
CoPuppet: Collaborative Interaction in Virtual Puppetry.
Paolo Bottoni

University of Rome “La Sapienza”
Via Salaria 113

00198 Roma, Italy
+ 39 06 4991 8426

bottoni@di.uniroma1.it

Alessio Malizia

Universidad Carlos III de Madrid.
Avda. de la Universidad, 30.

28911-Leganés, Madrid, Spain.
phone: +34-91-624-5935

alessio.malizia@gmail.com

Stefano Faralli
University of Rome “La Sapienza”

Via Salaria 113
00198 Roma, Italy

faralli@di.uniroma1.it

Mario Pierro
University of Rome “La Sapienza”

Via Salaria 113
00198 Roma, Italy

pierro@di.uniroma1.it

Anna Labella
University of Rome “La Sapienza”

Via Salaria 113
00198 Roma, Italy
+ 39 06 4991 8512

labella@di.uniroma1.it

Semi Ryu
Virginia Commonwealth University

1000 W Broad st
Richmond, VA, USA 23284

+1 804 543 1971

sryu2@vcu.edu

ABSTRACT
CoPuppet is a framework for the development of performances of

virtual puppetry. In particular, it defines a class of interactive

systems in which to realize collaborative virtual puppet

performances involving several puppeteers. Users are able to

control puppet’s body parts and interact with the puppets by

producing gestures which are captured by video devices and

translated into control parameters for the movements of the

puppet. Moreover, a storyteller realizes another form of control, as

the sounds captured by a microphone are used to steer in real time

mouth movements and facial expressions of the virtual puppet on

the screen. The result of such interactions will see the emergence

of a cooperative management of the puppets’ movements.

Categories and Subject Descriptors
J.5 [ARTS AND HUMANITIES: Performing arts].

Keywords
Virtual puppetry, collaborative performance, mixed reality

environments.

1. INTRODUCTION
Puppetry is one of the most ancient forms of representation,

diffused all over the world in different shapes, degrees of freedom

in movements, and forms of manipulation. As an example,

Neapolitan puppets (known as Punch and Judy in the Anglo-

Saxon world) are operated by single hands fitting inside the

puppets, while Sicilian ones may be significantly sized, with

different components steered via threads moved from above.

Shadowplays, such as the Javanese Wayang Kulit, or the Turkish

Karagöz, happen behind screens with the puppets’ limbs

controlled via horizontally held sticks.

The Prague Black Theatre incorporates puppets and real actors

whose body parts are made invisible by wearing black clothes.

Korean puppetry works with rods, and sometimes hands inside,

with limited control, showing very primitive expressions. One of

the puppeteers sits in front of the stage with the audience and talks

constantly with the puppet during the play, breaking the boundary

between the puppet and the real world. In the Japanese Bunraku

puppet theatre, 3 puppeteers in black costumes work together to

establish the puppet’s emotional expressions and gestures as a

whole.

Puppets are a great support for storytelling, allowing

representation and replacement of settings with little effort and

relying on conventional representations of ellipses. Stories are

typically stereotyped and set in the historical and popular

traditions of the different cultures. Very often, they were parts of

rituals, where particular stories would be told in specific

occasions. For example, puppets were often worshipped as images

of gods by ancient populations in Korea, and shamans could

evoke the puppet’s spirit through specific rituals.

Sometimes the puppet drama has a fixed narrative to be told

exactly as trained. For example, before a Bunraku performance

the chanter holds up the text and bows before it, promising to

follow it faithfully. On the other hand, particularly in the

Mediterranean area, stories could also be improvised or developed

under the influence of recent chronicles. In these cases, they could

convey transgressive contents which would have not made it to

the theatrical stage. Korean puppet drama shows another

interesting case. It is a folk art form preserved only by oral

tradition, as in many cases puppeteers were not literate, and the

narrative in the puppet theatre was orally transmitted over a long

period of time [1]

As many other media, puppets have gone digital. Even if many

artists and scientists are interested in translating puppetry in

digital form, focus has been mostly placed on development of

digital controls, rather than on providing interesting and

interactive playground. This way, digital puppetry has not retained

the playful energy of original puppetry.

CoPuppet aims at replicating this sort of experience, resulting into

free improvisation and collaboration between people, using

interactive tools such as virtual sensors and voice activation.

Virtual sensors are here intended as maps of physical phenomena

onto a virtual support.

In this paper, we explore the possibilities offered by multimodal

and cooperative interaction with puppets, in constructing a

communicative experience among performers, or even audience

members, called to affect different parts of a puppet through

gestures and voice. The proposal is based on the use of the

CHAMBRE architecture for the creation of multimodal interfaces

[2,3], in which users can interact with multimedia sources through

WIMP- as well as multimodal-based widgets. CHAMBRE can also

integrate virtual reality environments, and users may affect them

through modifications of their parameters by gesture or voice

commands. As a result, CoPuppet allows the creation of “live

improvised” storytelling and actions between puppeteers.

The rest of the paper proceeds as follows. A brief review of

related work is given in Section 2, while the CHAMBRE

architecture exploited in CoPuppet is presented in Section 3.

Section 4 presents the CoPuppet application, while Section 5 and

6 discuss its configuration and illustrate the performance,

respectively. Finally, Section 7 draws conclusions.

2. RELATED WORK
Digital puppetry is often categorized in three families [4]:

Waldo puppetry: the digital puppet is controlled onscreen by a

puppeteer who uses a telemetric input device connected to the

computer.

Motion capture puppetry: an object (puppet) or human body is

used as a physical representation of a digital puppet and

manipulated by a puppeteer.

Machinima: a production technique that can be used to perform

digital puppets. Machinima involves creating movies employing

computer-generated imagery rendered using low-end 3D engines

in video games.

One of the authors has already developed a virtual interactive

puppet performance, “YONG-SHIN-GUD” [5], as a digital

translation of ancient puppetry. This involves a live artist

performance with music and storytelling, together with the use of

3D motion graphics to represent a virtual puppet. The puppet

movements and facial expressions are steered by the sounds

captured by a microphone, either produced by instruments or by

the storyteller voice. These reactions occur in real-time, while the

virtual puppet constantly speaks and sings back to the puppeteer,

as a sort of real-time echo and mirror reflection. The audience

itself might participate in the interaction by producing sounds in

reaction to the artist’s or puppet’s actions. The goal of the

“YONG-SHIN-GUD” performance was to let the puppet

eventually acquire the ultimate trans-state of shaman, by spiraling

interactive dialogues with the real puppeteer. Drawing on the

oriental philosophy of yin and yang, the real-time lip

synchronization process produces a continual change of roles

between the virtual puppet and the human puppeteer.

An interesting combination of storytelling and multimodal

interaction is presented in [6]. Here, humans interact with puppets

in a virtual environment: human gestures and speech are

recognized and used to steer dialogues and interaction with the

puppets.

Camille Utterback’s “text rain” [7] is an interactive installation in

which participants use their own bodies, to do what seems

magical—to lift virtual falling letters and play with them. In a

Text Rain installation, participants stand or move in front of a

large projection screen, where they observe a mirrored video

projection of themselves in black and white, combined with a

color animation of falling letters. Like rain or snow, the letters

appear to land on participants' heads and arms. The letters respond

to the participants' motions and can be caught, lifted, and then let

fall again. The falling text can 'land' on anything darker than a

certain threshold, and 'fall' whenever that obstacle is removed.

Pamela Jenning’s “Constructed Narratives” [8] shows interesting

collaborative aspects between people in a public space.

Constructed Narratives is a block-based construction game

designed for adults and older teenagers. The goal of the

Constructed Narratives project is to develop a framework for the

design of tangible social interfaces. It has been designed for use in

public spaces where there is the opportunity for individuals and

groups of people, who are not acquainted with each other, to

encounter the game and subsequently each other. CoPuppet is

also designed for challenging social relationship between people

in a public space.

The construction of virtual sensors can take advantage of the

availability of tools for pattern recognition and motion detection.

Currently, original and simple algorithms have been incorporated

into CHAMBRE, typically based on finger position identification.

Differently from [9], we are not restricted to 2D positioning, but

can also exploit (partial) 3D information. The open structure of

CHAMBRE and the simplicity of its component model, however,

make it easy to embody more sophisticated ones.

In any case, video capturing and pattern recognition through

computer vision techniques is still a challenging problem largely

faced in the last years [10, 11, 12]. Objects detection can burst

multimodal applications, in fact by recognizing detected objects,

the system can automatically analyze their behaviors. The main

feature utilizable for maintaining the identity of a moving object is

its visual appearance. To this aim color and shape ratios are

widely adopted [13].

3. CHAMBRE
CHAMBRE is an open framework able to accommodate different

protocols, sensors, generation and interaction techniques [2]. The

generative process can be steered, both explicitly and implicitly,

by human users whose inputs are acquired through external

multisensor devices. For example, a webcam can capture user

movements, while image analysis tools can interpret them to

detect presence in specific zones or evaluate variations with

respect to previous or fixed reference images. As a result,

parameters are generated to steer the system response. Specific

inputs can also trigger, in real-time, modifications of the

interpretation process. This ability makes CHAMBRE a flexible and

open tool, easily adaptable to different situations and applications.

Figure 1: The architectural model of Virtual Multimodal

Interaction.

The CHAMBRE architecture allows a component-based style of

programming, where components are endowed with

communication interfaces and a system results from their

connection. A designer can interactively define a CHAMBRE

network in the form of a graph, where nodes are components and

edges are communication channels among them.

The CHAMBRE framework was started as a distributed component-

based architecture for the production of multimedia objects and

incorporates several plug-ins developed to cope with several

multimedia data formats and streams [2]. Currently available

plug-ins offer: 1) sensor stimulus interpretation from real sensors

(physical measures) such as: webcams, mouse and keyboard

signals, etc.; 2) signal generation; 3) signal mapping; 4) mapping-

driven multimedia streaming generation (audio and video

synthesis). These plug-ins favor rapid prototyping of Multimodal

Interfaces (MI) [14] which allow users to interact with the system

through several input devices like: keyboard, mouse, voice, face

and gesture recognition, and so on.

Figure 2: Construction of a support for virtual sensor.

Symmetrically to the real case, virtual actuators, or groups of

actuators can interact with and change virtual environments

through Virtual Multimodal Interfaces (VMI). In order to manage

the state of virtual actuators, the FeedBack Manager module

sends streams of control commands and data to the

Computational System.

A VMI is characterised by the presence of particular CHAMBRE

nodes in charge of mapping real stimuli to virtual ones through an

interpretation process. A virtual stimulus is a configuration of a

data collection produced by some computational process, which

can be interpreted as the result of a measurement process. In

particular, a Virtual Component defines an Appearance, a

Behavior and a measurement method.

Figure 3. An example of Virtual Slider.

An innovative feature in the CHAMBRE implementation of VMIs is

the possibility of positioning virtual sensors onto a virtual

support. As an example, a video virtual support can transpose the

frames taken from a video stream by sampling (clipping) and

positioning them into the virtual space (see Figure 2). As another

example, a virtual slider acting onto a video virtual support can

perform measurements by detecting the point closest to an

extreme P2, in a segment P1P2, which intersects a moving shape,

as shown in Figure 3.

Figure 4 shows instances of Virtual Button and Virtual Slider

widgets performing their measurements on video supports.

Figure 4: Examples of Virtual Sensors.

4. CoPuppet
CoPuppet is a class of CHAMBRE applications realizing different

paradigms for Virtual Puppetry. A CoPuppet application is a

CHAMBRE network featuring instances of MVI_VirtualPuppet

(MVI_VP for short), a CHAMBRE software component which,

differently from virtual sensors, does not define a measurement

method but only an Appearance and a Behavior. It relies on other

CHAMBRE components, possibly running on remote machines, to

perform the measurements needed to generate the data

determining the puppet's posture. An MVI_VP appearance is

given by a 3D digital puppet, produced as a tree of labeled Java

3D nodes (see Figure 5).

The Java 3D graph-based scene model [15] provides a simple and

flexible mechanism for representing and rendering scenes.

CHAMBRE embedded graphical engine is based on Java 3D

technology and is capable of rendering skinned bones. A scene

graph contains a complete description of the entire scene. This

includes the geometric data, the surface attributes and the

visualization position information needed to render the scene from

a particular point of view. Hence, the Appearance of an MVI_VP

is a labeled extension of a Java 3D scene graph, with nodes of two

kinds: BranchGroup and TransformGroup. A BranchGroup

identifies body parts, and its elements have labels in the set BG =

{B, H, M, R, R’, L, L'}, for body, head, mouth, right and left arm

and forearm, respectively. A TransformGroup specifies control

elements and a Transformation Matrix for the different body

parts. The labels in the set TG are obtained by concatenating a

label from BG with one from Par = {Tx, Ty, Tz, x, y, z, s}. Here,

"T" labels indicate translation parameters along the three

Cartesian axes, the next three indicate rotation angles around

these axes, and s denotes the scale factor. As an example, the label

MTy identifies the TransformGroup node used to translate the

mouth BranchGroup along the y axis. This produces a vertical

shift of the puppet’s mouth.

The Behavior of an MVI_VP is determined by a simple protocol:

the object accepts messages of the form label value, with

label∈TG, and value is a parameter used to define the new

transformation matrix associated with the Appearance’s node

identified by the label. Values generated by Virtual Sensors are

normalized in the interval [0.0, 1.0] and mapped to labels in TG.

A message can also be mapped to modify attributes defining the

material used to render the corresponding nodes of the puppet’s

3D representation. For example the message “MTy value”, besides

defining the vertical position of the mouth, can also be used to

change the texture of the puppet’s head, thus modifying its facial

expressions.

Figure 5: The appearance of a Virtual Puppet.

The definition of Virtual Puppet as a CHAMBRE component favors

the use (and reuse) of puppets in different contexts of execution.

Actually, every software component (even non CHAMBRE ones)

which respects the Behavior protocol can produce messages for

the puppet controls.

We focus now on two specific puppetry paradigms which can be

realized in CoPuppet.

Figure 6: Puppet’s controllers.

4.1 Single puppet, collaborative controls
Single puppets can be operated on by one or more performers,

through interactions in which separate channels control different

aspects of the puppet, such as limb movement or facial

expressions. As new controllable aspects are introduced, so can

new multimodal input channels be added, to be managed by a

single performer, or distributed among many. In particular, we are

interested in the evolution of patterns of real time collaboration

among performers during free improvisation of the puppet

performance.

In the proposed scenario, the puppet is set in a virtual

environment of arbitrary complexity, and its movements,

utterances and facial expressions are determined by the actions of

independent users. The environment itself can present objects

which can be animated by user interaction. Hence, users log into a

performance either as puppet body parts such as mouth, arms,

lower body, or as objects in the scene, such as trees, umbrellas

and hand mirrors.

In its current stage, their are no constraints on relative motions of

body parts, except that they be kept connected, so that physically

impossible situations can arise. This is not in contrast with the

aims of the project, and is possibly a desired effect of it, as it

would be interesting to see how the performers draw themselves

out of such situations, or engage in power struggles to make

others conform to their choices. However, constraints could be

added by exploiting the tree structure of the objects managed with

Java 3D.

4.2 Multiple puppet, collaborative controls
A Multiple Puppet scenario can be produced by replicating a

number of instances of the Single Scenario. CHAMBRE capability

of distribution helps the configurations of scalable stages, where

teams of puppeteers can perform real-time shows and or produce

databases of recorded session for further post productions needs.

An asynchronous form of multiple puppet can be realized by

recording actions of single puppets and merging them afterwards

projected on a new environment.

In a multiple puppet scenario based on replication of the single

one, users enrol not only on body parts, but have to define which

puppet they are managing. This may lead to the design of puppet

chatting stages, in a way similar to how avatars may be used.

Hence, users can engage in virtual dialogues, observing the

reactions of the different participants through the modifications of

their representative puppets. Sessions can also be recorded and

replayed by the participants or by external observers.

5. Configuring CoPuppet
As mentioned before, there are no constraints as to which

software components can be used to steer puppet’s behavior, and

even third party suites like Virtools [16] can be used as a front-

end for a CoPuppet application.

The use of well-known tools can favor the artistic and technical

development process of script creation and relieve the composer

from advanced programming aspects as the development of

particular graphical routines.

A Single or Multiple scenario of CoPuppet usually consists of a

network of n computer with m instances of CHAMBRE running on

them. Each CHAMBRE instance contains a replication of the k

Virtual Puppets used for the performance, but they may differ in

the graph of connected software components. Puppeteers can thus

have a global view of the virtual puppets and of the current

configuration of CHAMBRE software components needed to drive

the body parts for which they are responsible.

Each puppeteer is focused on at least one of the m CHAMBRE

instances where the global behavior of the k puppets is

represented. The owner of a set of CHAMBRE instances steers some

behavioral aspects of a puppet which are transmitted to each

CHAMBRE instance in the network. This way, computation is

distributed over the network and synchronization is achieved by

message passing.

As mentioned before, external tools can be used for graphical and

audio improvements. For example in Infinite Cemetery [17],

spatial information about Virtools entities is transmitted via

network to an audio spatialization and synthesis algorithm

running on a separate machine.

Figure 7: Setup of the peripherals for CoPuppet.

6. CoPuppet Performance
In a CoPuppet collaborative performance, the puppeteers are

placed at different locations in front of a screen on which the

appearance of the virtual puppet is projected, as shown in Figure

8. Users login as a puppet body part for which controls have been

defined, and produce collaborative movements of the virtual

puppet. A voice puppeteer tells a story into a microphone, to

which the system responds in real time by producing mouth

movements and facial expression of the virtual puppet on screen.

Body puppeteers use their fingers in front of a webcam, thus

activating virtual sensors connected with the corresponding body

part on screen. The movements are reminiscent of those

performed by real puppeteers steering movements through

threads. While each puppeteer can create only simple movements,

the whole gesture of the puppet results from their combination,

producing powerful and interesting effects.

The performance can also allow for audience intervention. In

particular, while retaining a single storyteller, CoPuppet can

partially open several body controls to the public, to foster forms

of collaboration between the performers and the audience. A

completely open instantiation of the framework can also be

envisaged, in which computers, microphone and webcams would

be setup for users to participate in the performance space.

6.1 Collaboration aspects
The main intended use of CoPuppet involves a storyteller, a crew

of body parts performers, and possible intervention from the

audience. These users do not have to define in advance the kind of

story they want to tell, but can come up at any time with ideas

about the situation and the story, based on the materials in the

scene. In a sense, all objects in the scene can become alive as

“performing objects”. It is expected that the real time observation

of the consequences of one’s own actions, as well as those of the

other puppeteers, will foster interaction between puppeteers, who

will engage into collaborative or competitive behavior patterns.

Typical patterns might be mimicking or counteracting the actions

of one another, introducing delays in replicating some movement,

achieving unison through the iteration of the same movements.

Interestingly, these patterns may occur directly among performers

as well.

We envisage that CoPuppet, through its simple and intuitive

controls, can become a playground for children, while adults

might find it interesting as a form of stage for free speech, as well

as imaginative storytelling.

The following paragraph describes the technical setup for the

demonstration of the current version of CoPuppet.

6.2 Technical Description
Each puppeteer uses one or more VirtualSliders to translate

his/her hand movements into puppet actions. The slider position is

determined from the hand position, acquired via webcam.

Puppeteers can see their hands projected into the virtual space,

and interact with the virtual controllers (via their laptop computer

screen) and the virtual puppet (via the projection screen).

Figure 6 shows how the different transform nodes can be operated

on through different multimodal channels. Labels are taken from

the set TG and indicate both a puppet body part and the

corresponding VirtualSlider setting the value of the control

parameter. In particular, RX, Ry, R’y, LX, Ly, L’y are the labels for

angle rotation around the x and y axes for the articulations of the

puppet’s arms, while Hx, Hy are labels for angle rotation around

the x and y axis for the puppet’s head. Finally, MTy is the

parameter that determines the puppet's mouth opening: it is

determined by calculating the average amplitude value m of the

signal coming from a microphone connected to the puppeteer's

laptop. The value of m is calculated on a buffer of 1024 audio

samples acquired every 0,023 seconds, so that the system

response to audio storytelling is fast and accurate.

Figure 8: Performance system architecture.

The global setup (see Figure 7) consists of three laptops

connected via a Local Area Network (LAN), using a hub. Each

laptop is connected with a USB webcam : the first laptop used for

the Rx, Ry, R’y, controls, the second for the Lx, Ly, L’y and the

third for the Hx and Hy controls. For MTy, a microphone is

connected to the audio in port of the second laptop. Finally, the

second laptop is connected to the video projector through a VGA

cable, and, using an audio cable, is also connected to the mixer

which drives the audio speakers for the audience. Effective

interaction among puppeteers relies on the high speed of the

100mps LAN connection between the laptops, which transfers

raw data generated by the virtual sensors. Collaborative

performance by puppeteers in remote locations would require

more sophisticated handling of messages exchanged between

system components, including time-stamping of messages and

reconstruction of missing data in case of network delays and/or

failures.

7. CONCLUSION
In this paper we have presented CoPuppet, a distributed system

for digital puppetry which exploits the collaborative performance

of multiple puppeteers.

Currently, CoPuppet allows interactions between puppeteers in

near distance. However, it aims for remote collaborative puppet

control over the network in the future.

We are also investigating the possibility of employing software

agents in puppet controls, to enable more sophisticated forms of

correspondence between data incoming from the virtual sensors

and puppet movements.

Our future works on multiple puppet scenario aim to set both

puppets and humans in a mixed reality environment [18]. This last

scenario requires the introduction of new software components

able to solve the problems concerning occlusion, contact,

avoidance between human and virtual actors [19].

The open nature of the CoPuppet framework allows the

incorporation of different sensors and the definition of different

articulations and forms of rendering built on the Java 3D tree. On

the other hand, its incorporation within the CHAMBRE

environment, with its component-based structure, makes it

possible to reuse definitions of behavior, appearance and

measures in different contexts, such as collaboration scenarios,

remote conferencing, or to associate puppets' controls to different

sources of measures, whether interactive or automatic ones.

Acknowledgments. The authors with the University of Rome

were partially supported by the PRIN 2006 Project: Ambient

Intelligence: event analysis, sensor reconfiguration and

multimodal interfaces.

8. REFERENCES
[1] Oh Kon Cho, Korean Puppet Theatre: KKOKTU KAKSI,

Asian studies center East Asia series occasional paper no.6,

Michigan State University, pp. 20 (spring 1979).

[2] P. Bottoni, S. Faralli, A. Labella, C. Scozzafava,

“CHAMBRE: A distributed environment for the production

of multimedia events”, Proc. DMS 2004, pp.51-56, KSI,

2004.

[3] Bottoni, P., Faralli, S., Labella, A., Malizia, A., and

Scozzafava, C. “CHAMBRE: integrating multimedia and

virtual tools”, Proc. AVI '06. ACM Press, 285-292, 2006.

[4] Walters, Graham. The story of Waldo C. Graphic. Course

Notes: 3D Character Animation by Computer, ACM

SIGGRAPH '89, Boston, July 1989, pp. 65-79.

[5] S. Ryu, "Ritualizing interactive media: from motivation to

activation", Technoetic Arts, 3(2):105-124, 2005.

[6] Marc Cavazza, Fred Charles, Steven J. Mead, Olivier

Martin, Xavier Marichal, Alok Nandi, “Multimodal Acting

in Mixed Reality Interactive Storytelling" IEEE

MultiMedia, 11(3):30-39, 2004.

[7] Camille Utterback, Text Rain, http://

www.camilleutterback.com/textrain.html.

[8] P..Jennings, "Constructed narratives a tangible social

interface", Proc. 5th Conference on Creativity &

Cognition. C&C '05, 263-266 ACM Press, 2005.

[9] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency,

A. Faulring, B. D. Kyle, A. Mickish, A. Klimovitski, , and

P. Doane. “The Amulet environment: New models for

effective user interface software development”, IEEE

Trans. Softw. Eng., 23(6):347-365, 1997.

[10] G. Foresti, C. Micheloni, L. Snidaro, P. Remagnino, and T.

Ellis. “Active video-based surveillance system”, IEEE

Signal Processing Magazine, pages 25-37, March 2005.

[11] C. Jaynes. “Multi-view calibration from motion

planartrajectory”, Image Vis. Comput., 22(7), July 2004.

[12] M. S. S. Khan. “Consistent labeling of tracked objects in

multiple cameras with overlapping fields of view”, IEEE

Trans. on PAMI, 25(10):1355-1360, October 2003.

[13] F. Porikli and A. Divakaran. “Multi-camera calibration,

object tracking and query generation” Proc. of IEEE Intl

Conference on Multimedia and Expo, 1(1):653-656, July

2003.

[14] N. Bianchi-Berthouze, P. Bottoni, “Articulating actions in

multimodal interaction”, 3D Forum, 16(4): 220-225, 2002.

[15] Java 3D API Specification http://java.sun.com/products

/java-media/3D/forDevelopers/j3dguide/Intro.doc.html

#4739

[16] Virtools. www.virtools.com.

[17] Infinite Cemetery, Original Concept and 3D Virtual space:

by Semi Ryu, Generative music composition: by Claudio

Scozzafava, Software Plug-In: by Stefano Faralli,

Execution: December 16 2005, GenerativeArt 2005.

Politecnico, Milano, 2005.

[18] D. Thalmann, R. Boulic, Z. Huang, H. Noser, “Virtual and

Real Humans Interacting in the Virtual World”, Proc.

International Conference on Virtual Systems and

Multimedia `95, Gifu, Japan, pp.48-57.

[19] M.J.Schuemie, P.van der Straaten, M.Krijn. C.A.P.G.van

der Mast, "Research on Presence in VR: a Survey",

Cyberpsychology and Behavior, 4(2): 183-202, 2001

