1. Write the systematic name for the following heterocycles. (12 pts)

![Heterocycle 1](image1.png)

![Heterocycle 2](image2.png)

![Heterocycle 3](image3.png)

2. Draw the structure of the following heterocycles based on common names. (6 pts)

a) 1-cyclohexyl-isoquinoline

b) 3-nitro-pyrrole
2. Draw the structure of the following heterocycles based on systematic names. (12 pts)

 c) 4-chloro-3-cyclopropyl-[1,3]-thiazinane

 d) 6-methyl-2-phenyl-2H,8H-[1,3,7]-oxathiazocine

 e) 2,3-dihydro-oxole

3. Circle that structures that possess hemi-acetal or acetal group(s). **NOTE:** Negative points for identifying wrong structures. (8 pts)

4. The stability of the following molecules is being studied at pH > 8.0. Identify the order of degradability. Use 1 for most easily degraded and 3 for least. (6 pts)

5. Define the following two terms in one sentence. (8 pts)

 A protein __
 __
6. The following molecules are being studied in water at pH 7.0. Which molecules can be studied without any interference from the possibility of hydrolysis or hemi-acetal / acetal formation? Circle your answers. **NOTE: Negative points for identifying wrong structures.**

7. The open-chain and cyclic forms of monosaccharide M1 are as shown below. Draw the alpha-form of monosaccharide M2 and beta-form of monosaccharide M3 from the open-chain forms shown below. Use the cyclic structure and write the appropriate substituents.

8. Following molecules undergo hydrolysis at pH 12. Identify the order of ease of hydrolysis. Use 1 for fastest hydrolysis and 3 for slowest.
9. Most enzymes utilize a group of amino acid residues to perform their function. For serine proteases, these include His, Ser and Asp. Draw the charge relay mechanism of how these three residues successfully hydrolyze a substrate such as R-COOR'. (10 pts)
10. What is activation energy? Explain in fewer than 3 sentences (4 pts).

__
__
__
__
__

11. Draw a graph of energy versus reaction co-ordinate for a typical reaction. Label appropriately (4 pts). Identify activation energy in this graph (2 pts). On the same graph, draw the energy versus reaction co-ordinate profile for the reaction in the presence of an enzyme (2 pts). Identify activation energy in the presence of the enzyme (2 pts). What effect does this new activation energy have on the rate of the reaction (2 pts)? What is the typical order of change in the rate of reaction in the presence of an enzyme (2 pts)?