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An Analysis of Fault Partitioned Parallel Test Generation

Abstract

Generation of test vectors for the VLSI devices used in contemporary digital systems is

becoming much more difficult as these devices increase in size and complexity. Automatic Test

Pattern Generation (ATPG) techniques are commonly used to generate these tests. Since ATPG is

an NP complete problem with complexity exponential to circuit size, the application of parallel

processing techniques to accelerate the process of generating test vectors is an active area of

research.

The simplest approach to parallelization of the test generation process is to simply divide

the processing of the fault list across multiple processors. Each individual processor then performs

the normal test generation process on its own portion of the fault list, typically without interaction

with the other processors. The major drawback of this technique, called fault partitioning, is that

the processors perform redundant work generating test vectors for faults covered by vectors

generated on another processor. An earlier approach to reducing this redundant work involved

transmitting generated test vectors among the processors and re-fault simulating them on each

processor.

This paper presents a comparison of the vector broadcasting approach with the simpler and

more effective approach of fault broadcasting. In fault broadcasting, fault simulation is performed

on the entire fault list on each processor. The resulting list of detected faults is then transmitted to

all the other processors. The results show that this technique produces greater speedups and smaller

test sets than the test vector broadcasting technique. Analytical models are developed which can

be used to determine the cost of the various parts of the parallel ATPG algorithm. These models

are validated using data from benchmark circuits.



I. Introduction

As the size and complexity of integrated circuits (ICs) continues to grow, the need for fast

and effective testing methods for these devices becomes even more important. A significant

portion of design time for ICs, and digital systems in general, is spent in generating test patterns

that distinguish a faulty IC from a fault free one. In order to keep defective products from

reaching the market, manufacturers must be able to test their product in an efficient and cost

effective manner. Currently, up to one third of the design time for ASICs is spent generating test

vectors [1].

Testing digital circuits must include the two classes of digital circuits: combinational and

sequential. For combinational logic circuits, only one test vector sequence is required for stuck-at

fault detection. Sequential circuits inherently require the application of a series of test vector

sequences for the detection of a fault. Hence, combinational testing is a subset of the sequential

test problem. Most sequential test algorithms map the generation of test sequences to iterative

combinational test methods. Further, Design for Test (DFT) techniques allow for the conversion of

sequential circuits to combinational circuits for the purpose of testing. This conversion reduces

the complexity of test generation for a sequential circuit to that of combinational logic. Therefore,

efficient combinational test algorithms are needed to reduce the time spent in test.

Test generation can be achieved either by deterministic test pattern generation or by

statistical test pattern generation. Deterministic test pattern generation uses a specific algorithm to

generate a test for every fault in a circuit, if a test exists. Statistical test pattern generation

randomly selects test vectors, and using fault simulation, determines which faults are detected.

This statistical method can quickly find tests for the easy-to-detect faults, but becomes

significantly less efficient when only the hard-to-detect faults remain.

Deterministic test pattern generation uses one of numerous Automatic Test Pattern

Generation (ATPG) algorithms which normally utilize the gate level description of a system to

generate a condensed set of tests. ATPG algorithms provide a mechanism to generate a test vector

for a specific fault, and fault simulation algorithms are available which can determine if any

additional faults are covered by a given vector. As a result, it is now possible to test large circuits

within a reasonable period of time. 

In addition to using algorithmic techniques to improve the efficiency of ATPG, parallel

processing environments can be utilized to reduce computation time. There are several methods

available to parallelize ATPG [2,3]. These methods include fault partitioning [4,5,6,7,8,9,10],
1
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heuristic parallelization [8,11], search space partitioning [2,7,12,13], algorithmic partitioning [7],

and topological partitioning [14,15,16]. Of these methods, the simplest to implement is fault

partitioning, which divides the fault list across various processors. It is this method of

parallelization that is the basis of this investigation.

The techniques presented in this paper improve the performance of an existing fault

partitioned parallel ATPG system for combinational circuits by introducing efficient

interprocessor communications. Dynamic load balancing is used to reduce processor idle time.

Detected fault broadcasting [18,19] is used to reduce the amount of redundant work performed in

generating excess test vectors. This technique will be shown to be an improvement on the vector

broadcasting technique proposed in [17].

II. Background

This section presents the background for the paper. Included are discussions of PP-TGS,

the fault partitioned parallel test generation system developed for this effort, and Mentat, the

parallel programming environment upon which PP-TGS is based.

2.1 The Mentat Parallel Processing Environment

The Mentat parallel programming environment [20] was designed to provide an efficient

easy-to-use, machine independent environment for developing and executing parallel programs.

Mentat includes a set of language abstractions based upon C++ and a set of portable run-time

support facilities that provide separation between the programmer and the physical system. Mentat

supports object-oriented design, location transparency, encapsulation of parallelism, automatic

detection and management of communications and synchronization, and scheduling transparency.

There are two primary components of the Mentat environment, the Mentat Programming Language

(MPL) [21], and the Mentat run-time system [22].

MPL is an object-oriented programming language based upon C++. C++ objects are used

to encapsulate computation and indicate parallelism to the compiler. These objects are placed on

remote processors for execution. Communication is realized through method invocations and

returns on these remote objects. MPL programs are compiled using the Mentat compiler, MPLC.

MPLC translates MPL programs into standard C++ while introducing calls to the Mentat run-time

library as necessary.

The Mentat run-time system provides for management of remote object instantiation,

initialization, scheduling, and destruction. It also provides for communication between objects
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using the native communication protocol for the machine upon which it is running. In the case of

a network of Unix workstations, the TCP/IP communication protocol is used. Mentat also provides

fault tolerant capabilities in case one or more of the network processors fails.

Mentat presents a complete methodology for utilization of both homogenous and

heterogeneous networks of workstations as distributed memory parallel processors. In addition to

Mentat, there are other parallel programming environments that can make a network of

workstations perform as a parallel processor [23, 24].

2.2 PP-TGS Software

The Parallel fault Partitioning Test Generation System (PP-TGS) program consists of

seven independent objects. Four of these, main, tgs, reader, and writer, exist only on the master

processor. The other three, mini-master, test generator, and fault simulator, are distributed to

every processor. The architecture of the system is shown in Figure 1.

The program begins when main is called. Main is responsible for initiating the PP-TGS

system. Main invokes tgs, the global master, which creates the reader and writer objects. The

reader reads the PODEM file from disk and maintains a circuit database. The reader is no longer

needed after the system is initialized and, at that time, is deleted. The writer is responsible for

collecting the test vectors as they are generated by the mini-masters. The tgs analyzes the circuit

Mini-Master

Test Gen Fault Sim

Main TGS

Writer

Reader

Mini-Master

Test Gen Fault Sim

Figure 1. PP-TGS Object Hierarchy
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database and stores the circuit topology while generating a list of possible stuck-at faults. The

fault list is partitioned according to the number of processors in the parallel network. The tgs then

invokes the mini-masters on the remote processors, initializing each with a copy of the circuit

structure and its own fault partition. 

The actual partitioning of the fault list is performed in a preprocessing step. For the

benchmark circuits considered, either input or output cone partitioning was used depending on the

circuit. Input and output cone partitioning have been shown to produce the best trade-off of

partitioning time vs. partition quality when used for fault partitioned ATPG [5]. In this context,

partition quality refers to the degree of processing time balance among the partitions and the

amount of “independence” in the fault sets of each partition.

Each mini-master creates a test generator and a fault simulator on its processor. The loca

mini-master selects a fault from its fault list and sends it to the test generator. The test generator

attempts to develop an input vector that will detect the fault if present in the circuit. If su

vector exists, then the test generator reports the resulting vector back to the mini-master. If no test

can be found, the mini-master marks this fault as uncovered. 

After a new test vector is generated, the mini-master passes it to the fault simulator. The

fault simulator returns a list of all faults in the circuit that are detected by this particular vector

mini-master marks all of the detected faults in its partition since separate vectors will not ne

be generated for these faults. In the initial system, covered faults outside of the mini-master’s

partition are disregarded. This approach will result in redundant work as the other mini-masters

generate tests for the already detected faults. Therefore, the resulting test set is larger than

necessary, a major limitation to speedup in this version of the system. The runtimes in this system

are also increased by the fact that some mini-masters finish their fault list ahead of the others, i.e.

the load across the processors are unbalanced. 

As new vectors are generated by the various mini-masters, they are reported to the writer

object which eliminates any duplicates. When all faults in a particular mini-master’s fault list have

either been marked as detected or as uncovered, that processor has finished. When all processors

have completed their work, the writer reports the total number of test vectors generated, the

number of vectors in the test set after duplicates have been eliminated, the percentage of faults

covered by the test set, and the time it took for the PP-TGS software to run. The writer can also

write the list of generated test vectors to a file. A simple flow chart of the test generation process

without any interprocessor communication is shown in Figure 2.
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The test generator uses the PODEM [25] test generation algorithm. The test generator

receives a fault from the mini-master and, if possible, generates a test for the fault. The resulting

test is then returned to the mini-master. A backtrack limit is included to limit time spent

processing redundant and hard-to-detect faults.

The fault simulator used is FSIM [26], one of the fastest combinational fault simulators

available. FSIM uses parallel pattern single fault propagation to achieve its improved

performance. Because FSIM simulates one fault at a time, only the fault’s propagation zon

be evaluated. The propagation zone of a fault for a given test vector is the set of gates

inputs are effected by the presence of that fault in the circuit. Hard-to-detect and redundan

have inherently short propagation zones and, therefore, do not take long to simulate fo

individual vectors. This is an important benefit because hard-to-detect and redundant faul

be simulated many times throughout the ATPG process. Easily detected faults tend to ha

propagation zones, but because they are easily detected, these faults are normally on

simulated for a small number of test vectors. Therefore, for combinational circuits, single

propagation is a faster technique than concurrent (parallel) fault propagation [27]. The PP

system does not take advantage of FSIM’s parallel test vector processing because, during

test vectors are simulated one at a time.

faults left
to test?

generate_test

fault_simulate

Yes

No

atpg_exit

fault_dropping

Figure 2. Flow chart of the PP-TGS ATPG process without interprocessor communications.

Test Generator

Object

Fault Simulator

Object

start_atpg

select_fault
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The fault simulator receives the test vector produced by the test generator from the

mini-master and performs fault simulation. The fault simulator maintains a copy of the global fault

list and performs fault simulation on all faults in the circuit. The fault simulator returns the list of

detected faults to the mini-master.

Other, more efficient, test generation algorithms such as those used in [28] and [29] could

be implemented in the PP-TGS system simply by incorporating them into the test generator object.

The remainder of the objects in the system would remain unchanged. The performance

implications of this change are discussed in Section 4.6.3.

2.3 Modifications to PP-TGS

The major limitation of the original PP-TGS software was the lack of interprocessor

communications during ATPG. First, since there was no load balancing among the processors,

there was a problem of processors becoming idle before the test generation process was complete.

Also, the lack of communication of detected fault information caused a considerable amount of

redundant work to be performed. 

2.3.1  Dynamic Load Balancing

The PP-TGS system statically partitions the fault list prior to fault processing. As stated

previously, it is impossible to effectively partition the fault list apriori such that the workload for

all processors is equal. Dynamic load balancing allows the fault list to be repartitioned at runtime

when workload imbalances are detected. As demonstrated in [4,5], dynamic load balancing can

significantly improve the performance of fault partitioned ATPG by minimizing processor idle

time.

The basic test generation process, as described in the previous section, was modified to

include remote method invocations to provide a means of splitting the fault list between a busy

and an idle processor. The additional code performed the following tasks:

work_status:

This remote method is invoked by an idle mini-master to poll other
mini-masters to determine the number of faults that mini-master has left to
test.

rpt_work_status:

This remote method is invoked in an idle mini-master in response to a
work_status call. It selects the first mini-master to respond with a list of
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untested faults greater than a minimum threshold value. This method
terminates the overall ATPG process when all processors are idle.

split_list:

This remote method is invoked by the idle mini-master to split the fault list
of a busy mini-master as determined by rpt_work_status. The fault list of
the busy mini-master is simply split in half.

split_store_faults:

This remote method is invoked by the mini-master that is dividing its fault
list. It stores the fault list in the idle mini-master.

set_value:

This remote method invocation is invoked by the mini-master that is
dividing its fault list. It resets the variables in the idle mini-master to allow
for a continuation of the ATPG process.

The flow chart for the test generation process with the addition of dynamic load balancing

is shown in Figure 3. Once a mini-master has finished test generation on its fault list, it broadcasts

a message to all of the other mini-masters that it is idle and looking for work. It performs this

broadcast by invoking the work_status method on every other mini-master. The remote

mini-masters reply to this method invocation by sending the number of faults they have left

unprocessed to the idle mini-master. This reply is performed by invoking the rpt_work_status

method on the idle mini-master. This asynchronous communication method of invoking a remote

method and having the reply sent back through another remote method invocation, instead of

simply waiting for a reply was used to avoid deadlock. Deadlock could occur if, when using the

call-and-wait method, two processors happened to call each other simultaneously looking for

work.

When the idle mini-master finds a busy mini-master, it splits the busy mini-master’s list

through the split_list and split_store_faults methods. After the new faults are stored, the test

generation process is continued. Termination is detected when every mini-master responds with a

rpt_work_status call with no faults left unprocessed, at which point the idle mini-master will exit.

2.3.2  Detected Fault and Generated Vector Broadcasting

As discussed in Section 2.2, the major limitation to the performance of the PP-TGS

system is the generation of redundant test vectors for faults already covered by test vectors

generated on remote processors. This research compares two methods for eliminating this

problem: detected fault broadcasting [18] and generated vector broadcasting [17]. Both methods

were added as options to the base PP-TGS system.
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Fault broadcasting occurs during the fault simulation phase of ATPG. In the fault

broadcasting system, the mini-masters invoke fault simulation on local copies of the global fault

list. When a processor generates a vector to cover an assigned fault, the mini-master often

discovers that extra faults are covered that are not in its local partition. In response to this event, it

sends a message to all the other processors informing them of the additional faults. This activity

enables the appropriate mini-masters to eliminate those faults from their partitions, as they have

already been detected. Because fault broadcasting decreases the number of test vectors generated,

it decreases program execution time and generates shorter fault detection experiments.

Fault broadcasting during parallel ATPG for sequential circuits was presented in [19]. The

system presented in [19] synchronizes the processors after every test generation pass and requires

that the entire global fault list be broadcast during fault broadcasting. The system presented herein

is asynchronous, in that no processor has to wait for faults to be broadcast from other processors.

Also in this system, only newly detected faults are broadcast.

faults left
to test?

generate_test

fault_simulate

Yes

remote method:
work_status

start_atpg

rpt_work_status

split_list

split_store_fault

set_value

atpg_exit

all
procs

responded?

Yes

No

No

Yes

left_to_test
>

threshold

fault_dropping

No

remote method:

Figure 3. Flow chart of the PP-TGS ATPG process with dynamic load balancing.
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Vector broadcasting occurs after the test generation phase. Prior to fault simulation, the

mini-master sends the newly generated vector to each of the other mini-masters. The remote

mini-masters perform fault simulation on the vector and eliminate any detected faults from their

own copy of the global fault list. Experiments revealed that no significant benefit could be gained

by simulating only those faults in the local partition, because the fault simulator spends the

majority of its time in good circuit simulation.

Since fault simulation is deterministic, vector broadcasting and fault broadcasting

communicate the same information. The distributed vectors can be considered encoded versions

of the fault broadcasting information and the remote fault simulators can be considered decoders.

Because distributing test vectors involves communicating smaller packets of information than

distributing detected faults, there is less communications overhead associated with vector

broadcasting. The price of lower communications cost is that every test vector must be simulated

by every fault simulator. This approach introduces redundant processing directly proportional to

the number of processors in the system. The use of generated vector broadcasting rather than

detected fault broadcasting trades redundant computation for improved communications. 

To implement detected fault broadcasting, the ATPG system was modified to include

remote method invocations to provide a means of disseminating the information regarding the

remotely detected faults among the processors. Figure 4 shows the flow chart of the test

generation process with dynamic load balancing and detected fault broadcasting. During fault

broadcasting, the local mini-master sends its list of detected faults to the other mini-masters

through an invocation of the found_faults method. The found_faults method eliminates the

detected faults from the remote mini-masters’ fault lists. 

In addition, a version of the PP-TGS system was developed to implement v

broadcasting. Figure 5 shows the flow chart of the test generation process with dynam

balancing and generated vector broadcasting. Vector broadcasting is accomplished by 

generated vectors to the remote mini-masters through the vector_broadcast method.

Vector_broadcast invokes fault simulation and fault dropping on the processor on whic

resides, thereby eliminating covered faults from further consideration.

III. Results

All versions of the PP-TGS software were executed on a network of eight Sun SPA

workstations running Mentat connected by Ethernet. The results presented were obtained

the early morning hours when the processor workloads were minimal. Several of the ISCA
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combinational benchmark [30] and ISCAS ‘89 sequential benchmark circuits were tested

sequential circuits were processed by assuming full scan design. Each D flip-flop inpu

mapped to a primary output, and, conversely, each D flip-flop output was mapped to a p

input.

Results are presented for four different communications configurations: 

communications, load balancing only, detected fault broadcasting and load balancing, and

broadcasting and load balancing. Table 1 records the execution runtimes of the v

communications configurations. Table 2 displays the size of the test sets and the fault co

The runtime results do not include program instantiation and initialization time.

Figure 4. Flow chart of the PP-TGS ATPG process with dynamic load balancing and detected fault 
broadcasting.
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3.1 Dynamic Load Balancing

Dynamic load balancing almost always improves system performance since it involves

relatively little communications overhead. Figure 6 uses circuits c7552 and s9234 to illustrate the

benefits of load balancing. When every mini-master has faults left to process, ATPG proceeds as

if there were no interprocessor communication. When a mini-master completes its fault list, faults

are passed from one processor to another in a point to point transfer. The message traffic

associated with dynamic load balancing is linear with the number of processors. Since at most

half of the mini-masters can split their fault lists with the other half, a maximum of N/2 load

balancing fault packets, where N is the number of processors, can exist on the network at any

faults left
to test?

generate_test

fault_simulate

Yes

remote method:
work_status

start_atpg

rpt_work_status
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atpg_exit

all
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No

No
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left_to_test
>
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remote method:

Figure 5. Flow chart of the PP-TGS ATPG process with dynamic load balancing and generated vector 
broadcasting.
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given time. Because this limit will not be reached until the very end of the ATPG process when

the fault lists exchanged are quite small, there is little opportunity for data collisions on the

network. Therefore, the most significant communications penalty associated with dynamic load

balancing is synchronization delay. 

The dynamic load balancing system was tested in order to determine with which busy

mini-master the idle manager should share work. The idle mini-master could select either the busy

mini-master with the most work, thus minimizing the number of load balancing calls, or the first

busy mini-master to respond, thus reducing synchronization delay. Analysis revealed that

hard-to-detect faults impede response to work_status calls. Because the test generator is not

interruptible, once a processor begins test generation on a hard-to-detect fault, it cannot respond

to requests to share faults. If the idle processor is to accept work from the busiest processor, it

must wait for all processors to respond before load balancing. This situation leaves the processor

Table 1 Runtime (Seconds)

Circuit
Number of 

Procs
No Comm Load Bal

Fault Br and
Load Bal

Vect Br and
Load Bal

c499 1 2.689
2 5.368 5.736 5.386 5.590
4 5.897 6.896 6.259 5.383
8 10.527 9.444 11.929 5.716

c1908 1 17.517
2 18.775 17.893 14.345 16.534
4 13.478 14.988 9.674 12.058
8 9.700 12.607 14.253 20.733

c3540 1 226.418
2 151.400 136.109 121.506 130.742
4 97.480 87.024 64.954 78.153
8 55.434 57.176 47.793 43.601

c7552 1 510.665
2 389.757 321.290 269.066 277.620
4 234.550 211.350 147.077 168.626
8 169.738 139.492 80.279 98.591

s5378 1 78.464
2 81.357 71.010 49.563 56.091
4 52.779 45.256 27.966 37.455
8 35.946 30.045 20.458 31.343

s9234 1 1772.982
2 1073.590 1031.520 938.655 962.313
4 638.610 566.695 477.894 503.178
8 605.617 380.773 255.293 363.497

s13207 1 607.378
2 544.585 442.483 341.721 368.881
4 322.724 274.149 178.891 213.179
8 318.330 180.114 103.756 147.102
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idle for extended periods of time. For medium to large sized circuits, the best results are obtained

by selecting the first busy mini-master to respond to the work_status call. The results in Table 1,

Figure 6, and Figure 7 show that the performance of the PP-TGS system improved significantly

with load balancing.

An experiment was conducted to determine if any benefit could be gained by using an

interruptible test generator. The results of this experiment indicate that interruptible calls present

no significant performance benefit because the overhead associated with interrupting the test

generator negates the advantages of allowing processors to respond faster to work-status calls.

However, the system presented herein uses a fairly low backtrack limit during test generation, so

the maximum latency of response to work_status calls is limited. If a larger backtrack limit is

used, a greater benefit for interruptible test generation would result. 
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Test set size increases and reported fault coverage decreases as the number of processors

increases if there is no communications. These results, shown in Table 2 and Figure 8, are similar

for all circuits tested. This change is related to the number of fault partitions. Faults that would

have been detected by the same vector had they been in the same partition must now be detected

by separately generated vectors. Usually, the two generated vectors are not identical at every bit

because the don’t care inputs in the vector present after test generation are filled in with r

‘1’ and ‘0’ values for fault simulation. Therefore, these vectors are not identified as duplic

This same partitioning issue is responsible for the decrease in reported fault cov

Hard-to-detect faults covered by vectors generated in other fault partitions will not be mar

detected. While this approach reduces reported fault coverage, it should not effect actu

coverage. When the PP-TGS system is run without communications, the number of partit

equal to the number of processors

The test set and fault coverage problems are even worse with dynamic load bala

Every time load balancing is invoked, an existing partition is divided into two new partit

Although these new partitions have fewer faults than the original partitions, they produc

same effect as adding more processors to the network. Faults that would have been covere

Figure 7. Relative Speedup

1 2 3 4 5 6 7 8
Number of Processors

0.0

2.0

4.0

6.0

8.0

R
el

at
iv

e 
S

pe
ed

up

Relative Speedup
c7552

No Communications
Load Balancing
Fault Broadcasting with Load Balancing
Vector Broadcasting with Load Balancing

1 2 3 4 5 6 7 8
Number of Processors

0.0

2.0

4.0

6.0

8.0

R
el

at
iv

e 
S

pe
ed

up

Relative Speedup
s9234



15
same vector had they remained in the same partition are now covered by separately generated

vectors. The test set that results is larger than it would have been without load balancing. This

increase in fault partitions is also responsible for the decrease in reported fault coverage.

3.2 Detected Fault and Generated Vector Broadcasting

For the multiple processor case, the increasing number of vectors generated is the result of

redundant work performed to generate vectors for faults covered on remote processors. For the

larger benchmark circuits, this redundant work is the major limit to the speedups achieved by the

PP-TGS system without interprocessor communications. For the smaller benchmark circuits,

speedups were limited by the grain size of the parallel algorithm. 

Detected fault broadcasting and generated vector broadcasting are two methods of

eliminating the redundant fault processing introduced by fault partitioning. They effectively

merge the local partitions across the network into one inclusive global partition. Any fault

covered by a generated vector is marked as covered, whether or not it is located in the partition

from which the vector was generated. By reducing extraneous calls to the test generator, much of

the redundancy that plagues fault partitioned ATPG can be eliminated. As observed in Table 2 and

Figure 8, the size of the test set grows very little with respect to the uniprocessor case. The

Figure 8. Relative Test Set Size
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increases that do occur can be attributed to the latencies involved with fault communications. The

smaller test set leads to speedups which are much closer to linear, as seen in Table 1 and Figure 7.

There is an additional benefit in that the reported fault coverages in Table 2 are much more

accurate.

As discussed in Section 2.3.2, fault broadcasting and vector broadcasting communicate

the same information to the remote partitions. Fault broadcasting fault simulates the global fault

list on each processor and distributes the list of detected faults to the remote processors. Vector

broadcasting distributes the reported test vectors to the various mini-masters prior to fault

simulation. The mini-masters then perform fault simulation on the received vectors in order to

determine the detected faults. As discussed previously, the broadcast vector can be considered an

encoded fault list and the fault simulator a decoder. Fault broadcasting reduces redundant

Table 2 Test Set Size and Fault Coverage

Circuit
Number 
of Procs

Test Set Size Fault Coverage (Percent)

No 
Comm

Load Bal
Fault Br 
Load Bal

Vect Br 
Load Bal

No 
Comm

Load Bal
Fault Br 
Load Bal

Vect Br 
Load Bal

c499 1 94 99.198
2 104 105 96 93 99.198 98.998 99.198 99.198
4 136 150 96 96 97.194 95.591 99.198 99.198
8 171 180 102 106 96.493 94.288 99.198 99.198

c1908 1 150 99.659
2 221 256 167 162 99.659 98.427 99.606 99.633
4 332 344 169 175 99.606 98.637 99.633 98.659
8 461 477 163 186 99.502 98.689 99.633 93.999

c3540 1 212 95.324
2 347 352 203 208 95.183 94.675 95.324 95.324
4 531 533 211 225 94.788 94.138 95.324 95.367
8 748 761 216 232 94.392 93.644 95.282 95.579

c7552 1 236 97.941
2 358 361 252 253 97.556 97.510 97.954 97.947
4 590 597 252 287 97.596 97.431 97.914 97.927
8 905 928 290 319 97.122 96.742 97.993 98.046

s5378 1 328 98.894
2 498 597 333 336 98.885 97.862 98.894 98.885
4 683 788 332 347 98.858 97.743 98.885 98.876
8 946 1008 353 379 98.858 97.972 98.885 98.785

s9234 1 453 93.981
2 781 809 451 466 93.975 93.806 93.981 93.997
4 1129 1211 478 485 93.901 93.315 93.975 93.960
8 1475 2535 502 708 93.759 87.724 93.991 92.205

s13207 1 554 98.920
2 889 993 554 570 98.920 98.407 98.920 98.913
4 1198 1343 559 565 98.920 98.180 98.920 98.913
8 1584 1900 579 625 98.920 97.533 98.920 98.826
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processing at the cost of additional communications overhead. Table 1 and Table 2 show the

comparison of fault broadcasting and vector broadcasting.

Generated vector broadcasting suffers from an important scalability problem. This

problem is apparent from Table 3, which displays the total runtime and the average time spent in

test generation and fault simulation for several of the tested circuits. Figure 9 depicts the average

test generation and fault simulation times for s9234. The results were similar for all circuits. For

fault broadcasting, fault simulation times decrease proportionally as the number of processors

increases. However, with vector broadcasting, fault simulation times actually increase slightly.

Because the processors spend a lot of time fault simulating the vector broadcasting calls, the

latency with which each processor receives and processes the fault information increases.

Therefore, faults cannot be quickly marked as detected and test generation will be performed on

some faults unnecessarily, increasing the time spent in the test generator. With vector

broadcasting, every vector generated during ATPG must be simulated by every fault simulator.

Since the number of generated vectors slowly increases with increasing processors, fault

simulation times on each processor increase as well. This situation places an absolute limit on

runtime improvements that can be achieved with vector broadcasting, no matter how many

processors or how fast a test generator is used. The additional communications overhead incurred

by fault broadcasting is much less than the redundant fault simulation time required by vector

broadcasting. 

In the PP-TGS system, the fault simulator is much faster than the test generator. This is

the worst case scenario when comparing fault broadcasting to vector broadcasting. If the test

Table 3 Broadcasting Method Runtimes (Seconds)

Circuit
Number of 

Procs

Total Runtime
Average Time per Proc

in FSIM
Average Time per Proc

in TGEN

Fault Br Vector Br Fault Br Vector Br Fault Br Vector Br

c7552 1 510.665 510.665 16.616 16.616 486.964 486.964
2 269.066 277.620 10.671 19.208 247.513 246.855
4 147.077 168.626 6.054 22.394 130.182 130.057
8 80.279 98.591 4.119 23.883 64.768 66.609

s9234 1 1772.982 1772.982 31.666 31.666 1713.374 1713.374
2 938.655 962.313 18.727 35.546 895.645 899.983
4 477.894 503.178 10.761 36.259 447.692 447.882
8 255.293 363.497 6.367 51.870 224.828 289.215

s13207 1 607.378 607.378 47.250 47.250 537.851 537.851
2 341.721 368.881 28.396 54.121 289.625 289.051
4 178.891 213.179 15.255 53.157 143.381 142.132
8 103.756 147.102 8.565 58.914 72.262 74.342
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generator were comparatively faster, then vector broadcasting would exact an even greater

performance penalty. Therefore, fault broadcasting is more efficient than vector broadcasting for

fault partitioned ATPG. 

Both fault broadcasting and vector broadcasting have communications scalability

problems that will show up in larger networks. Bottlenecks can develop when several processors

all attempt to broadcast information at once because communication is order N2, where N is the

number of processors in the network. If every processor simultaneously attempts a broadcast,

N(N-1) fault packets will all contend for network access. Methods must be developed to address

this problem.

IV. Analysis of Detected Fault Broadcasting on System Performance

In order to determine the efficiency of the detected fault broadcasting technique on various

system parameters such as fault simulation time, test generation time, and communications

latency, a set of analytical models was developed. The methodology presented was based upon

the work presented in [5]. This set of models was used to analyze the costs associated with the

various components of the PP-TGS algorithm. The number of undetected faults left after  test

vectors have been generated can be modeled as , where Fo and k are constants that are

defined to minimize the error introduced by the model and T1 is the number of tests required for

Figure 9. Average Processor Time in Test Generation and Fault Simulation
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maximum fault coverage [5]. This relation is illustrated in Figure 10 and is used in the analytical

models to predict the behavior of the parallel ATPG system.

4.1 Analysis of PODEM Complexity

A detailed analysis of the complexity of PODEM demonstrated that the time for test

generation can be determined from the number of backtrace, backtrack, imply, and objective

operations required to generate a test [31]. Unfortunately, these numbers are difficult to estimate

apriori. However, experimental evidence demonstrates that with a carefully chosen set of random

faults that require multiple backtraces, backtracks, objectives and implies, the average time spent

in each step of the PODEM model can be represented as the average time spent in test generation

for the sample set [31]. In actuality, two constants can be estimated,  the approximate cost

per successful test generation pass, and  the approximate cost per aborted test generation

pass. The predicted cost of PODEM is therefore:

, (4-1)

where  is the number of successes and  the number of aborts for the sample set.

4.2 Analysis of FSIM

FSIM uses a single fault propagation algorithm that simulates a fault for a given vector

until it is detected or determined undetectable for the current vector. First, a good value simulation

is performed for the vector. The time required for the good value simulation is proportional to the

number of gates in the circuit. FSIM then simulates each fault in the fault list against the current

test vector. Easily detected faults have long propagation zones but will be detected after the

simulation of relatively few test vectors. Hard-to-detect and redundant faults tend to have short

propagation zones but require the simulation of more vectors for detection. The result is that the
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Figure 10. Model of undetected faults [5].
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total number of calculations required per fault is fairly constant over the entire test generation

process [27].

The time required to perform fault simulation can be modeled as a linear combination of

the time required to perform good value simulations for every vector, , and the total

simulation time for every fault, .

(4-2)

Since  and  are constant for a given circuit, the time required for fault simulation is a linear

function of , the number of patterns applied. This formula can be extended to an N processor

system where  is the number of vectors for the mth processor. Since each processor performs

fault simulation on the global fault list,  is done by all processors. Equation (4-3) determines

the average per processor cost in time of fault simulation:

. (4-3)

4.3 Analysis of Dynamic Load Balancing

Whenever a processor becomes idle, it invokes work_status, which queries the other

processors in the system to determine if they have work to share. Every processor, except for the

processor requesting work, responds using rpt_work_status. The idle processor selects the first

processor responding with available work to minimize its idle time. Because processes are

non-interruptible in this implementation, there is a variable delay associated in an idle proce

wait for a response to its query for work. A queried processor typically would be perfor

ATPG, and must complete both test generation and fault simulation before responding

amount of time that an idle processor must wait for a response can be modeled by assum

each processor runs a fixed time loop with random starting times. Using the average time r

for both test generation and for fault simulation as the loop time, the time required for a

µPG

λF

CostFS µPG λF+=

where

µ average time to evaluate a gate=

P number of patterns to be simulated=

G number of gates in circuit=

λ average total calculation time per fault=

F number of faults in circuit=

µG λF

P

Pm

λF

CostFS

µPmG( )
m 1=

N

∑
N

------------------------------- λF+=
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processor to respond to an idle processor can be modeled using a uniform distribution as shown in

Figure 11, where  is the average ATPG time per fault. The distribution function is:

. (4-4)

Whenever a single processor is queried, the probability that its response time will be less

than or equal to some time t is:

(4-5)

Similarly, the probability that the response time will be greater than t seconds is:

(4-6)

When two or more processors are queried for work, the likelihood that any of the proce

response time will be greater than t seconds is:

(4-7)

Since the response time for each queried processor is uniformly distributed, as shown in

11, the probability that a processor will be unable to respond before some time t is equivalent

across all processors. Therefore, equation (4-7) can be expressed as:

(4-8)

and the probability that one or more processors will respond at some arbitrary time t that is less

than t is:

(4-9)

τ0
t seconds

1/τ

Figure 11. Uniform Distribution representing the atpg method
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The expected value of the response time for the first processor with available work to an idle

processor’s query can be derived with the use of equation (4-9).

The expected value for the response time is:

, (4-10)

and substituting the derivative of equation (4-9) in equation (4-10) yields: 

(4-11)

In this case, z can be expressed as the number of processors in the system that can respon

processor requesting work:

(4-12)

where N is the total number of processors in the system. Substituting equation (4-12

equation (4-11) yields:

(4-13)

which is the average response time that an idle process must wait before selecting a pr

with which to share work.

 It should be noted that this expected value representing the average response time

optimistic for two primary reasons. First, the above analysis assumed that the num

processors available to share work is a constant. In reality, the number of processor

available work is a function of the partitioning and will decrease as the number of detected

increase. This decrease will cause the effective value of N to decrease. Secondly, at the end of t

ATPG process, only the harder to detect faults remain. Since load balancing is typically invok

towards the end of ATPG, the time spent performing an atpg method will typically be greater than

the average time required to perform ATPG per fault. This increase in average ATPG tim

cause the effective value of τ to increase.

When a processor responds with work to share, the idle processor then invokes split_list.

The amount of time required to split the fault list between the two processors is determined

number of faults being transmitted between an idle processor and a busy processor and the

E t( ) tf t( )dt

0

τ

∫ tdP t( )dt

0

τ

∫= =

E t( ) t
z
τ
-- 1

t
τ
--– 

  z 1–
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associated with the size of the fault list. Therefore, the average per processor cost in time

associated with dynamic load balancing is:

, (4-14)

where τ is the average time to complete an atpg method,  is the system latency associated

with an idle processor’s request for work,  is the time required to split a fault list,  i

system latency associated with the passing of undetected fault lists,  is the number of tim

processor m invokes work_status and  is the number of times that processor m invokes

split_list. 

4.4 Analysis of Detected Fault Broadcasting

During the detected fault broadcasting process, each processor collects the list of d

faults not contained within its own fault list so that this information can be distributed to the 

processors. As this information is returned from the fault simulator during fault_dropping, it is

placed in a packet, and passed to the other processors through found_faults. Packetization of the

fault information is required because the number of faults broadcast after any given

simulation step is variable and allocation and passing of a fixed data structure that is large 

to hold the maximum number of faults to be broadcast is very inefficient.

This packetization of faults means that the latency is proportional to the number of 

to be passed among the processors, even on a network where message setup dominates

transmission time. This fact, along with the fact that the amount of detected fault inform

being communicated among the processors decreases exponentially as the number of g

test vectors increases, means that the cost of detected fault broadcasting decreases as th

of generated test vectors increases. The average cost in time associated with detect

broadcasting including local fault processing time can be represented as:

, (4-15)

where N is the number of processors in the system,  is the number of test vectors gener

the mth processor,  is the number of detected faults to be broadcast by the mth processor for

the nth vector generated,  is the average communications time per fault broadcast, and 

time required in the destination processor for receiving and dropping the detected faults.

CostDLB
τ
N
---- ∆mess+
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 
 
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νm

νm 1–

CostDFB Φmn tfp t+ fdm
N( )[ ]

n 1=

Tm

∑
m 1=

N

∑ N⁄=

Tm

Φmn

tfp tfd



24

t. The

ation.

m.

ate, the

mming

ltiple

 the day

rs that

CAS

models
The value for  can be extrapolated from the expression  representing the test

generation/fault simulation process. Since this expression represents the number of faults left to

evaluate after z test vectors, the percentage of detected faults for a given test vector, z, is simply:

, (4-16)

and  is:

, (4-17)

where  is the fraction of detected faults not contained within the mth processor’s fault list for

its nth vector generated and  is the number of faults partitioned to the mth processor.

4.5 Complete Cost for the PP-TGS System

The average time for the complete PP-TGS system is:

. (4-18)

This formula can be used to project the speedup in the multi-processor environmen

uniprocessor model involves only the costs associated with PODEM and fault simul

Therefore, the speedup in a multi-processor environment can be represented as:

. (4-19)

This equation can be used to predict the speedup attainable for a particular PP-TGS syste

4.6 Model Validation

In order to demonstrate that the models developed for the PP-TGS system are accur

models were used to predict the results of running the system in the Mentat parallel progra

environment on a network of Sun SPARC2 workstations. This network supports mu

processes and its computational load from these processes ranges from very heavy during

to just a few processes during the early morning hours. It was during the early morning hou

the data was collected.

4.6.1  Uniprocessor Environment

Initially, the software was compiled on a single Sun SPARC2 without Mentat. The IS

‘85 benchmark circuit used to acquire the needed constants and to validate the software 

was C7552.

Φ Foe k– z T1⁄

e k– zmn 1–( ) Tm⁄ e k– zmn Tm⁄–[ ] 100×% of detected faults =

Φmn

Φmn ρmn e k– zmn 1–( ) Tm⁄ me k– zmn Tm⁄–[ ]× ϒm×=

ρmn

ϒm

CostTotal CostTG CostFS CostDLB CostDFB+ + +=

Speedup
CostTG CostFS+[ ]uniprocessor

CostTG CostFS CostDLB CostDFB+ + +[ ]multi processor–

-----------------------------------------------------------------------------------------------------------------------------------------=
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The complete fault list for C7552 contains 15,104 faults, and a sample set of 30 faults was

used. When the PP-TGS system was run on the sample set, 12 successful tests were generated in

3.652 seconds and 3 aborts occurred in 3.948 seconds, resulting in a  of 0.3043 seconds and

a  of 1.316 seconds. The fault coverage was 66.126%. Using the derivation of the

exponential curve for fault simulation and the constants determined for C7552 [5], the expression

 representing the percentage of undetected faults can be solved as follows:

,

which results in . 

Unfortunately, no model exists to predict the number of expected aborts. In addition, the

sample set was not effective in determining the ratio of aborts to successes. Therefore, a complete

ATPG run must be conducted to determine  and . The actual uniprocessor test length

was 236 vectors with 357 aborts. The total time required for test generation as determined by the

PODEM model was:

 seconds,

while the actual time required for test generation was 486.964 seconds.

The fault simulator is modeled by equation (4-2) which is linear with respect to the

number of vectors simulated. The total fault simulation time was estimated from the time to

simulate 60 and 90 vectors. The time per good value simulation was determined to be 0.065

seconds and the time to simulate all faults was determined to be 1.750 seconds. The total

estimated time for fault simulation was:

 seconds,

while the actual time required for fault simulation was 16.616 seconds.

The total time for the uniprocessor environment as predicted by the models is 558.766 seconds,

and the actual runtime for C7552 was 517.869 seconds. The difference is 40.897 seconds

(7.90%).

4.6.2  Multiprocessor Environment

In order to demonstrate the applicability of the models to the PP-TGS software, the results

for the ISCAS circuit C7552 on 8 processors were analyzed. A complete ATPG run is required in

order to determine the number of successes and aborts in test generation and the time required for

κsucc

κabort

e k– z T1⁄

e k– z T1⁄ e 22.552 12 T1⁄( )– 1 0.66126–= =

T1 250=

ϒsucc ϒabort

CostPODEM 236 0.3043 357 1.3161×+× 541.676= =

CostFS 236 0.0065 1.750+× 17.090= =
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communications. Once these parameters have been calculated, they can be used to model

networks of any size.

 Applying the approximation for the cost of test generation as described in equation (4-1)

to the N processor case yields:

, (4-20)

where  is the number of successful vectors generated on the mth processor and  and

abort is the number of aborts on the mth processor. The number of successes and aborts can be

assumed to be constant on various networks configurations. This assumption is validated by the

results in Section 3.2. Equation (4-3) can be used to determine the fault simulation time.

For dynamic load balancing, it was determined that equation (4-14) could be modified for

the purpose of analysis. Experimental data was obtained by instrumenting timers within the

PP-TGS software. These timers were placed so that each parameter identified within the models

could be measured. The collected data demonstrated that the time required by a previously idle

processor to store and to sort a fault list and the time for a busy processor to split its remaining

fault list was an order of magnitude less than the end-to-end communications time required to

pass this information between processors. Additionally, the latency associated with passing

messages among the processors to determine how many faults that a processor has left was

determined to be insignificant in comparison to the other factors. As a result of these findings,

these components could be ignored for the purpose of this analysis. Thus, the model for dynamic

load balancing can be reduced as follows:

. (4-21)

The latency associated with the transmission of a fault list packet, , can be found

experimentally. It was determined in Section 3.1 that  increases linearly with the number of

processors.

The cost of detected fault broadcasting is dominated by the time required to broadcast the

detected fault information between processors as opposed to the time required to drop the

detected faults from the local fault list. Therefore, equation (4-15) can be simplified as follows for

the purpose of this analysis:

, (4-22)
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where  is the number of detected faults broadcast for the nth vector generated by the mth

processor,  is the time spent communicating the detected fault information by the mth processor

and N is simply the number of processors in the system. Analysis in Section 3.2 reveals that 

varies linearly with the square of the number of processors.

Recall that equation (4-17) defined the value of . This equation can be used to

determine an upper bound on the number of detected faults to be broadcast. Assuming a worst

case scenario that every fault returned by the fault simulator is broadcast, the total number of

faults broadcast by each processor, ,can be approximated as:

. (4-23)

Thus, the sum of  for a given processor equals the number of faults in that processor

list. Using this result for  in equation (4-22) yields:

. (4-24)

For the PP-TGS system running under Mentat, the costs associated with test gen

and fault simulation calculated in Section 4.6.1 are not applicable because the serial versio

code was a C++ version without any Mentat overhead. Since the message passing 

between Mentat objects is significant even when the objects reside on the same process

this overhead must be included in the analysis on the speedup bounds. Therefo

multi-processor version of the Mentat code had to be modified to run on only one proces

include the overhead associated with the communications among the mini-master, test generator,

and fault simulator objects. The same set of faults used to test the non-Mentat version of the

were used. The implementation of the software with the Mentat required 3.8243 seconds 

generation of 12 successes and 4.0356 seconds for 3 aborts.  is 0.3187 and  is

Sample fault simulation times were once again taken after 60 and 90 passes through t

simulator. The time per good value simulation was calculated to be 0.0776 seconds and t

to simulate all faults was estimated to be 1.5826 seconds. 

Test generation on C7552 with interprocessor communications resulted in a test set

vectors with 336 aborts. Using the approximation for the cost of test generation as prese

equation (4-20), the predicted time required for test generation and fault simulation was: 

 seconds, and 

 seconds.

Φmn

tfp

tfp

Φmn

Φm

Φm e k– zmn 1–( ) Tm⁄ e k– zmn Tm⁄–( )ϒm

n 1=

Tm

∑ ϒm= =

Φm

Φmn

CostDFB ϒmtfp[ ]
m 1=

N

∑ N⁄=

κsucc κabort

CostTG
302 0.3187 336 1.3452×+×

8
---------------------------------------------------------------------- 68.529= =

CostFS
302 0.07763×

8
---------------------------------- 1.5826+ 4.5131= =
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There were 33 invocations of dynamic load balancing during ATPG for the circuit,

meaning that each processor invoked dynamic load balancing an average of 4.125 times.

Experimental data for the showed the latency to be 1.1547 seconds per broadcast. Using the

approximations for the dynamic load balancing model presented in equation (4-21), the cost of

dynamic load balancing for C7552 was:

 seconds.

C7552 contains 15,104 faults and for 8 processors, as previously stated, 302 test vectors

were generated and 14,811 faults were broadcast. Experimental data showed that the time spent

processing the detected fault information on all 8 processors for C7552 was 20.508 seconds. The

time required to process the received detected fault information was: 

 milliseconds per fault.

This information, , can be used to predict the cost of detected fault broadcasting for C7552 for

N processors. For the analysis of C7552 on 8 processors, the experimental data for the time spent

processing the detected fault information will be used. For simplicity of analysis it will be

assumed that all faults are broadcast, a worst case scenario. The average cost per processor for

broadcasting the detected fault information using equation (4-24) was:

 seconds.

The total runtime cost for 8 processors from equation (4-18) was:

Costtotal = CostTG + CostFS + CostDLB +CostDFB,

and the predicted cost was 79.638 seconds. Table 4 reveals the actual and predicted performance

for C7552 and S9234 on 8 processors. 

The predicted speedup for C7552 was:

 .

The actual speedup for C7552 on 8 processors was 6.454. Among the reasons that the actual

speedup was less than estimated was the difficulty in estimating the time required for PODEM to

generate tests. Additionally, the assumptions made calculating the effects of dynamic load

balancing in regards to expected value of the response time among the processors also effected the

predictions.

CostDLB
8 1.1547× 4.125 1–( )×

8
----------------------------------------------------------- 1.8783= =

tfp
20.508

14811 8 1–( )×
-------------------------------------- 0.198= =

tfp

CostDFB
8 0.000198 15 104,××

8
-------------------------------------------------------- 2.988= =

Speedup
558.766
79.638

------------------- 7.016= =
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4.6.3  Predictions Using Model

As discussed previously, experimental data from the sample fault set must be used to

determine the average test generation and fault simulation times. Experimental data from a full

ATPG run on the parallel system must be used to determine the number of aborts, the number of

load balancing invocations, and the time for processing broadcast faults. 

Using data gathered from the sample test generation and fault simulation runs and the

complete eight processor ATPG run, the model was used to predict the performance of the

PP-TGS system on networks of four, six, twelve, and sixteen processors. The calculations

performed to derive the times for the four processor model are shown below:

 seconds, and 

 seconds.

Given that  scales linearly with the number of processors (Section 3.1):

, and 

 seconds.

Finally, given that  scales linearly with the square of the number of processors (Section 3.2):

, and

 seconds. 

Table 5 and Table 6 report the results of the model predictions for the C7552 and S9234

circuits. Figure 12 displays the results graphically. The predictions for the four and six processor

networks were computed and compared to the actual run times. As noted earlier, the total number

Table 4 Estimated and actual times for C7552 on 8 processors

C7552 S9234

Predicted Time
(Seconds)

Actual Time
(Seconds)

Predicted Time
(Seconds)

Actual Time
(Seconds)

Test Generation 68.529 63.101 233.366 224.828
Fault Simulation 4.513 4.4005 8.065 6.367
Dynamic Load Balancing 3.608 3.853
Fault Broadcasting 2.988 3.519
Total 79.638 79.113 248.803 255.293

CostTG
302 0.3187 336 1.3452×+×

4
---------------------------------------------------------------------- 137.058= =

CostFS
302 0.07763×

4
---------------------------------- 1.5826+ 7.443= =

νm

νm4

νm8

8 4⁄
----------

4.125
2

------------- 2.063= = =

CostDLB
4 1.1547× 2.063 1–( )×

4
----------------------------------------------------------- 1.227= =

tfp

tfp4

tfp8

8 4⁄( )2
-----------------

0.000198
4

---------------------- 0.000050= = =

CostDFB
4 0.000050× 1× 5 104,

4
-------------------------------------------------------- 0.748= =
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of vectors and aborts generated by the ATPG software could be held constant. The data shows that

the predictions were quite accurate. For C7552, the error was less than 1 percent for the four

processor network and less than 4 percent for the six processor network. Therefore, this model

can accurately be used to determine the effects of varying the number of processors in a parallel

ATPG system. 

The model can also be used to investigate the effect of varying different parameters of the

PP-TGS system. For example, Figure 12 also shows the predicted behavior of the PP-TGS system

for C7552 if the test generator was twice as fast. The model indicates that communication

overhead limits the speedup attainable as the number of networked processors grows. It can be

observed that communications accounts for over a quarter of the time required by the sixteen

processor system. Future research will be needed to address the issue of efficient interprocessor

communication over large networks, using the model to investigate what changes would be most

beneficial. 

V. Conclusions

As VLSI circuits become ever larger, the test generation problem becomes more important

and more difficult. Parallel processing is an effective technique to help address this problem.

Table 5 Predicted Performance of PP-TGS System for C7552

4 Procs 6 Procs 12 Procs 16 Procs

Pred. Time
(Seconds)

Actual Time
(Seconds)

Pred. Time
(Seconds)

Actual Time
(Seconds)

Pred. Time
(Seconds)

Pred. Time
(Seconds)

Test Generation 137.058 130.182 91.372 87.692 45.686 34.264
Fault Simulation 7.443 6.054 5.489 5.070 3.536 3.048
Dynamic Load Bal. 1.227 2.417 5.991 8.371
Fault Broadcasting 0.748 1.683 6.732 11.952
Total 146.476 147.077 100.961 103.652 61.945 57.635
Predicted Speedup 3.815 5.534 9.020 9.694

Table 6 Predicted Performance of PP-TGS System for S9234

4 Procs 6 Procs 12 Procs 16 Procs

Pred. Time
(Seconds)

Actual Time
(Seconds)

Pred. Time
(Seconds)

Actual Time
(Seconds)

Pred. Time
(Seconds)

Pred. Time
(Seconds)

Test Generation 466.732 447.692 311.154 319.370 155.577 116.683
Fault Simulation 14.947 10.761 10.359 9.341 5.771 4.624
Dynamic Load Bal. 1.926 2.889 5.779 7.706
Fault Broadcasting 0.879 1.979 7.919 14.079
Total 484.484 477.894 326.381 346.568 175.046 143.092
Predicted Speedup 3.509 5.209 9.714 11.883
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However, the average digital designer does not yet have access to dedicated parallel processing

hardware. This paper presented a refinement of an existing parallelization technique for test

generation that is aimed at a network of workstations environment. The goal was to show that

effective speedups and reasonable test sets could be achieved in an environment to which almost

every digital designer has access. Further, it was shown that this technique is generic and simple

to implement given the currently available parallel programming environments like Mentat. The

techniques described herein can be applied to any test generation system regardless of the ATPG

or fault simulation algorithm used.

Figure 12. Predicated vs. Actual Performance of PP-TGS System
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The PP-TGS system is based upon fault partitioning but it includes enhancements

designed to address the drawbacks of static fault partitioning, namely poor processor load

balancing, and poor speedups and increasing test set sizes because of redundant test vector

generation. The load balancing issue was addressed by adding a dynamic load balancing scheme

similar to that used in other systems of this type. The issue of redundant vector generation and its

effect on speedups and test set size was addressed by adding detected fault broadcasting. Detected

fault broadcasting was shown to be an effective enhancement to fault partitioned parallel test

generation. It significantly increases speedups, produces smaller test sets, and does not require

careful tuning to achieve these results as required by other techniques such as test vector

broadcasting.

Analytical models were developed to determine the cost of the various parts of the

PP-TGS system and predict the effects of varying network size and algorithm speed on system

performance. The models were verified using runtimes for some of the benchmark circuits. The

models demonstrated that communications latency restricted the maximum speedup attainable on

a network of workstations platform. Future work is planned to evaluate the necessity of

algorithmic fault partitioning when using fault broadcasting during parallel ATPG.
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