Hückel's Rule for Aromaticity

- $4n+2\pi$ -electrons
- planarity of the structure

Aromatic?

Υ

Υ

Ν

N

✓ Difference between reactions of aromatic and non-aromatic heterocycles

Nomenclature of Heterocyclic Compounds

1. Heteroatom is to be counted as 1 or as low as possible

2. When there is more than one heteroatom, preference is given to O, then S, then N, then C. Also N-H presides over –N=. [Mnemonic: Old Soldiers Never Cry]

3. When there is more than one heteroatom, numbering should be as direct as possible from one to the other

Nomenclature of Heterocyclic Compounds

4. Substituents are numbered as low as possible

- 5. Acceptable prefixes for common heteroatoms: $\mathbf{O} = \text{Oxa}$; $\mathbf{N} = \text{Aza}$; $\mathbf{S} = \text{Thia}$
- 6. Common suffixes for N- and non-N-heterocycles

Ring Size	Saturated	Partly Saturated	Unsaturated
Rings with N			
3	-iridine		-irine
4	-etidine		-ete
5	-olidine	-oline	-ole
6	-ine	(di or tetrahydro)	-ine
7	(hexahydro)	(di or tetrahydro)	-epine
8	(octahydro)	(di, tetra, or hexahydro)	-ocine
Rings without N			
3	-irane		-irene
4	-etane		-ete
5	-olane	-olene	-ole
6	-ane	(di or tetrahydro)	-ine
7	-epane	(di or tetrahydro)	-epine
8	-ocane	(di, tetra, or hexahydro)	-ocin

Nomenclature of Heterocyclic Compounds

7. For partially unsaturated systems, H is(are) are used to indicate the location of saturation

1H-azole

2H-azole

3H-azole

Examples:

Common Name: 2-ethyl-3,6-dimethyl-pyrazine

IUPAC:

2-ethyl-3,6-dimethyl-1,4-diazine

$$\mathbf{Ph} \hspace{-1mm} \hspace{-1mm$$

Common Name: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

Common Name:

6H-diazapyran

IUPAC:

6H-1,3,4-oxadiazine

Common Name: 1,3-oxazepine

✓ 3-Membered Ring :: Ethylene Oxide or oxirane

- · Functional group is epoxide
- planar structure
- gas at room temperature
- used as sterilant for operating room equipment
- extremely toxic to living cell and is thought to be mutagen and probably a carcinogen

√ Examples of epoxides in our System

$$\begin{array}{c|c}
CH_3 \\
CH_3 \\
CH_3
\end{array}$$

$$\begin{array}{c|c}
H_3C \\
\hline
\end{array}$$
Vitamin K epoxide

Squalene Epoxide

√ Reactions of Epoxides

Acid Opening of Epoxides

Enzymatic Opening of Epoxides

√ Reactions of Epoxides

Opening of Epoxides with Amines and Alcohols

√ Higher Oxides

Oxetane oxolane

oxane

1,4-dioxane

Properties:

- all non-planar
- oxetane has a small pucker
- all good solvents and used in place of diethylether
- all are generally non-toxic, except for dioxane, which is mutagenic

Stability of these oxides change drastically on α -substitution

Lactones

anhydrides

Hemi-acetals

√ Examples of Acetals or Hemi-Acetals in Nature

\checkmark Interconversion of α- and β-forms of sugars

The phenomenon of mutarotation

√ Examples of sugars in natural systems

Deoxynucleic Acids and Ribonucleic Acids

Live link: http://www.bmrb.wisc.edu/referenc/nomenclature/

√ Sugars and Diabetes

Glycated Hemoglobin (HbA1c or GHb)

Also called glycosylated hemoglobin. The saccharide equilibrium is the reason for the formation of glycated hemoglobin in diabetic patients. Excess free plasma sugar, and therefore the open-chain aldehyde, reacts with the N-terminal NH_2 group of hemoglobin (or lysine side chains) to form glycated adducts, which are detected to confirm and monitor diabetes. The upper limit for a normal individual is 7% HbA1c.

✓ Fructose

✓ Sucrose

HOHOUSE
$$\beta$$
-D-fructose

Polysaccharides - Cellulose and Starch

Cellulose (1 \rightarrow 4- β -D-glucose polymer)

80% constituent of starch; 20% is amylopectin

√ Three-membered

Aziridine

$$H$$
 H
 H

Planar Highly strained; highly reactive Toxic and carcinogenic

Reactions of Aziridine

√ Three-membered

Examples of Aziridine Containing Drugs

Mechanism of Action of Mechlorethamine – Formation of an Aziridinium Ion

√ Higher Membered Ring Systems - Saturated

- ✓ Non-planar molecules
- ✓ pK_A same as secondary amines (~8-11)
- ✓ Most are liquids with fish-like odor
- ✓ Salts are odorless and crystalline
- ✓ Some have two pK_A values, e.g., first $(pK_A)_1 > (pK_A)_2$ for imidazolidine

√ Higher Membered Ring Systems - Saturated

Examples of 4-membered nitrogen containing rings in drugs

√ Higher Membered Ring Systems - Saturated

Hydrolysis of β *-lactams*

√ Higher-Membered Ring Systems - Saturated

Examples of 5-membered nitrogen containing ring in drugs

√ Higher-Membered Ring Systems - Saturated

Examples of 5-membered ring containing two heteroatoms in drugs

Rosiglitazone (pyridine + thiazolidine2,4-dione) Anti-diabetic

√ Higher-Membered Ring Systems - Saturated

Acidity of –NH in Imides

Instability of Carbamates

Instability of Oxazolidines

√ Higher-Membered Ring Systems - Saturated

6-membered systems – piperidines, dihydropyridines

Amlodipine (dihydropyridine) Ca²⁺ channel blocker, Antihypertensive, antianginal

narcotic analgesic

Ciprofloxacin (piperazine) Antibacterial (anthrax)

Phenmetrazine
(morpholine)
Appetite suppresant
CNS stimulant
Amphetamine-like

Pain reliever

√ Higher-Membered Ring Systems - Saturated

Tautomerism in Barbituric Acids – Enhanced Acidity of -NH

✓ Unsaturated Ring Systems

5-membered ring systems

HN NH Imidazoline Imidazolidine Oxazolidine Oxazolidine (1,3-diazoline) (1,3-diazolidine) Partly/fully saturated ring (1,3-oxazolidine) structures here are only for reference

Resonance in imidazole – the movement of a hydrogen

8/3/2006

25

✓ Unsaturated Ring Systems

Examples of these ring systems in drugs

✓ Unsaturated Ring Systems Containing Sulfur

5-membered ring systems

✓ More Complex Unsaturated Ring Systems

- \triangleright the 1,3,4- and 1,2,5-thiadiazoles
- > the 1,3,4-triazoles
- > the 1,2,3,5-tetrazoles

Anti-bacterial Anti-protozoan Anti-hypertensive

✓ More Complex Unsaturated Ring Systems

▶ 6-membered and higher heterocycles

✓ More Complex Unsaturated Ring Systems

▶ 6-membered and higher heterocycles

- ✓ Electrophilic Aromatic Substitution in Heterocycles
 - heterocycles generally react well with electrophiles; better than benzene (except for pyridines)
 - > their stability to metabolic enzymes is generally lower than their carbocyclic analogs
 - **EAS** occurs at the 2-position of 5-membered heterocycles
 - **EAS** occurs at the 3-position of 6-membered heterocycles