Probing Reactive Center Loop Insertion in Serpins: A Simple Method for Ovalbumin

Umesh R. Desai,* Jennifer L. Johns,† Laura Lahaye,* and H. Tonie Wright†

*Department of Medicinal Chemistry, †Department of Biochemistry, and ‡Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298

Received July 19, 2001; published online January 23, 2002

Insertion of the reactive center loop in β-sheet A in serpins has been typically inferred from the increased stability of the cleaved form to thermal- and urea-induced denaturation. We describe a convenient and rapid fluorescence-based method that differentiates the loop-inserted form from the loop-exposed form in ovalbumin, a prototypic noninhibitory serpin. Recombinant wild-type and R345A ovalbumins in the intact form bind ANS with equilibrium dissociation constants of 116 and 125 μM and a maximal fluorescence increase of 200 and 264%, respectively, in pH 6.8 buffer. Cleavage of the two proteins with porcine pancreatic elastase results in a 1.6- and 2.6-fold increase in the ANS-binding affinity. While cleavage of the reactive center loop in rR345A ovalbumin results in a 200% increase in the ANS fluorescence, the rWT protein exhibits a 50% decrease. Similar experiments with a 1-proteinase inhibitor and antithrombin, two inhibitory serpins that exhibit reactive center loop insertion, show a decrease in ANS fluorescence on cleavage with porcine pancreatic elastase and thrombin, respectively. Denaturation studies in guanidinium hydrochloride indicate that the reactive center loop is inserted in the main body of the serpin in the cleaved form of rR345A mutant, while it is exposed in the cleaved form of rWT ovalbumin. These results demonstrate that ANS fluorescence change is an indicator of the loop-inserted or loop-exposed form in these recombinant ovalbumins, and thus could be advantageously used for probing reactive center loop insertion in ovalbumins. The major increase in fluorescence for the r345A mutant on cleavage primarily arises from a change in ANS binding rather than from the generation of an additional ANS-binding site. © 2002 Elsevier Science (USA)

The proteins of the serpin (serine proteinase inhibitor) superfamily share a common tertiary structure, which confers unique functional properties that are critical for their roles in numerous physiological processes. Most serpins are inhibitors of key proteinases involved in these processes, and compromise of their inhibitory activity may lead to a pathological state.

The serpin inhibition mechanism has been investigated in significant detail. All known serpins contain a 15-residue sequence, called the reactive center loop, that recognizes the enzyme's active site. Crystal structures of the intact uncleaved forms of several inhibitory serpins show that the reactive center loop is exposed and is localized at one end of the ellipsoidal body of the serpin, while crystal structures of cleaved inhibitory serpins show the reactive center loop fully inserted into a preexisting β-sheet A. This strand insertion is necessary for the formation of the stable serpin-proteinase complex as shown by biochemical studies and the recent crystal structure of such a complex. These studies show the proteinase, covalently attached to the P1 residue of the reactive center loop, at the opposite end of the inhibitor, indicating a major translocation of ~70 Å. This occurs in concert with the insertion of the reactive center loop into the main body of the serpin, thereby becoming β-strand 4 of the six-stranded β-sheet A of the inhibitor. This movement, called the reactive center loop insertion, is characterized by an increase in stability of the loop-inserted form relative to the loop-exposed form under denaturing conditions, such as heat and chaotropes. The translocation distorts the catalytic triad of active-site residues of the proteinase, thereby...
dramatically reducing the rate of hydrolysis of the acyl-
enzyme intermediate resulting in the inhibition of the
proteinase (9, 11, 12). Both the thermodynamics and
the kinetics of the reactive center loop insertion pro-
cess are likely to be critical for serpins to successfully
inhibit their target proteinases.

Ovalbumin is classified as a serpin based on its
three-dimensional structural similarity to the inhibi-
tory serpins (5, 13). Despite this close structural simi-
arity, chicken egg and recombinant wild-type (rWT)³
ovalbumins are not inhibitors of any serine proteinase
(14–16). The reason(s) for the dysfunction of inhibitory
mechanism in ovalbumin is(are) not completely under-
stood and is a subject of intense inquiry both to engi-
eener a new inhibitor and to enhance knowledge regard-
ing serpin mechanism. Because ovalbumin is a
substrate of elastase (14), and not an inhibitor, the
phenomenon of reactive center loop insertion has been
commonly inferred in ovalbumin through the attend-
ant increase in stability to thermal- or guanidinium
hydrochloride-induced denaturation (16). Both these
methods require significant quantities of the protein
and are slow and effort intensive. We report here the
applicability of measurement of 1-anilinonaphthalene-
8-sulfonic acid (ANS) fluorescence to deduce reactive
center loop insertion in β-sheet A in ovalbumin follow-
ing cleavage with elastase. The technique is simple,
fast, and easy to perform and consumes much less
protein than denaturation studies using differential
scanning calorimetry, fluorescence, or circular dichro-
ism methods. Preliminary investigations on the inter-
action of two inhibitory serpins, antithrombin and α₁
proteinase inhibitor, with thrombin and porcine
pancreatic elastase, respectively, show that the tech-
nique may also be useful for studying reaction kinetics.

MATERIALS AND METHODS

Reagents. 1,8-ANS (99.9%) and guanidinium hy-
drochloride were purchased from Sigma Chemical Co.
(St. Louis, MO). Stock concentration of ANS in 20 mM
sodium phosphate buffer, pH 6.8, was prepared using
its dry weight. All other chemicals used were reagent-
grade Sigma products.

Proteins. Recombinant wild-type and Arg345Ala
ovalbumins were overexpressed in bacterial cells from
a modified pET3d vector in which the ovalbumin gene
was inserted between an introduced Nsil and a BamHI
restriction site, essentially as previously described
(16). The ovalbumin concentration was calculated from
ε820 of 29,400 M⁻¹ cm⁻¹ (17). α₁-Proteinase inhibitor
(α₁-PI) and porcine pancreatic elastase (PPE) were
obtained from either Calbiochem or Sigma and used
without further purification. Stock solutions (50–100
µM) of α₁-PI and PPE were prepared in 50 mM Tris-
HCl (pH 8.0) and 1 mM HCl, respectively, and stored at
–20°C until used. Plasma antithrombin and thrombin
were a gift from Professor Steven T. Olson (University
of Illinois–Chicago).

Buffer conditions for fluorescence and denaturation
studies. Experiments with ovalbumin and antithrom-
bin were performed in a 20 mM sodium phosphate
buffer, containing 0.1 mM EDTA, 20 mM NaCl, and
0.1% PEG8000, adjusted to pH 6.8 at 25°C; while a 50
mM Tris-HCl buffer adjusted to pH 8.0 at 25°C was
used for α₁-PI experiments. Denaturation studies uti-
lized 8 M guanidinium hydrochloride (GuHCl) in
double-distilled deionized water.

Preparation of reactive center loop-cleaved ovalbu-
mins. A ~500 µM recombinant ovalbumin (rWT and
rR345A) solution was incubated with 5 µM elastase at
25°C in 100 µL Tris buffer, pH 8.0, for 1 h followed by
the addition of 5 µL of 10 mM PMSF. The reaction
buffer was immediately exchanged for 20 mM sodium
phosphate buffer, pH 6.8, by centrifugal filtration and
the cleaved recombinant ovalbumin stored at –20°C
until further use. A 10% SDS-PAGE gel showed bands
at ~41 kDa (not shown) for both rWTc and rR345Ac
ovalbumins confirming reactive center loop cleavage of
the intact ovalbumins. Whereas rWTc ovalbumin was
homogeneous by SDS-PAGE, the rR345Ac mutant
shows two less intense (~2%) fragments at ~30 and
~27 kDa in addition to the major band that possibly
arise due to contamination of the porcine pancreatic
elastase, as previously reported (14). The presence of
these small contaminants in the rR345Ac preparations
is not expected to significantly affect the ANS fluores-
cence results presented here.

Fluorescence and equilibrium-binding studies. The
fluorescence emission spectra of ANS in the free and
protein-bound state were recorded on a PC1 single-
photon-counting fluorescence spectrophotometer (ISS
Instruments, Champaign, IL) in ratio mode at ambient
temperature. The excitation wavelength was set at 405
nm with a 6-nm bandpass, while the emission was
scanned from 450 to 600 nm with a 2-nm bandpass in
1-nm increments. Each spectrum represented an aver-
age of 3 scans with a total integration time of 15 s per
unit wavelength.

The equilibrium dissociation constants for ANS-re-
combinit ovalbumin interaction were determined
from the increase in fluorescence intensity at 532 nm (405 nm \(\lambda_{EX}\)) as a function of increasing concentration of the ligand. Titrations were done with \(~20 \mu\text{M}\) solutions of rWT, rR345A, and rWTc ovalbumins and a \(5 \mu\text{M}\) solution of rR345Ac ovalbumin. Simultaneous fluorescence measurements were performed on ANS alone for background subtraction. The increase in fluorescence signal with increasing ANS concentration was fit to the quadratic equilibrium-binding equation, assuming a 1:1 binding stoichiometry.

The interactions of antithrombin and \(\alpha_1\)-PI with thrombin and PPE, respectively, were monitored in the presence of \(15-30 \mu\text{M}\) ANS at \(25^\circ\text{C}\). For the antithrombin-thrombin reaction, \(20 \text{ mM sodium phosphate buffer, pH 7.4, was used whereas 50 mM Tris-HCl buffer, pH 8.0, was used for the \(\alpha_1\)-PI–PPE reaction. Fluorescence at 532 nm (\(\lambda_{EX} = 405 \text{ nm}\)) was averaged every 5 min by integrating the emission intensity for 5 s. Reference fluorescence values of ANS alone and in the presence of the serpin were subtracted for calculating the observed rate constants from the exponential decreases in intensity.

Guanidinium chloride denaturation studies. A \(0.5–1 \mu\text{M}\) solution of recombinant ovalbumin was incubated in \(0–8 \text{ M GuHCl}\) for \(2 \text{ h}\) at room temperature and its fluorescence emission spectrum in the range 315–365 nm (280 nm \(\lambda_{EX}\)) was then recorded using the parameters described above. Emission spectra of GuHCl solutions were recorded under similar conditions and subtracted to obtain the background-corrected emission due to protein. The emission maximum of recombinant ovalbumins changes from \(~320 \text{ nm}\) in \(0 \text{ M GuHCl}\) to \(~353 \text{ nm}\) in \(8 \text{ M GuHCl}\). The fraction of protein molecules in the native form was calculated from change in emission maximum as a function of GuHCl concentration.

RESULTS AND DISCUSSION

Recombinant R345A ovalbumin exhibits reactive center loop insertion on cleavage with elastase. Previous work has shown that the replacement of Arg345 (P14 (18)), a critical reactive center loop residue, with Ser confers facile loop insertion on the mutant ovalbumin when cleaved with elastase (16). This observation was also found to be true for an ovalbumin mutant in which the native P12–P10 sequence was mutated to Ala–Ala–Ala in addition to the ArgP14 → Ser replacement. In both these ovalbumins, loop insertion was deduced from the increased stability of the cleaved form of the serpin in comparison to the intact form under denaturing conditions, such as heat or guanidine, as observed for inhibitory serpins (19, 20).

To test whether Ala substitution for this critical P14 residue (R345A ovalbumin) also exhibits the phenomenon of reactive center loop insertion on elastase cleavage, we determined the GuHCl denaturation profiles of the intact and cleaved forms of recombinant wild-type and rR345A ovalbumins (Fig. 1B) (19–23). All four proteins demonstrate a two-state “native ⇔ unfolded” equilibrium transition. While the two-state denaturation transition for the cleaved form of rR345A ovalbumin is similar to that of the cleaved forms of \(\alpha_1\)-PI and antithrombin, two prototypic inhibitory serpins, the profiles for the intact forms of recombinant ovalbumins are significantly different from the multistate transitions observed for intact inhibitory serpins (19, 21).

The midpoint of transition (\(M_T\)) for the intact forms of rWT and rR345A ovalbumin were observed at 2.8 M GuHCl, while those for the respective cleaved forms (rWTc and rR345Ac) occur at 2.6 and 3.6 M. Thus, whereas the cleavage with elastase reduces the stability of rWT ovalbumin slightly (\(−0.2 \text{ M GuHCl}\)), it in-
inhibitory serpins, including ovalbumin is less than that observed for prototypic M GuHCl. This increase in stability of rR345Ac ovalbumin on cleavage is consistent with the insertion of the reactive center loop in the rR345A mutant but not in rWT ovalbumin. This is further supported by the similarity in the denaturation profiles between rR345Ac ovalbumin and the cleaved forms of α₁-PI and antithrombin.

ANS fluorescence increases significantly on loop insertion. Since Weber and Lawrence's observation of increased fluorescence intensity on binding to serum albumin (24), ANS has been used to investigate conformational and environmental changes in proteins (25–27). The specific advantages of using ANS as a probe of conformational changes are its propensity to bind most proteins, an increase in its quantum yield in the protein-bound state, and the kinetic characteristics of interaction. Its relatively weak binding affinity, arising from a high off rate (100–1000 s \(^{-1}\)) and a high on rate (\(-10^8\) M \(^{-1}\) s \(^{-1}\)), suggests that the kinetics of ANS association and dissociation would not limit the process under observation (28).

Previous studies on the chicken egg ovalbumin–ANS interaction suggest that the weak binding is accompanied by a small increase in fluorescence (29, 30) that could be difficult to follow. To investigate whether recombinant ovalbumins that lack the glycosyl chains differ from the wild type, we measured the fluorescence emission spectra of ANS in the presence of these different forms. The ANS emission spectra showed a characteristic increase in fluorescence intensity due to protein binding for the ovalbumin mutants studied here (rWT, rWTc, rR345A, and rR345Ac), as expected. Excitation of ANS at 405 nm led to “double-humped” emission spectra with maximal intensities at 494 and 532 nm (intensity ratio of ∼1:1.5–1:2, respectively) for complexes with all four ovalbumins at pH 6.8 (not shown). Similar double-humped fluorescence spectra have been observed for egg ovalbumin and thyroxine-binding globulin, a noninhibitory serpin (31). Although the interaction of ANS with recombinant ovalbumins could be successfully monitored at both wavelengths, we monitored all the subsequent experiments at 532 nm due to the higher sensitivity at this wavelength.

Figure 2 shows the fluorescence intensity profiles of ANS binding to the intact and cleaved forms of rWT and rR345A ovalbumins. The fluorescence increases as a function of ANS concentration for all four proteins, suggesting the formation of ANS-serpin complexes. However, the magnitude of this increase in fluorescence varies among the four ovalbumins, most dramatically for the cleaved form of rR345A ovalbumin. Thus, whereas the maximal fluorescence intensity increase is 200, 109, and 264% for rWT, rWTc, and rR345A ovalbumins, respectively, the cleaved form of rR345A (rR345Ac) shows a 535% increase at saturation (Table 1). Thus, the fluorescence increases 2-fold for rR345A ovalbumin following elastase cleavage, while it decreases ∼50% for recombinant wild-type ovalbumin. In concert with the results described above using GuHCl denaturation studies, these characteristic differences suggest that ANS fluorescence could be used to distinguish the loop-inserted and loop-exposed forms in ovalbumins. Thus, ANS-based fluorescence assay can conveniently probe the insertion of reactive center loop in ovalbumins.
The increase in fluorescence plateaus at sufficiently high ANS concentrations to afford a convenient method of obtaining the equilibrium dissociation constant. Assuming a binding stoichiometry of 1:1, as deduced for the chicken egg ovalbumin–ANS interaction (29), K_D values of 116, 44, 125, and 78 μM were obtained for the rWT, rWTC, rR345A, and rR345Ac ovalbumin, respectively (Table 1). These values indicate that ANS-binding affinity increases 2.6- and 1.6-fold for the rWT and rR345A proteins, respectively, on elastase cleavage of the reactive center loop.

To determine whether loop insertion in other related serpins is also accompanied by a change in ANS fluorescence, we investigated antithrombin and α1-PI, both of which exhibit loop insertion in inhibiting their target enzymes (1–3). The interaction of antithrombin and α1-PI with their target proteinases, thrombin and PPE, respectively, was monitored under pseudo-first-order conditions employing a 1:1 binding stoichiometry. The M_T (in [GuHCl]) was determined from the change in emission maximum that follows denaturation with sequential addition of guanidinium hydrochloride. Error shown represents ±2 SE. See Materials and Methods.

The increase in fluorescence change led to a 50% increase in ANS fluorescence, we investigated antithrombin and α1-PI, both of which exhibit loop insertion in inhibiting their target enzymes (1–3). The interaction of antithrombin and α1-PI with their target proteinases, thrombin and PPE, respectively, was monitored under pseudo-first-order conditions employing a 1:1 binding stoichiometry. The M_T (in [GuHCl]) was determined from the change in emission maximum that follows denaturation with sequential addition of guanidinium hydrochloride. Error shown represents ±2 SE. See Materials and Methods.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Equilibrium Dissociation Constant (K_D), Maximal Fluorescence Change (ΔF_MAX), and Denaturation Midpoint of Transition (M_T) for ANS–Recombinant Ovalbumin Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>rWT</td>
<td>ΔF_MAX % 200 ± 8 K_D μM 116 ± 10 M_T (M GuHCl) 2.8 ± 0.2</td>
</tr>
<tr>
<td>rWTC</td>
<td>109 ± 6 44 ± 8 2.6 ± 0.2</td>
</tr>
<tr>
<td>rR345A</td>
<td>264 ± 10 125 ± 10 2.8 ± 0.2</td>
</tr>
<tr>
<td>rR345Ac</td>
<td>535 ± 70 78 ± 20 3.6 ± 0.2</td>
</tr>
</tbody>
</table>

Note. The K_D and ΔF_MAX were determined from the increase in ANS fluorescence following interaction with the serpin at 25°C in 20 mM sodium phosphate buffer at pH 6.8 at ambient temperature assuming a 1:1 binding stoichiometry. The M_T (in [GuHCl]) was determined from the change in emission maximum that follows denaturation with sequential addition of guanidinium hydrochloride. Error shown represents ±2 SE. See Materials and Methods.

The increase in fluorescence change led to a 50% increase in ANS fluorescence, we investigated antithrombin and α1-PI, both of which exhibit loop insertion in inhibiting their target enzymes (1–3). The interaction of antithrombin and α1-PI with their target proteinases, thrombin and PPE, respectively, was monitored under pseudo-first-order conditions employing a 1:1 binding stoichiometry. The M_T (in [GuHCl]) was determined from the change in emission maximum that follows denaturation with sequential addition of guanidinium hydrochloride. Error shown represents ±2 SE. See Materials and Methods.

\[
\frac{[rR345Ac]}{\text{[ANS]}} = \frac{1}{n} \left(1 + \frac{K_D}{1 - f_x} \right) \frac{1}{\text{[ANS]}}
\]

where \(f_x \) is the fraction of ANS bound, \(K_D \) is the equilibrium dissociation constant of interaction, and \(n \) is the binding stoichiometry.

Fitting the data in Fig. 4B to the above relationship gives a \(K_D \) of 39 ± 27 μM. This value is similar to that determined by direct titration (78 ± 20 μM). A stoichiometry (n) of 0.8 ± 0.4 is observed for the rR345Ac–ANS interaction, suggesting that reactive center loop cleavage does not generate an additional binding site in the cleaved form of this mutant. Thus, it is likely

![FIG. 3. Fluorescence of the bound ANS on interaction of antithrombin (○) and α1-PI (■) with thrombin and PPE, respectively. The emission intensity at 532 nm was followed as a function of time following the addition of the enzyme (−50–100 nM) to the serpin (−0.5–1 μM) in pH 7.4 or 8.0 buffer at 25°C. The solid line represents an exponential fit to the data to derive the observed rate constant of the reaction. The observed decrease (−20%) in fluorescence is a fraction of the total decrease expected at the end of the reaction (−60–80%) due to pseudo-first-order conditions employed in the experiments.](image-url)
that a reorganization or change in accessibility of an ANS-binding site, already present in intact rR345A ovalbumin, occurs following reactive center loop insertion, which dramatically enhances the ANS quantum yield in the cleaved form.

In conclusion, the measurement of ANS fluorescence changes following reactive center loop cleavage of recombinant ovalbumin is a convenient technique for deducing loop insertion in β-sheet A. This is a simple, rapid assay consuming much smaller amounts of the protein than typical extensive denaturation studies. In addition, the kinetics of the loop insertion process may be determined using the time dependence of the ANS fluorescence signal.

REFERENCES