• For an isolated system there is no heat or work transferred with the surroundings, 
thus, by definition W = Q = 0 and therefore ∆U = 0. 

• The first law of thermodynamics states that this energy difference ∆U depends 
only on the initial and final states, and not on the path followed between them. 
Both Q and W have many possible values, depending on exactly how the system 
passes from A to B, but Q + W = ∆U is invariable and independent of the path. If 
this were not true, it would be possible, by passing from A to B along one path and 
then returning from B to A along another, to obtain a net change in the energy of 
the closed system in contradiction to the principle of conservation of energy.  

• For a differential change, Equation 2-1 becomes 
 

dU = dQ +dW                                            2-2 
 

• For a cyclic process, A→B→A, when the system returns to state A, it has the same 
U, thus 

∫ =0dU                                                        2-3 
 

Next we will take a look separately at the heat transferred (dQ) and the 
work (dW) exchanged between the system and the surroundings. 
 
2-1 Heat Transfer 
 
Heat is defined as the form of energy that is transferred between two systems 
(or a system and its surroundings) by virtue of a temperature difference. That 
is, an energy interaction is heat only if it takes place because of a temperature 
difference. Then it follows that there cannot be any heat transfer between two 
systems that are at the same temperature 
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Heat is energy in transition. It is recognized only as it crosses the boundary of 
a system. Consider the hot baked potato. The potato contains energy, but this 
energy is heat transfer only as it passes through the skin of the potato (the 
system boundary) to reach the air, as shown below.  
 

 
 

Once in the surroundings, the transferred heat becomes part of the internal 
energy of the surroundings. Thus, in thermodynamics, the term heat simply 
means heat transfer. 
 

• A process during which there is no heat transfer is called an adiabatic 
process. There are two ways a process can be adiabatic:  

o Either the system is well insulated so that only a negligible amount of heat 
can pass through the boundary, or  

o both the system and the surroundings are at the same temperature and 
therefore there is no driving force (temperature difference) for heat transfer.  

• An adiabatic process should not be confused with an isothermal process. 
Even though there is no heat transfer during an adiabatic process, the 
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energy content and thus the temperature of a system can still be changed 
by other means such as work. 

 
The amount of heat transferred during the process between two states (states 1 
and 2) is denoted by Q12, or just Q. Heat transfer per unit mass of a system is 
denoted q and is determined from 
 

q = Q/m                                                             2-4 
 

Sometimes it is desirable to know the rate of heat transfer (the amount of heat 
transferred per unit time) instead of the total heat transferred over some time 

interval. The heat transfer rate is denoted Q , where the overdot stands for the 

time derivative, or "per unit time." The heat transfer rate Q  has the unit kJ/s, 
which is equivalent to kW. When Q varies with time, the amount of heat 

transfer during a process is determined by integrating Q  over the time 
interval of the process: 

∫=
2

1

t

t

dtQQ
                                                          2-5 

When Q remains constant during the process, the relation reduces to 
 

Q = Q ∆t                                                                     2-6 
 
Heat is a directional (or vector) quantity; the universally accepted sign convention for 
heat is as follows: Heat transfer to a system is positive, and heat transfer from a system is 
negative. That is, any heat transfer that increases the energy of a system is positive, and 
any heat transfer that decreases the energy of a system is negative. 
 
Modes of Heat transfer 
 
Heat can be transferred in three different ways: conduction, convection, and 



2 - 5

radiation. A detailed study of these heat transfer modes is given later. Below 
we will give a brief description of each mode to familiarize yourselves with 
the basic mechanisms of heat transfer. All modes of heat transfer require the 
existence of a temperature difference, and all modes of heat transfer are from 
the high-temperature medium to a lower-temperature one. 
 

Conduction is the transfer of energy from the more energetic particles of a 
substance to the adjacent less energetic ones as a result of interactions 
between the particles. Conduction can take place in solids, liquids, or gases. In 
gases and liquids, conduction is due to the collisions of the molecules during 
their random motion. In solids, it is due to the combination of vibrations of the 
molecules in a lattice and the energy transport by free electrons. A cold 
canned drink in a warm room, for example, eventually warms up to the room 
temperature as a result of heat transfer from the room to the drink through the 
aluminum can by conduction. 

 
It is observed that the rate of heat conduction Q cond through a layer of 
constant thickness ∆x is proportional to the temperature difference ∆T across 
the layer and the area A normal to the direction of heat transfer, and is 
inversely proportional to the thickness of the layer. Therefore, 
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x
TkAQcond ∆

∆
=                                         2-7 

where the constant of proportionality k is the thermal conductivity of the 
material which is a measure of the ability of a material to conduct heat.. 
Materials such as copper and silver that are good electric conductors are also 
good heat conductors:  kcopper = 401 W/(m.K), and therefore have high k 
values. Materials such as rubber, wood, and styrofoam are poor conductors of 
heat (kurethane = 0.026), and therefore have low k values. Diamond has a very 
high thermal conductivity (k = 2300). 
In the limiting case of ∆x→0, the equation above reduces to the differential 
form 

dx
dTkAQcond −=                                           2-8 

 
which is known as Fourier's law of heat conduction. It indicates that the rate 
of heat conduction in a direction is proportional to the temperature gradient in 
that direction. Heat is conducted in the direction of decreasing temperature, 
and the temperature gradient becomes negative when temperature decreases 
with increasing x. Therefore, a negative sign is added in Eq. 2-8 to make heat 
transfer in the positive x direction a positive quantity. 
 
Note: Temperature is a measure of the kinetic energies of the molecules. In a liquid or 
gas, the kinetic energy of the molecules is due to the random motion of the molecules as 
well as the vibrational and rotational motions. When two molecules possessing different 
kinetic energies collide, part of the kinetic energy of the more energetic (higher-
temperature) molecule is transferred to the less energetic (lower-temperature) particle, in 
much the same way as when two elastic balls of the same mass at different velocities 
collide, part of the kinetic energy of the faster ball is transferred to the slower one. 
 
In solids, heat conduction is due to two effects: the lattice vibrational waves induced by 
the vibrational motions of the molecules positioned at relatively fixed positions in a 
periodic manner called a lattice, and the energy transported via the free flow of electrons 
in the solid. The thermal conductivity of a solid is obtained by adding the lattice and the 
electronic components. The thermal conductivity of pure metals is primarily due to the 
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electronic component whereas the thermal conductivity of nonmetals is primarily due to 
the lattice component. The lattice component of thermal conductivity strongly depends on 
the way the molecules are arranged. For example, the thermal conductivity of diamond, 
which is a highly ordered crystalline solid, is much higher than the thermal conductivities 
of pure metals.  
 
Convection is the mode of energy transfer between a solid surface and the 
adjacent liquid or gas which is in motion, and it involves the combined effects 
of conduction and fluid motion. The faster the fluid motion, the greater the 
convection heat transfer. In the absence of any bulk fluid motion, heat transfer 
between a solid surface and the adjacent fluid is by pure conduction The 
presence of bulk motion of the fluid enhances the heat transfer between the 
solid surface and the fluid, but it also complicates the determination of heat 
transfer rates. 
 
 
 
 
 
 
 
 
 

• Consider the cooling of a hot block by blowing of cool air over its top surface 
shown in figure above. The arrows in the figure indicate the velocity variation of 
air. Energy is first transferred to the air layer adjacent to the surface of the block by 
conduction. This energy is then carried away from the surface by convection; that 
is, by the combined effects of conduction within the air, which is due to random 
motion of air molecules, and the bulk or macroscopic motion of the air, which 
removes the heated air near the surface and replaces it by the cooler air. 
 
 

 
 
 

Forced convection (left) and natural convection (right) 
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• Convection is called forced convection if the fluid is forced to flow in a tube or 
over a surface by external means such as a fan, pump, or the wind. In contrast, 
convection is called free (or natural) convection if the fluid motion is caused by 
buoyancy forces that are induced by density differences due to the variation of 
temperature in the fluid (see figure above). For example, in the absence of a fan, 
heat transfer from the surface of the hot block in figure will be by natural 
convection since any motion in the air in this case will be due to the rise of the 
warmer (and thus lighter) air near the surface and the fall of the cooler (and thus 
heavier) air to fill its place. Heat transfer between the block and the surrounding air 
will be by conduction if the temperature difference between the air and the block is 
not large enough to overcome the resistance of air to move and thus to initiate 
natural convection currents. 

•  
• Heat transfer processes that involve change of phase of a fluid are also considered 

to be convection because of the fluid motion induced during the process such as 
the rise of the vapor bubbles during boiling or the fall of the liquid droplets during 
condensation. 

• The rate of heat transfer by convection Q conv is determined from Newton's law of 
cooling, which is expressed as 

Q conv = hA (Ts – Tf)                                             2-9 
where h is the convection heat transfer coefficient, A is the surface area through which 
heat transfer takes place, Ts is the surface temperature, and Tf is bulk fluid temperature 
away from the surface. (At the surface, the fluid temperature equals the surface 
temperature of the solid.) 
 
Note: The convection heat transfer coefficient h is not a property of the fluid. It is an 
experimentally determined parameter whose value depends on all the variables that 
influence convection such as the surface geometry, the nature of fluid motion, the 
properties of the fluid, and the bulk fluid velocity. Typical values of h, in W /(m2 . K), are 
2-25 for the free convection of gases, 50-1000 for the free convection of liquids, 25-250 
for the forced convection of gases, 50-20,000 for the forced convection of liquids, and 
2500-100,000 for convection in boiling and condensation processes. 
 
 
Radiation is the energy emitted by matter in the form of electromagnetic 
waves (or photons) as a result of the changes in the electronic configurations 
of the atoms or molecules. Unlike conduction and convection, the transfer of 
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energy by radiation does not require the presence of an intervening medium. 
In fact, energy transfer by radiation is fastest (at the speed of light) and it 
suffers no attenuation in a vacuum. This is exactly how the energy of the sun 
reaches the earth. 
 

• In heat transfer studies, we are interested in thermal radiation, which is the form of 
radiation emitted by bodies because of their temperature. It differs from other 
forms of electromagnetic radiation such as X-rays, gamma rays, microwaves, radio 
waves, and television waves which are not related to temperature. All bodies at a 
temperature above absolute zero emit thermal radiation. 

 
• Radiation is a volumetric phenomena, and all solids, liquids, and gases emit, 

absorb, or transmit radiation to varying degrees. However, radiation is usually 
considered to be a surface phenomenon for solids that are opaque to thermal 
radiation such as metals, wood, and rocks since the radiation emitted by the interior 
regions of such material can never reach the surface, and the radiation incident on 
such bodies is usually absorbed within a few microns from the surface. 

 
• The maximum rate of radiation that can be emitted from a surface at an absolute 

temperature Ts is given by the Stefan-Boltzmann, law as 
 

Q emit.max=σATs
4                                                 2-10 

 
where A is the surface area and σ = 5.67 x 10-8 W / (m2 . K4) is the Stefan-
Boltzmann constant. The idealized surface which emits radiation at this maximum 
rate is called a blackbody, and the radiation emitted by a blackbody is called 
blackbody radiation. The radiation emitted by all real surfaces is less than the 
radiation emitted by a blackbody at the same temperatures and is expressed as 

 
Q emit.max=εσATs

4                                                 2-11 
 

where ε is the emissivity of the surface. The property emissivity, whose value is in 
the range 0 ≤ ε ≤ 1, is a measure of how closely a surface approximates a 
blackbody for which ε = 1. The human skin has an emissivity of 0.95, and 
aluminum foil 0.07. 
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• Another important radiation property of a surface is its absorptivity, α, which is the 
fraction of the radiation energy incident on a surface that is absorbed by the 
surface. Like emissivity, its value is in the range 0 ≤ α ≤ 1. A blackbody absorbs 
the entire radiation incident on it. That is, a blackbody is a perfect absorber (α = 1) 
as well as a perfect emitter. 

 
• In general, both ε and α of a surface depend on the temperature and the wavelength 

of the radiation. Kirchhoff's law of radiation states that the emissivity and the 
absorptivity of a surface are equal at the same temperature and wavelength. In 
most practical applications, the dependence of ε and α on the temperature and 
wavelength is ignored, and the average absorptivity of a surface is taken to be 
equal to its average emissivity. The rate at which a surface absorbs radiation is 
determined from (see figure) 

 
 
 
 
 
 
 

Q abs = α Q inc                                                 2-12 

where Q inc  is the rate at which radiation is incident on the surface and α is the 
absorptivity of the surface. For opaque (nontransparent) surfaces, the portion of 
incident radiation that is not absorbed by the surface is reflected back. 

 
• The difference between the rates of radiation emitted by the surface and the 

radiation absorbed is the net radiation heat transfer. If the rate of radiation 
absorption is greater than the rate of radiation emission, the surface is said to be 
gaining energy by radiation. Otherwise, the surface is said to be losing energy 
by radiation. In general, the determination of the net rate of heat transfer by 
radiation between two surfaces is a complicated matter since it depends on the 
properties of the surfaces, their orientation relative to each other, and the 
interaction of the medium between the surfaces with radiation. However, in the 
special case of a relatively small surface of emissivity ε and surface area A at 
absolute temperature Ts that is completely enclosed by a much larger surface at 
absolute temperature Tsurr separated by a gas (such as air) that does not interact 
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with radiation (i.e., the amount of radiation emitted, absorbed, or scattered by 
the medium is negligible), the net rate of radiation heat transfer between these 
two surfaces is determined from  

Q rad = εσA(Ts
4 – T4

surr)                                                    2-13 
 

Example 2-1 Consider a person standing in a breezy room at 20°C. Determine the total 
rate of heat transfer from this person if the exposed surface area and the average outer 
surface temperature of the person are 1.6 m2 and 29°C, respectively, and the convection 
heat transfer coefficient is 6 W / (m2 . oC) . 
Solution  

1. The heat transfer between the person and the air in the room will be by convection 
(instead of conduction) since it is conceivable that the air in the vicinity of the skin 
or clothing will warm up and rise as a result of heat transfer from the body, 
initiating natural convection currents. It appears that the experimentally 
determined value for the rate of convection heat transfer in this case is 6 W per 
unit surface area (m2) per unit temperature difference (in K or oC) between the 
person and the air away from the person. Thus, the rate of convection heat transfer 
from the person to the air in the room is, from Eq. 2-9, 

Q conv = hA (Ts – Tf) = 86.4 W 
 

2. The person will also lose heat by radiation to the surrounding wall surfaces. We 
take the temperature of the surfaces of the walls, ceiling, and the floor to be equal 
to the air temperature in this case for simplicity, but we recognize that this does not 
need to be the case. These surfaces may be at a higher or lower temperature than 
the average temperature of the room air, depending on the outdoor conditions and 
the structure of the walls. Considering that air does not intervene with radiation 
and the person is completely enclosed by the surrounding surfaces, the net rate of 
radiation heat transfer from the person to the surrounding walls, ceiling, and the 
floor is, from Eq. 2-13 

Q rad = εσA(Ts
4 – T4

surr) = 81.7 W 
 

Note that we must use absolute temperatures in radiation calculations. Also note 
that we used the emissivity value for the skin and clothing at room 
temperature since the emissivity is not expected to change significantly at a 
slightly higher temperature. 
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Then the rate of total heat transfer from the body is determined by adding these 
two quantities to be 

Q total  = Q conv + Q rad = 168.1 W 
 

Note: The heat transfer would be much higher if the person were not dressed since 
the exposed surface temperature would be higher. In the above calculations, heat 
transfer through the feet to the floor by conduction, which is usually very small, is 
neglected. Heat transfer from the skin by perspiration, which is the dominant mode 
of heat transfer in hot environments, is not considered here. 

 
 
2-2 Work 
 
Work, like heat, is an energy interaction between a system and its 
surroundings. As mentioned earlier, energy can cross the boundary of a closed 
system in the form of heat or work. Therefore, if the energy crossing the 
boundary of a closed system is not heat, it must be work.  
 

• Heat is easy to recognize: Its driving force is a temperature difference between 
the system and its surroundings. Then we can simply say that an energy 
interaction which is not caused by a temperature difference between a system 
and its surroundings is work. More specifically, work is the energy transfer 
associated with a force acting through a distance. A rising piston, a rotating 
shaft, and an electric wire crossing the system boundaries are all associated with 
work interactions. 

 
• The work done during a process between states 1 and 2 is denoted W12, or 

simply W. The work done per unit mass of a system is denoted w and is defined 
as 

W = W/m                                                       2-14 

• The work done per unit time is called power and is denoted W  . The unit 
of power is kJ/s, or kW. 

 
• The energy of a system decreases as it does work and increases as work is 

done on the system. 
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• Heat transfer and work are interactions between a system and its 
surroundings, and there are many similarities between the two: 

 
1. Both are recognized at the boundaries of the system as they cross 

them. That is, both heat and work are boundary phenomena. 
 

2. Systems possess energy, but not heat or work. That is, heat and work 
are transfer phenomena. 

 
3. Both are associated with a process, not a state. Unlike properties, heat 

or work has no meaning at a state. 
 

4. Both are path functions (i.e., their magnitudes depend on the path 
followed during a process as well as the end states). 

 
Path functions have inexact differentials designated by the symbol δ. Therefore, a 
differential amount of heat or work is represented by δ Q or δW, respectively, instead of 
dQ or dW. Properties, however, are point functions (i.e., they depend on the state only, 
and not on how a system reaches that state), and they have exact differentials designated 
by the symbol d. A small change in volume, for example, is represented by dV and the 
total volume change during a process between states 1 and 2 is 

VVVdV ∆=−=∫ 1

2

1

2  

That is, the volume change during process 1-2 is always the volume at state 2 minus the 
volume at state 1, regardless of the path followed (see figure below). The total work done 
during process 1-2, however, is 

∫ =
2

1

12WWδ
 

 
That is, the total work is obtained by following the process path and adding the 
differential amounts of work (δW) done along the way. The integral of δW is not W2 – W1 
(i.e., the work at state 2 minus work at state 1), which is meaningless since work is not a 
property and systems do not possess work at a state. 
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Example 2-2 
A candle is burning in a well-insulated room. Taking the room (the air plus the candle) as 
the system, determine (a) if there is any heat transfer during this burning process and (b) 
if there is any change in the internal energy of the system. 
 
Solution 
(a) The interior surfaces of the room form the system boundary. As pointed out earlier, 
heat is recognized as it crosses the boundaries. Since the room is well insulated, we have 
an adiabatic system and no heat will pass through the boundaries. Therefore, Q = 0 for 
this process. 
 
 (b) As discussed earlier, the internal energy involves energies that exist in various forms 
(sensible, latent, chemical, nuclear). During the process described above, part of the 
chemical energy is converted to sensible energy. That is, part of the internal energy of the 
system is changed from one form to another. Since there is no increase or decrease in the 
total internal energy of the system, ∆U = 0 for this process. 
 
Example 2-3 
A potato that is initially at room temperature (25°C) is being baked in an oven which is 
maintained at 200°C. Is there any heat transfer during this baking process? 
 
 
 
 
 
 
Solution 
 This is not a well-defined problem since the system is not specified. Let us assume that 
we are observing the potato, which will be our system. Then the skin of the potato may 
be viewed as the system boundary. Part of the energy in the oven will pass through the 
skin to the potato. Since the driving force for this energy transfer is a temperature 
difference, this is a heat transfer process. 
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Example 2-4 
A well-insulated electric oven is being heated through its heating element. If the entire 
oven, including the heating element, is taken to be the system, determine whether this is a 
heat or work interaction. 
 
Solution 
For this problem, the interior surfaces of the oven form the system boundary. The energy 
content of the oven obviously increases during this process, as evidenced by a rise in 
temperature. This energy transfer to the oven is not caused by a temperature difference 
between the oven and the surrounding air. Instead, it is caused by the  electrons crossing 
the system boundary and thus doing work. Therefore, this is a work interaction. 
 
Example 2-5 
Answer the question in Example 2-4 if the system is taken as only the air in the oven 
without the heating element. 
 
Solution  
This time, the system boundary will include the outer surface of the heating element and 
will not cut through it. Therefore, no electrons will be crossing the system boundary at 
any point. Instead, the energy generated in the interior of the heating element will be 
transferred to the air around it as a result of the temperature difference between the 
heating element and the air in the oven. Therefore, this is a heat transfer process. 
 
For both cases, the amount of energy transfer to the air is the same. These two examples 
show that the same interaction can be heat or work depending on how the system is 
selected. 
 
Electrical Work 
 
It was shown above that electrons crossing the system boundary do electrical 
work on the system. In an electric field, electrons in a wire move under the 
effect of electromotive forces, doing work. When N coulombs of electrons 
move through a potential difference V, the electrical work done is 
 

We = VN 
 
Which can also be expressed in the rate form 
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eW = VI                              2-14 

where eW is the electrical power and I the electric current. ( eW =VI = I2R = 
V2/R) 
In general, both V and I vary with time, and the electrical work done during a time 
interval ∆t is expressed as 

∫=
2

1

VIdtWe                                                         2-15 

If both V and I remain constant during the time interval ∆t, this equation will reduce to 
 

We = VI∆t                                                2-16 
Example 2-6 
A small tank containing iced water at 0°C is placed in the middle of a large, well-
insulated tank filled with oil. The entire system is initially in thermal equilibrium at 0°C. 
The electric heater in the oil is now turned on, and 10 kJ of electrical work is done on the 
oil. After a while, it is noticed that the entire system is again at 0°C, but some ice in the 
small tank has melted. Considering the oil to be system A and the iced water to be system 
B, discuss the heat and work interactions for system A. system B, and the combined 
system (oil and iced water). 
 
Solution  
The boundaries of each system are indicated by dashed lines in the figure. Notice that the 
boundary of system B also forms the inner part of the boundary of system A. 
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System A: When the heater is turned on, electrons cross the outer boundary of system 
A, doing electrical work. This work is done on the system, and therefore WA  = 10 kJ. 
Because of this added energy, the temperature of the oil will rise, creating a temperature 
gradient, which results in a heat flow process from the oil to the iced water through their 
common boundary. Since the oil is restored to its initial temperature of 0 oC, the energy 
lost as heat must equal the energy gained as work. Therefore, QA = 10 kJ (or QA,out = 10 
kJ). 
 

System B: The only energy interaction at the boundaries of system B is the heat flow 
from system A.. All the heat lost by the oil is gained by the iced water. Thus, WB = 0 and 
Qe = +10 kJ. 
 

Combined system: The outer boundary of system A forms the entire boundary of the 
combined system. The only energy interaction at this boundary is the electrical work. 
Since the tank is well insulated, no heat will cross this boundary. Therefore, Wcomb = 10 
kJ and Qcomb = 0. Notice that the heat flow from the oil to the iced water is an internal 
process for the combined system and, therefore, is not recognized as heat. It is simply the 
redistribution of the internal energy. 
 
 
Mechanical forms of Work 
 
There are several different ways of doing work, each in some way related to a 
force acting through a distance. In elementary mechanics, the work done by a 
constant force F on a body that is displaced a distance s in the direction of the 
force is given by 

W = Fs                              2-17 
 

• If the force F is not constant, the work done is obtained by adding (i.e., integrating) 
the differential amounts of work (force times the differential displacement ds): 

 

∫=
2

1

FdsW       2-18 

 
• Obviously one needs to know how the force varies with displacement to perform 

this integration. Equations 2-17 and 2-18 give only the magnitude of the work. The 
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sign is easily determined from physical considerations: The work done on a system 
by an external force acting in the direction of motion is positive, and work done by 
a system against an external force acting in the opposite direction to motion is 
negative. 

 
• There are two requirements for a work interaction between a system and its 

surroundings to exist:  
 
1. there must be a force acting on the boundary, and  
2. the boundary must move. Therefore, the presence of forces on the boundary 

without any displacement of the boundary does not constitute a work 
interaction. Likewise, the displacement of the boundary without any force to 
oppose or drive this motion (such as the expansion of a gas into an evacuated 
space) is not a work interaction. 

 
In many thermodynamic problems, mechanical work is the only form of work 
involved. It is associated with the movement of the boundary of a system or 
with the movement of the entire system as a whole .Some common forms of 
mechanical work are discussed below. 
 
Moving Boundary Work 
 
One form of mechanical work frequently encountered in practice is associated with the 
expansion or compression of a gas in a piston-cylinder device. During this process, part 
of the boundary (the inner face of the piston) moves back and forth. Therefore, the 
expansion and compression work is often called moving boundary work, or simply 
boundary work. Some prefer to call it the P dV work for reasons explained below. 
Moving boundary work is the primary form of work involved in automobile engines. 
During their expansion, the combustion gases force the piston to move, which in turn 
forces the crank shaft to rotate. 
 
The moving boundary work associated with real engines or compressors cannot be 
determined exactly from a thermodynamic analysis alone because the piston usually 
moves at very high speeds, making it difficult for the gas inside to maintain equilibrium. 
Then the states that the system passes through during the process cannot be specified, and 
no process path can be drawn. Work, being a path function, cannot be determined 
analytically without knowledge of the path. Therefore, the boundary work in real engines 
or compressors is determined by direct measurements. 
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In this section, we analyze the moving boundary work for a quasi-equilibrium process, a 
process during which the system remains in equilibrium at all times. A quasi-equilibrium 
process, also called a quasi-static process, is closely approximated by real engines, 
especially when the piston moves at low velocities. Under identical conditions, the work 
output of the engines is found to be a maximum, and the work input to the compressors 
to be a minimum, when quasi-equilibrium processes are used in place of non-quasi-
equilibrium processes. Below, the work associated with a moving boundary is evaluated 
for a quasi-equilibrium process. 
 
Consider the gas enclosed in the piston-cylinder device shown below. 
 

  
The initial pressure of the gas is P, the total volume is V, and the cross-sectional area of 
the piston is A. If the piston is allowed to move a distance ds in a quasi-equilibrium 
manner, the differential work done during this process is 
 

δW = Fds = PA ds = P dV     2-19 
 

That is, the boundary work in the differential form is equal to the product of the absolute 
pressure P and the differential change in the volume dV of the system. This expression 
also explains why the moving boundary work is sometimes called the P dV work. In 
order to abide by the sign rule, for an expansion dV  is positive, the pressure P is the 
absolute pressure which is always positive, thus, the work should be written as 
 

δW = - P dV       2-20 
 
Thus, the boundary work is negative during an expansion process and positive during a 
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compression process, which is consistent with the sign convention adopted for work. 
The total boundary work done during the entire process as the piston moves is obtained 
by adding all the differential works from the initial state to the final state: 
 

∫−=
2

1

PdVWb       2-21 

This integral can be evaluated only if we know the functional relationship 
between P and V during the process. That is, P = f(V) should be available. Note 
that P = f(V) is simply the equation of the process path on a P-V diagram.  

 
The quasi-equilibrium expansion process described above is shown on a P-V 

diagram below. On this diagram, the differential area dA is equal to P dV, which is 
the differential work. The total area A under the process curve 1-2 is obtained by 
adding these differential areas: 

 
 

The area under the process curve on a P-V diagram is equal, in magnitude, to the 
work done during a quasi-equilibrium expansion or compression process of a 
closed system. 

 
A gas can follow several different paths as it expands from state 1 to state 2. In general, 
each path will have a different area underneath it, and since this area represents the 
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magnitude of the work, the work done will be different for each process. 

 
 This is expected, since work is a path function (i.e., it depends on the path followed as 
well as the end states). If work were not a path function, no cyclic devices (car engines, 
power plants) could operate as work-producing devices. The work produced by these 
devices during one part of the cycle would have to be consumed during another part, and 
there would be no net work output. 

 
Note: If the relationship between P and V during an expansion or a compression process 
is given in terms of experimental data instead of in a functional form, obviously we 
cannot perform the integration analytically. But we can always plot the P-V diagram of 
the process, using these data points, and calculate the area underneath graphically to 
determine the work done. 

 
Example 2-7 
A frictionless piston-cylinder device contains 0.1 lb of water vapor at 20 psi and 320 oF. 
Heat is now added to the steam until the temperature reaches 400°F. If the piston is not 
attached to a shaft and its mass is constant, determine the work done by the steam during 
this process. 
 
Hint: Even though it is not explicitly stated, the pressure of the steam within the cylinder 
remains constant during this process since both the atmospheric pressure and the weight 
of the piston remain constant. Therefore, this is a constant-pressure process. 
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Example 2-8  

A piston-cylinder device initially contains 0.4 m3 of air at 100 kPa and 80°C. The air is 
now compressed to 0.1 m3 in such a way that the temperature inside the cylinder remains 
constant. Determine the work done during this process. 
 
Solution 
A sketch of the system and the P-V diagram of the process are shown below. At the 
specified conditions, air can be considered to be an ideal gas since it is at a high 
temperature and low pressure relative to its critical-point values (Tcr = -147°C, Pcr = 3390 
kPa for nitrogen, the main constituent of air). For an ideal gas at constant temperature To, 
 

 
 

P = C  / V 
where C is a constant. Eq. 2-21 becomes: 
 

1

2
11

1

2
2

1

2

1
V
V

VP
V
V

CdV
V
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= 55.45 kJ 
where P1 V1 = P2 V2 
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Polytropic Process 
During expansion and compression processes of real gases, pressure and 
volume are often related by P Vn  = C, where n and C are constants. A process 
of this kind is called a polytropic process. Below we develop a general 
expression for the work done during a polytropic process. 
 
A sketch of the system and the p- Y diagram of the process are shown below  

 
The pressure for a polytropic process can be expressed as 
 

P =C V-n           2-22 
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The case for n = 1 is equivalent to the isothermal process already discussed. 
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Spring Work 
 
It is common knowledge that when a force is applied on a spring, the length of 
the spring changes.  

 
When the length of the spring changes by a differential amount dx under the 
influence of a force F, the work done is 

δWspring = F dx      2-25 
 

To determine the total spring work, we need to know a functional relationship between F 
and x. For linear elastic springs, the displacement x is proportional to the force applied. 
That is, 

F = ks x       2-26 
 
where ks is the spring constant (in kN/m). Substituting in 2-25 and integrating we get 
 

Wspring = ½ ks (x2
2 – x1

2)    (kJ)     2-27 
 

where x1 and x2 are the initial and the final displacements of the spring, respectively. Both 
are measured from the undisturbed position of the spring. Note that the work done on a 
spring equals the energy stored in the spring. 
 
Example 2-9  

A piston-cylinder device contains 0.05 m3 of a gas initially at 200 kPa. At this state, a 
linear spring that has a spring constant of 150 kN/m is touching the piston but exerting no 
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force on it. Now heat is transferred to the gas, causing the piston to rise and to compress 
the spring until the volume inside the cylinder doubles. If the cross-sectional area of the 
piston is 0.52 m2, determine: a. the final pressure inside the cylinder; b. the total work 
done by the gas; and c. the fraction of this work done against the spring to compress it. 
 
Solution 
  
(a) A sketch of the system and the P-V diagram of the process are sown below.  
 

 
The enclosed volume at the final state is 
 

V2 = 2 V1 = 0.1 m3 

 

Then the displacement of the piston (and the spring) become 
 

x = ∆V / A = 0.2 m 
 

The force applied by the linear spring at the final state is  
 

F = ks x = 30 kN 
 

The additional pressure applied by the linear spring on the gas at this state is 
 

P = F/A = 120 kPa 
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Without the spring, the pressure of the gas would remain constant at 200 kPa while the 
piston is rising. But under the effect of the spring, the pressure rises linearly from 200 
kPa to 

200 + 120 = 320 kPa 
at the final state 
 
(b) An easy way of finding the work done is to plot the process on a P-V diagram and 
find the area under the process curve. From figure above the area under the process curve 
(a trapezoid) is determined to be 13 kJ. 
 
The sign of the work is determined, by inspection, to be negative since it is done by the 
system. 
 
(c) The work represented by the rectangular area (region I) is done against the piston and 
the atmosphere, and the work represented by the triangular area (region II) is done 
against the spring. Thus Wspring = 3 kJ. The same result could have been obtained from 
Eq. 2-27. 
 
 
Nonmechanical Forms of Work 
 
Some work modes encountered in practice are not mechanical in nature. 
However, these nonmechanical work modes can be treated in a similar manner 
by identifying a generalized force F acting in the direction of a generalized 
displacement x. Then the work associated with the differential displacement 
under the influence of this force is determined from δW = F. dx 

Some examples of nonmechanical work modes are electrical work, where 
the generalized force is the voltage (the electrical potential) and the 
generalized displacement is the electrical charge as discussed in the last 
section; magnetic work, where the generalized force is the magnetic 
 
field strength and the generalized displacement is the total magnetic dipole 
moment; and electrical polarization work, where the generalized force is the 
electric field strength and the generalized displacement is the polarization of 
the medium (the sum of the electric dipole rotation moments of the 
molecules). Detailed consideration of these and other nonmechanical work 
modes can be found in specialized books on these topics. 
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2-3 Energy 
 
Chemical thermodynamics deals with the internal energy U, energy possessed 
by the system by virtue of the mass and motion of the molecules, 
intermolecular forces, chemical composition, etc. Any energy that the system 
possesses because of other considerations is ignored. 
 
The internal energy is relative. ∆U in total internal energy is the difference 
between the energy in the final state and that in the initial state. The most 
significant aspect of this kind of relation is that the energy change depends 
only on the initial and final states and is independent of the path linking these 
states.  
 
Thus: 

(i) The change ∆.U in the internal energy of a system depends only on the initial 
and final states of the system and not on the path connecting those states. Although 
both Q and W depend on the path, Q + W = ∆U is independent of the path 
 
(ii) The energy is an extensive state property of the system. Under the same 
conditions of temperature and pressure, 10 mol of the substance composing the 
system has ten times the energy of 1 mol of the substance. The energy per mole is 
an intensive state property of the system 
 
(iii) Energy is conserved in all transformations. A perpetual-motion machine is a 
machine which by its action creates energy by some transformation of a system. 
The first law of thermodynamics asserts that it is impossible to construct such a 
machine. 

 
 
2-4 The First Law of Thermodynamics 
 
So far, we have considered various forms of energy such as heat Q, work W, 
and total energy E individually, and no attempt has been made to relate them 
to each other during a process. The first law of thermodynamics, also known 
as the conservation of energy principle, provides a sound basis for studying 
the relationships among the various forms of energy and energy interactions.  
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• Based on experimental observations, the first law of thermodynamics states that 

energy can be neither created nor destroyed; it can only change forms. Therefore, 
every bit of energy should be accounted for during a process.  

 
• The first law cannot be proved mathematically, but no process in nature is known 

to have violated the first law, and this should be taken as sufficient proof. 
 

• Consider a system undergoing a series of adiabatic processes from a specified 
state 1 to another specified state 2. Being adiabatic, these processes obviously 
cannot involve any heat transfer but they may involve several kinds of work 
interactions. Careful measurements during these experiments indicate the 
following: For all adiabatic processes between two specified states of a closed 
system, the net work done is the same regardless of the nature of the closed system 
and the details of the process. Considering that there are an infinite number of 
ways to perform work interactions under adiabatic conditions, the statement above 
appears to be very powerful, with a potential for far-reaching implications. This 
statement, which is largely based on the experiments of Joule in the first half of 
the nineteenth century, cannot be drawn from any other known physical principle, 
and is recognized as a fundamental principle. This principle is called the first law 
of thermodynamics or just the first law. 

 
• A major consequence of the first law is the existence and the definition of the 

property total energy E. Considering that the net work is the same for all adiabatic 
processes of a closed system between two specified states, the value of the net 
work must depend on the end states of the system only, and thus it must 
correspond to a change in a property of the system. This property is the total 
energy. Note that the first law makes no reference to the value of the total energy 
of a closed system at a state. It simply states that the change in the total energy 
during an adiabatic process must be equal to the net work done. Therefore, any 
convenient arbitrary value can be assigned to total energy at a specified state to 
serve as a reference point. 

 
• Implicit in the first law statement is the conservation of energy. Although the 

essence of the first law is the existence of the property total energy, the first law is 
often viewed as a statement of the conservation of energy principle. Below we 
develop the first law or the conservation of energy relation for closed systems with 
the help of some familiar examples using intuitive arguments. 
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A. Let us consider first some processes that involve heat transfer but no work 
interactions. Take the example with the potato in the oven. As a result of heat transfer 
to the potato, the energy of the potato will increase. If we disregard any mass transfer 
(moisture loss from the potato), the increase in the total energy of the potato becomes 
equal to the amount of heat transfer. This and other similar examples can be 
summarized as follows: In the absence of any work interactions between a system and 
its surroundings, the amount of net heat transfer is equal to the change in energy of a 
closed system. That is, 

Q = ∆E     when W = 0 
  
B. Now consider a well-insulated (i.e., adiabatic) room heated by an electric heater as 

the system. As a result of electrical work done, the energy of the system will increase. 
Since the system is adiabatic and cannot have any heat interactions with the 
surroundings (Q = 0), the conservation of energy principle dictates that the electrical 
work done on the system must equal the increase in energy of the system. That is, We 
= ∆E. 

 
We know that the temperature of air rises when it is compressed (think of the example 
of the air in a cylinder with a piston). This is because energy is added to the air in the 
form of boundary work. In the absence of any heat transfer (Q = 0), the entire 
boundary work will be stored in the air as part of its total energy. The conservation of 
energy principle again requires that Wb = ∆E. 
. 

Thus, for adiabatic processes, the amount of work done is equal to the change in the 
energy of a closed system. That is, 
 

W = ∆E. when Q = 0 
 
C. Now we are in a position to consider simultaneous heat and work interactions. When a 

system involves both heat and work interactions during a process, their contributions 
are simply added. That is, if a system receives 12 kJ of heat while a paddle wheel does 
6 kJ of work on the system, the net increase in energy of the system for this process 
will be 18 kJ.  

 
To generalize our conclusions, the first law of thermodynamics, or the conservation of 
energy principle for a closed system or a fixed mass, may be expressed as follows: 
 
Net energy transfer to (or from) the system as heat and work = net change in the total 
energy of the system:  
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Q + W = ∆E  (in kJ)    2-28 
 

Here Q = net heat transfer across system boundaries (= ΣQin - ΣQout ) 
W = net work done in all forms ( = ΣWin - ΣWout ) 
∆E = net change in total energy of the system E2  - E1 
 

∆E = ∆U + ∆KE + ∆PE     2-29 
 
 
Most closed systems encountered in practice are stationary, i.e., they do not involve any 
changes in their velocity or the elevation of their center of gravity during a process. Thus, 
for stationary closed systems, the changes in kinetic and potential energies are negligible,  
and the first-law relation reduces to 
 

Q + W = ∆U  (in kJ)    2-30 
 

Sometimes it is convenient to consider the work term in two parts: Wolher and Wb, where 
Wother represents all forms of work except the boundary work. (This distinction has 
important bearings with regard to the second law of thermodynamics, as is discussed in 
later chapters.) Then the first law takes the following form: 

 
Q + Wother + Wb = ∆E  (in kJ)    2-31 

 
Note: It is extremely important that the sign convention be observed for heat and 
work interactions. Heat flow into and work done to a system are positive, and heat 
flow from a system and work done by a system are negative. A system may 
involve more than one form of work during a process. The only form of work 
whose sign we do not need to be concerned with is the boundary work Wb as 
defined by Eq. 2-21. Boundary work calculated by using Eq. 2-21 will always have 
the correct sign. The signs of other forms of work are determined by inspection. 

 
The first-law relation for closed systems can be written in various forms. Dividing Eq. 2-
28 by the mass of the system, for example, gives the first-law relation on a unit-mass 
basis as 

q + w = ∆e      2-32 
 
The rate form of the first law is obtained by dividing Eq. 2-28 by the time interval ∆t and 
taking the limit as ∆t→0. This yields 
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dt
dEWQ =+   (in kW)        2-33 

 
where dQ/dt  is the rate of net heat transfer, dW/dt  is the power, and dE/dt is the rate of 
change of total energy. 
 
 
Equation 2-28 can be expressed in differential form as 
 

δQ +δW = dE      2-34 
 
For a cyclic process, the initial and final states are identical, and therefore ∆E = E2 – E1 = 
0. Then the first-law relation for a cycle simplifies to 
 

Q + W = 0 
 
That is, the net heat transfer and the net work done during a cycle must be equal. 
 
Note: As energy quantities, heat and work are not that different, and you probably 
wonder why we keep distinguishing them. After all, the change in the energy content of a 
system is equal to the amount of energy that crosses the system boundaries, and it makes 
no difference whether the energy crosses the boundary as heat or work. It seems as if the 
first-law relations would be much simpler if we had just one quantity which we could call 
energy interaction to represent both heat and work. Well, from the first-law point of 
view, heat and work are not different at all, and the first law can simply be expressed as 
 

Ein – Eout = ∆E      2-35 
 
where Ein and Eout are the total energy that enters and leaves the system, respectively, 
during a process. But from the second-law point of view, heat and work are very 
different, as you will see in later chapters. 
 
Example 2-10  

Consider the quasi-equilibrium expansion or compression of a gas in piston cylinder 
device. Show that the boundary work Wb and the change internal energy ∆U in the first 
law relation can be combined into one term, ∆H, for such a system undergoing a 
constant-pressure process. 
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Solution 
Neglecting the changes in kinetic and potential energies and expressing the work as in 
Eq. 2-31,  
 

Q + Wother + Wb = U2 – U1 
 
For a constant-pressure process, the boundary work is given by Wb =- P0 (V2 – V1). The – 
sign preserves the sign convention that when the surroundings do work on the system, the 
final volume is less than the initial and the net work is positive. Substituting this into the 
above relation gives 
 

Q + Wother - P0 (V2 – V1) = U2 – U1 
 
But P0 = P2 = P1 thus Q + Wother = (U2 +P2V2) – (U1 + P1V1) 
 
Taking H = U + PV, leads to  
 

Q + Wother = H2 – H1     2-36 
 
which is the desired relation. This equation is very convenient to use in the analysis of 
closed systems undergoing a constant-pressure quasi-equilibrium process since the 
boundary work is automatically taken care of by the enthalpy terms, and one no longer 
needs to determine it separately. 
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Some Consequences of 
the First Law 

 
2-5 Heat Capacity 
 
We have already defined heat capacity as the amount of heat required to raise 
the temperature of a mass of a system by 1°C. It is denoted by C.  
 

Q = C ∆T          2-37 
 
Where Q is in kJ, C in kJ/kg.0C. 
 
Equation 2-37 is a general definition of heat capacity and it implies that the 
heat capacity of a system depends not only on the heat-absorbing ability but 
also, in a simple way, on the amount of substance present.  
 

• When defining heat capacity in terms of material in the system, we have:  
o  Specific heat capacity. Heat absorbed by 1 kg of material that undergoes a 

rise in temperature of 1°C.  
o Molar heat capacity. Heat absorbed by 1 kg mol of material that undergoes 

a rise in temperature of 1°C. 
• When the heat capacity is essentially constant between the two temperatures T1 

and T2,  
 

Q = C ∆T  = C ( T2  - T1)     2-37a 
 

See figure (it is numerically equal to the area under the curve). 
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If C varies significantly with temperature, then: 
 

∫=
2

1

dTTCQ )(
      2-38 

and again, it is numerically equal to the area under the curve. 
 

• We can express C by an empirical power series  such as C=a+bT+cT-2 Then, 
 
 
 
 
Note: If the heat capacity cannot be expressed analytically as a function of temperature 
and experimental data is available, Q can be evaluated from the C vs T graph. If a 
suitable function is available, the integration can be performed numerically by the use of 
integration rules. 
 
2-6 Specific Heat Capacity 
 
We already know that the quantity of heat exchange with a system depends 
on the path, thus, for different paths, C will be different. 
 

(i) At constant volume, over a temperature range in which the heat capacity is 
constant, Equation 2-37 becomes 

 
QV = CV ∆T          2-39 

 
And because the volume is constant, QV = ∆U, thus 
 

∆U = CV ∆T          2-40 
 

If CV is the molar heat capacity, then for n moles, 
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∆U = n CV ∆T          2-41 
 
If, over the temperature range concerned, CV is not constant 
 

∫==∆
2

1

dTTCQU VV )(       2-42 
 
   (ii) At constant pressure, we have similarly  
 

QP = CP ∆T          2-43 
 
If in Eq 2-36 there is no other types of work involved except boundary work, then  
QP = ∆H 
And thus, for a constant CP 
 

∆H = CP ∆T          2-44 
 

and for n moles 
 

∆H = nCP ∆T          2-45 
∆H = CP ∆T          2-44 

 
and if CP varies, then 

∫==∆
2

1

dTTCQH VV )(       2-46 

 
   (iii) Relationship between constant pressure CP and constant volume CV. 
For the molar heats, we have 
 

CP = CV + R.      2-47 
 
The ratio of the 'heat capacities' is given by 



2 - 36

γ = CP / CV      2-48 
 
For monatomic gases γ =1.67. 
 
Eq. 2-47 holds approximately for dia- and polyatomic gasses  
 

  Heat capacity ratio of some important gases at 0.1 MPa pressure 

Specific heat 
(kJ kg-1 K-1) 

Molar heat capacity 
(Jmol-1 K-1) Gas 

Cv Cp Cv Cp 

Cp-Cv 
(Jmol-1 K-1) 

γ 

 Monatomic       

 He 3.138 4.812 12.468 20.794 8.326 1.67 

 Ne 0.619 1.029 12.468 20.794 8.326 1.67 

 A      1.67 

 Hg      1.67 

 Na      1.67 

 Diatomic       

 H2  0.014    1.40 

 N2 0.740 1.038 20.753 29.079 8.326 1.40 

Air 0.718 1.005 20.8 29.114 8.314 1.4 

 O2 0.648 0.912 21.046 29.413 8.368 1.40 

 Triatomic       

 CO2 0.640 0.833 28.451 36.945 8.494 1.30 

 H20 1.464 2.017 25.941 34.309 8.368 1.32 

 Polyatomic       
 C2H6 1.435 1.724 43.095 51.672 8.577 1.20 

 
Example 2-11 
Air at 300 K and 200 kPa is heated at constant pressure to 600 K. Determine the change 
in internal energy of air per unit mass, using (a) the functional form of the specific heat 
and (b) the average specific heat value. 
 
Solution 
At specified conditions, air can be considered to be an ideal gas since it is at a high 
temperature and low pressure relative to its critical-point values (Tcr = -147°C, Pcr = 3390 
kPa for nitrogen, the main constituent of air). The internal energy change ∆u of ideal 
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gases depends on the initial and final temperatures only, and not on the type of process. 
Thus, the solution given below is valid for any kind of process 

(a) The change in internal energy of air, using the functional form of the specific 
heat, is determined as follows. The Cp(T) of air is given in the form of a third-
degree polynomial expressed as 
 

CP (T) = a + bT + cT2 + dT3 

 

where a = 28.11, b = 0.1967 x 10-2, C = 0.4802 x 10-5, and d = -1.966 x 10-9.  
Next we have 
 

CV (T) = CP – Rmolar  = (a – Rmolar ) + bT +cT2 + dT3 
 

Replacing it in Eq. 2-42 and performing the integral, we get  
∆U = 6447.15 kJ / kmol 

The molar mass of air is 28.97 kg /kmol, thus, the change in internal energy per 
unit mass is: 

∆u = ∆U / M = 225.55 kJ / kg 
 

(b) The average value of the constant-volume specific heat Cv.av is determined from 
the values at 300 and 600 K. At the average temperature 450 K tables give the 
value Table A-2b at the average temperature (~ + 7;)/2 = 450 K to be 
 

Cv.av = CV@450K = 0.733 kJ/(kg . K) 
 

Thus ∆u = Cv.av  (T2 – T1) = 219.9 kJ / kg 
 

 This answer differs from the above result by only 1.2 percent. This close 
agreement is not surprising since the assumption that Cv varies linearly with 
temperature is a reasonable one at temperature intervals of only a few hundred 
degrees. If we had used the Cv value at T1 = 300 K instead of at Tav, the result 
would be 215.4 kJ/kg, which is in error by about 3 percent. Errors of this 
magnitude are acceptable for most engineering purposes. 
 

Example 2-12 
A piston-cylinder device initially contains 0.5 m3 of nitrogen gas at 400 kPa and 27°C. 
An electric heater within the device is turned on and is allowed to pass a current of 2 A 
for 5 min from a 120-V source. Nitrogen expands at constant pressure, and a heat loss of 
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2800 J occurs during the process. Determine the final temperature of the nitrogen 
 
Solution 
This time, we take the nitrogen in the piston-cylinder device as our system. At the 
specified conditions, the nitrogen gas can be considered to be an ideal gas since it is at a 
high temperature and low pressure relative to its critical-point values (Tcr = -147°C, Pcr, = 
3390 kPa). 
 
 
First, let us determine the electrical work done on the nitrogen: 
 
 

We =V I ∆t = 72 kJ 
 

The mass of nitrogen is determined from the ideal-gas relation  
 

M = PV / RT = 2.25 kg 
 

The conservation of energy gives: 
 

Q + We + Wb =  ∆U 
 

For a constant pressure process of a closed system,  
 

Q + We = ∆H = mCP (T2 – T1) 
 
 
Using the value of CP from the table, we get T2 = 56.6 0C 
 
 
 

2-7 Internal Energy, Enthalpy, and Specific Heats of Solids 
and Liquids 
 
 

The difference between CP  and CV for liquids and solids is rather small, and, except for 
where high accuracy is required, it is sufficient to take CP = CV. The reason for this is 
that the thermal expansion coefficients of liquids and solids are very small, so that the 
volume change on increasing the temperature by 1°C is very small; correspondingly the 
work produced by the expansion is small and little energy is required for the small 
increase in the spacing of the molecules. 
 
 
A substance whose specific volume (or density) is constant is called an incompressible 
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substance. The specific volumes of solids and liquids essentially remain constant during 
a process. Therefore, liquids and solids can be approximated as incompressible 
substances without sacrificing much in accuracy. The constant-volume assumption 
should be taken to imply that the energy associated with the volume change, such as the 
boundary work, is negligible compared with other forms of energy. Otherwise, this 
assumption would be ridiculous for studying the thermal stresses in solids (caused by 
volume change with temperature) or analyzing liquid-in-glass thermometers. 
For solids and liquids,  
 
 

CP = CV = C       2-49 
 
Example: CP for asphalt is 0.920 kJ / kg . 0C 
 
Like those of ideal gases, the specific heats of incompressible substances depend on 
temperature only.  
 
 

dU  = Cv dT = C(T) dT     2-50 
 
 
The change in the internal energy between two states is 
 

∫=−=∆
2

1

12 dTTCUUU )(
     2-51 

 
For small temperature intervals, we can use an average value for C 
 

∆U ≈ Cav(T2 – T1)      2-52 
 
For the enthalpy, by using its definition, we get  
 
 

∆H = ∆U + V∆P             (kJ)    2-53 
 

The second term in the above equation is often small compared with the first term and 
can be neglected without significant loss of accuracy. 
 

 
2-7 Heat Conduction 
 
We have seen that the for a temperature gradient dT / dx the heat flows as 
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dx
dTkAQcond −=                                           (2-8) 

 
where k is the thermal conductivity of the material (in  W/m 0C). 
 
A substance with a large thermal conductivity is known as a thermal conductor, and one 
with a small value of k as a thermal insulator. The numerical value of k depends on a 
number of factors, one of which is the temperature. If the temperature difference 
between parts of a substance is small, k can be considered to be almost constant 
throughout the substance.  
Examples of practical situations. In all cases, we shall assume that k is constant 
throughout the conducting substance. 
 

(a) Linear flow of heat perpendicular to the faces of a slab. If the temperature 
difference T1 – T2 and the thickness d are small, then 

 

d
TT

kAQ 21 −
=  

 
(b) Radial flow of heat between two coaxial cylinders. If the conducting material  
lies between an inner cylinder of radius rl  kept at temperature T1 and an outer 
cylinder of radius r2, and temperature T2  both of length 1, then  there will be a 
steady radial flow of heat at the constant rate.  
 The area through which heat flows depends on the distance from the cylinders. 
For a distance r from the axis of the cylinders, the area is A = 2π rl and for a 
thickness dr, the temperature gradient is dT / dr. Thus, 

r
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           and after integration: 
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(c) Radial flow of heat between two concentric spheres. If the conducting material 
lies between an inner sphere of radius r1 held at constant temperature T1 and an 
outer sphere of radius r2 held at constant temperature T2 there will be a steady 
radial flow of heat at a constant rate. In this case by following a procedure similar 
to the concentric cylinders we get: 
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2-8 Reversible and irreversible processes 
 
Reversible isothermal process 
 
An ideal gas is placed in a cylinder with a piston, and expands very slowly and keeps the 
temperature constant all the time by either withdrawing heat from or supplying heat to the 
system. Let P1 V1 T1 be the initial state and P2, V2, T2 be the final state. 
 
For a perfect gas, ∆ U = CV ∆T = 0, and from the first law we have Q + W = 0 
 
The work done by the gas for a small increase in volume dV is dW = - P dV 
The total work between the two states is 
 

∫−=−=
2

1

PdVQW       2-54 

which for ideal gases can be written as 
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Since at constant temperature P1 V1 = P2 V2 
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This equation can be also written as 








=
nRT
WPP exp12       2-55 

 
Irreversible isothermal process   
 
The numerical value of the work done on the surroundings, whether positive 
or negative, is always a maximum in reversible process. This is, in fact, true 
for any kind of work and for any path. Since only irreversible processes are 
observable (the reversible processes are the hypothetical processes) we 
conclude that all observable processes produce less work than the maximum 
work, and result in dissipation of work as heat. 
 
Adiabatic irreversible process (Q = 0) 
 
In this case   

∆U = W      2-56 
The change ∆U can be calculated by considering that each individual small 
adiabatic change (∆U)A is the sum of  an isocoric (∆U)V and an isothermal 
process (∆U)T, thus 

(∆U)A = (∆U)V + (∆U)T 

 
For an isothermal process (∆U)T = 0 

∫=∆
2

1

dTTCnU VV )()(     2-57 
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thus  

∫=∆
2

1

dTCnU VA)(  
so the general equation for the adiabatic change gives 

 

WPdVdTCnU V =−==∆ ∫∫
2

1

2

1
    2-58 

 
Example 2-13 
5 mol of an ideal monatomic gas, with the specific heat at constant volume being 20.92 
J mol-1 K-1, expands irreversibly but adiabatically from an initial pressure of 2.02 MPa 
against a constant external pressure of 0.101 MPa until the temperature drops from the 
initial value of 27°C to a final value of 7°C. How much work has been done in the 
process? What is the final volume? 
 
Solution 
Eq. 2-58 gives ∆U = n CV (T2 – T1) = -2.09 kJ which is equal to the work done 
W. 
The final volume can be found as follows: 
 

W = -Pext (V2 – V1) = -2.09 kJ 
so  

(V2 – V1) = 0.02 m3 

 
P1 V1 = nRT1 , that give for V1 = 0.006 m3, so V2 = 0.026 m3 
 
Adiabatic reversible process (Q = 0) 
 
For ideal gases, the adiabatic processes are described by (see Part I page 101) 
 

PVγ = a constant                                            2-59 
 

TVγ-1 = a constant                                                   2-60 
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Where γ = CP / CV , and γ - 1 = R / CV . 
 
For van der Waals gases, the above equation becomes: 
 

T (V – b)γ-1 = a constant                                           2-61 
 

For ideal gases, by replacing V with nRT/P in  Eq.2-59 we get 
 

Tγ P1-γ = const   2-62 
or 

T P1/γ  - 1 = a constant   2-63 
 

For real gases, some of the adiabatic expansion forms are: 
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The work done in a adiabatic expansion can be calculated from  
 

∫−=
2

1

PdVW
   2-65 

where P is (const. x V-γ ) which gives  
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where C is a constant. This becomes 
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1 VPVPW −
−

−=
γ     2-67        

 
In adiabatic processes, from ∆U = Q + W, Q = 0, we get W = ∆U 
 
But ∆U = CV ∆T, 
 
So  

W = - CV ∆T      2-68 
And for a real gas 

W = - CV ∆T + a ∆ (1/V)     2-69 
 

Enthalpy (H = U + PV) 
 
For an isobaric process the first law can be written as 
 

∆U = Q + W = QP – P (V2 –V1) 
 
rearranging, we get 

∆H = QP      2-70 
 

Thus,  
 

• The heat absorbed in any reversible isobaric process is equal to the difference 
between the enthalpies of the system in the end states of the process.  

 
• Enthalpy, like energy U or temperature T, is a function of state of the system alone 

and is independent of the path through which that state is reached.  
 

Because QP =CP ∆T = ∆H 
 
We get  

CP = (∂H /∂T)P      2-71 
 
     Consider a stationary closed system undergoing a constant-volume process (Wb = 
0). The first-law relation for this process can be expressed in the differential form as 
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 δ Q - δ Wother = dU 
 

The left-hand side of this equation represents the amount of energy transferred to the 
system in the form of heat and/or work. From the definition of CV , this energy must be 
equal to CV dT, where dT is the differential change in temperature. Thus, 
 

CV dT = dU  at constant volume 
In other words, 

CV = (∂U / ∂T )V      2-72 
 

For ideal gases, the work done in an isothermal process is given by (see Part I) 
 

∫−=
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PdVW
   (2-65) 
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For real gases, in order to calculate the work in an isothermal process 

 
From the van der Waals equation for n = 1 
 

( ) RTbV
V
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 + 2  

 
we take the pressure out and get 
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    2-73 

 
Van der Waals equation gives 
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V
a

bV
RTVPV −
−

=  
It can be shown that for real gases there is a small change in the internal energy with the 
change in the volume at constant temperature: 
 

(∂U / ∂V)T = a / V2 

 

Thus, for an isothermal process,  
∆H = ∆U + ∆(PV) 

 
which leads to 

1212

2211
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=∆      2-74 

 
Joule and Joule – Thomson experiment 
 
It is interesting to see how the energy of a gas depends on its volume, or how 
the enthalpy of a gas depends on pressure. For this purpose, Joule and Gay-
Lussac carried out a series of experiments and later Joule and Thomson 
carried out another set of experiments. These two experiments are now known 
as the Joule experiment and the Joule-Thomson experiment. 
 
Joule experiment 
 

• Two containers, one containing a gas at a given pressure and temperature and the 
other evacuated, joined by a tube provided with a stopcock are immersed in a 
calorimeter bath  
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• The stopcock is opened, the gas is allowed to expand freely from one container 
into the other and then the net temperature change attending the process is 
measured after reaching thermal equilibrium.  

 
• It is observed that, when ordinary gases at moderate pressures are subjected to the 

Joule experiment, the net temperature change is very small so that we can assume 
that the temperature change is actually zero. 
 

• There is no work done by the system against an external pressure, thus W = 0 
 

• There no heat exchanged with the environment, thus Q = 0 
 

• In conclusion, 
∆U = Q + W = 0 

 
and the energy of an ideal gas is a function of temperature only and it does not depend 
on its volume. It follows that CV depends on T only. 
 

dU = CV(T) dT 
 

Joule – Thomson experiment 
 

Joule and Thomson devised another experiment in such a way that the temperature 
change due to expansion of a gas would much more accurately be measured. 
 

 
 
Note: The results of this experiment provide information about intermolecular 
forces. This information can be used to in the liquefaction of gases such as 
hydrogen and helium.  
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A cylindrical tube, insulated to prevent any transfer of heat to the surroundings, is fitted 
with two pistons and a porous plug which is capable of allowing gas to flow slowly 
through it. The left tube is initially filled with a certain amount of a gas at temperature T1, 
volume V1 and pressure P1 ; the right tube is empty. The gas is then allowed to flow 
slowly through the plug in such a way that its pressure in left tube is kept constant at P1 
by the movement of the piston towards the plug. At the same time the right piston is 
adjusted in such a way that the low pressure P2 (< P1) is kept constant. The final volume 
in right tube after all the gas has streamed through the porous plug, is V2 and its 
temperature T2. The significant datum obtained in this experiment is the change in 
temperature due to flow of the gas through the porous plug. This can be obtained by 
measuring temperatures T1 and T2. 
 
In this experiment: 

• Q = 0 
• The change in the internal energy of the system is due to the work done 

 
W = P1 V1 – P2 V2 

But  
∆U = U2 – U1 = P1 V1 – P2 V2 

By rearranging we get 
∆H = 0  

 
This shows that the Joule-Thomson experiment is carried out under constant-enthalpy 
conditions. 
 
Note:  

• When the gas involved is perfect, H is a function of T only, and therefore ∆H = 0  

          implies that ∆T = 0 , thus no temperature change for a perfect gas.  
• For a real gas it generally depends on whether T2 is greater or smaller than T1. At 

the critical temperature (called the Joule-Thomson inversion temperature). Above 
this temperature there will be heating; below this temperature there will be cooling 
upon Joule-Thomson expansion. 

 
The Joule-Thomson coefficient (µ)  is defined as the change in temperature per unit 
change in pressure when the enthalpy is constant. In terms of partial derivatives 
 

    2-75 
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The sign of the coefficient indicates if the gas cools or warms up upon expansion. 
• if the gas cools in the process of streaming through the plug, µ >0. Conversely, 

when µ <0 there is an increase in temperature. 
 

If we consider H as a function of temperature and pressure, the total differential of H is 
given by 
 
 
 
 
It can be shown that if Cp remains constant over a small temperature range, then (see text 
page 100) 
 

 
 

                         2-76     
 

This is the equation for the differential Joule-Thomson effect, ∆T being the increase in 
temperature for a change ∆P in pressure in the proximity of the temperature T. In their 
experiment, Joule and Thomson found that the decrease in temperature was 
proportional to the difference in pressure on the two sides of the porous plug.  
 
For a van der Waals gas, U is not a function of temperature only, whereas for an ideal 
gas, U is a function only of temperature. It can be shown (see text page 102) that 
 

U = U0 +CV T – a / V     2.77 
 

Where U0 is a constant. 
 
Similarly, the enthalpy for van der Waals gases is expressed as 

 
 
 

2-78 
 

For a small pressure change, the expansion should still be at constant enthalpy, thus 
 

H(P + dP, T + dT) = H(P, T).   2-79 
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By differentiating with respect to P, we get 
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The left-hand side of Eq. 2-79 can be expanded by Taylor expansion as 

 
which leads to  
 
Combining with 2-79 we get 

 
 
 
 
Where the term at the denominator is CP. Thus we have for the Joule-Thomson 
coefficient 
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−=
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      2-80 

 
At the inversion temperature µ = 0, so we can find Ti = 2a / Rb 
 

• At this temperature the Joule-Thomson effect is zero; no change in temperature 
occurs on expansion. Below Ti there is cooling and above it heating for Joule-
Thomson expansion 

 
• Evidently the Joule-Thomson effect depends on both a and b, even though it may 

depend only on a as it is the cohesion force a/V2 against which work is to be done. 
 

• By differentiating Eq. 2-78 with respect to T, and replacing (∂H / ∂T) by CP, we get 
 

CP – CV = R + 2aP / RT2      2-81 
 
This shows that in the case of a van der Waals gas the difference between Cp and Cv is 
greater than that in the case of an ideal gas. 
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Some Applications of the First Law 
 

The first law of thermodynamics is 
 

             dU = dQ +dW                                            2-82 
 
The energy equation of a system is the relation between the internal energy U 
and the state variables of the system: pressure, volume and temperature. 
 
U = f(T, V) and dW = -P dV 
 
The quantity of heat dQ becomes 

 
                   2-83 
 

 
This equation is a general equation and can be applied to any substance and to 
any reversible process. 
 

A. V = constant  
 

And from Eq, 2-83 we obtain the eq. for CV  
 

 
 

B. P = constant   
 

And Eq. 2-83 becomes 

                2-84 
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or 
 

                   2-85 
 

C. T = constant 
 
Eq. 2-83 becomes 

T
T

TT dV
dV
dUdVPdQ )()()( 
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D. Q = 0 
 
Eq. 2-83 becomes 

 
 
                              2-87 
 

or 

    2-88  
 

U = f(T, P) 
 
Differentiating  dV  
 

 
 

2-89 
and similarly dU, the first law can be written as 
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P = constant   
 
 

    2-90 
 

and Eq. 2-89 becomes 
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V = constant  
 

    2-92 
or 

     2-93 
 

 
Similar equations can be obtained for U = f (P,V) 
 
Internal Energy of Gases 
 
It will be shown later that for any substance 

 
2-94 

 
 

we can compute (dU / dV)T 
 
For one mole of ideal gas, from PV = RT we get (dP / dT)V =R / V, thus 

 
(dU / dV)T = -P + TR / V = P – P = 0 
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This shows that at constant temperature the internal energy of an ideal gas is 
independent of volume or density.  
By differentiating with respect to P, we also get; 
 

(dU / dP)T = 0. 
 

In conclusion, the internal energy of an ideal gas depends on temperature only. Thus 

 
becomes 

dT
dUCV =        2-95 

and in general 

dTCUU
T

T
V∫+=

0

0      2-96 

where U0 is a constant. 
 
For a mole of van der Waals gas 
 
 
 

 
By differentiating with respect to T at constant volume 
 
 
 
 
and substituting in Eq.2-94, we get 
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We have 
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becomes 

dU = CV dT + (a / V2) dV 
Thus 
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This shows that the internal energy of a van der Waals gas depends on its volume and 
temperature. Since the van der Waals constant b is a measure of molecular diameter only, 
it does not affect the energy, and hence it does not appear in the energy equation. 
 


