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Abstract. A total perfect code in a graph is a subset of the
graph’s vertices with the property that each vertex in the graph
is adjacent to exactly one vertex in the subset. We prove that
the tensor product of any number of simple graphs has a total
perfect code if and only if each factor has a total perfect code.

1 Introduction

A total perfect code in a simple graph G = (V (G), E(G)) is a subset C ⊆
V (G) with the property that for each x ∈ V (G), the neighborhood N(x) =
{y |xy ∈ E(G)} contains exactly one vertex in C. If x is adjacent to y ∈ C,
we say x is covered by y. This is illustrated with the graph in Figure 1,
where the dark vertices form a total perfect code. Each vertex is covered
by exactly one member of the code. Observe that many graphs (complete
graphs Kn with n ≥ 3, for instance) do not admit total perfect codes.c s c c s

c s c c s
Figure 1

Total perfect codes have been studied in [1], [2], [3], [4] and [6] and appear
in the literature under various names: efficient open domination sets, total
domination sets and exact transversals. There is a complete characteriza-
tion of total perfect codes for grid graphs in [6] and [2]. In this note we
characterize total perfect codes for tensor products of graphs in terms of
total perfect codes of their factors.
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The tensor product of graphs G and H is the graph G⊗H whose vertex set
is the Cartesian product V (G) × V (H) and whose edges are (g, h)(g′, h′)
where gg′ ∈ E(G) and hh′ ∈ E(H). As an example of a tensor product,
Figure 2 shows P4 ⊗ P3, where Pn denotes the path on n vertices. The
tensor product is also known in the literature as the direct, Kronecker
or categorical product and is often denoted by × rather than ⊗. A full
treatment of this product can be found in [5]. If G1, G2, . . . , Gn are graphs,
the n-fold tensor product

⊗n
i=1 Gi = G1 ⊗G2 ⊗ · · · ⊗Gn consists of vertex

set V (G1)× V (G2)× · · · × V (Gn), where (x1, x2, . . . , xn)(y1, y2, . . . , yn) is
an edge exactly when xiyi ∈ E(Gi) for each 1 ≤ i ≤ n. This is equivalent
to the inductive definition

⊗n
i=1 Gi = G1 ⊗ (

⊗n
i=2 Gi). The graphs Gi

are called factors of the product. We denote by πi the projection πi :
V (

⊗n
i=1 Gi) → V (Gi), defined by πi(x1, x2, . . . , xn) = xi.

2 Results

In this section we examine the relationship between total perfect codes in
n-fold tensor products and total perfect codes of their factors. We give a
constructive proof that an n-fold tensor product has a total perfect code if
and only if all of its factors have total perfect codes. Our first proposition
proves one direction.

Proposition 2.1 Suppose G1, G2, . . . , Gn are graphs and Gi has total per-
fect code Ci ⊆ V (Gi) for 1 ≤ i ≤ n. Then C1 × C2 × · · · × Cn is a total
perfect code for G1 ⊗G2 ⊗ · · · ⊗Gn.

Proof. Suppose that Ci ⊆ V (Gi) is a total perfect code for Gi for 1 ≤ i ≤ n.
Form the Cartesian product C = C1 × C2 × · · · × Cn. We claim that C is
a total perfect code for G1 ⊗G2 ⊗ · · · ⊗Gn.

Let (g1, g2, . . . , gn) ∈ V (G1 ⊗ G2 ⊗ · · · ⊗ Gn). Then each gi is adjacent to
some g′i ∈ Ci. Thus, (g1, g2, . . . , gn) is adjacent to (g′1, g

′
2, . . . , g

′
n) ∈ C, so

each vertex of G1 ⊗G2 ⊗ · · · ⊗Gn is covered by some element of C.

Now suppose there exists some (g1, g2, . . . , gn) ∈ V (G1 ⊗ G2 ⊗ · · · ⊗ Gn)
that is covered by two distinct elements in C, say (g′1, g

′
2, . . . , g

′
n) and

(g′′1 , g′′2 , . . . , g′′n). This implies that gig
′
i, gig

′′
i ∈ E(Gi) with both g′i and

g′′i in Ci for 1 ≤ i ≤ n. Choose an index i for which g′i 6= g′′i , and we see
that vertex gi ∈ Gi is covered by distinct elements g′i and g′′i in the total
perfect code Ci, a contradiction. Hence each vertex of G1 ⊗G2 ⊗ · · · ⊗Gn

is covered by exactly one element of C, so C is a total perfect code for
G1 ⊗G2 ⊗ · · · ⊗Gn.
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Figure 2 is an illustration of Proposition 2.1. Total perfect codes C1 and
C2 (dark vertices) are indicated on paths P4 and P3 to the bottom and left
of the product P4 ⊗ P3. Observe that C1 × C2 is a total perfect code for
P4 ⊗ P3.
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We will now prove a converse to Proposition 2.1: If a tensor product has
a total perfect code, then each factor has a total perfect code. Ideally, we
would hope that a reverse process of the proof of Proposition 2.1 would
work, that is, given a total perfect code in the product, project it to a total
perfect code in each factor. However, Figure 3 reveals the situation to be
more intricate. A total perfect code for P4⊗P3 is indicated, but it does not
project to a total perfect code on P3. Clearly, some care is required here.
The following proposition shows that projections of appropriate subsets of
a total perfect code produce total perfect codes in the factors.

Proposition 2.2 Suppose G = G1 ⊗ G2 ⊗ · · · ⊗ Gn has a total perfect
code C. If (g1, g2, . . . , gn) ∈ V (G), then for any 1 ≤ i ≤ n, the set Ci =
πi (C ∩ [N(g1)×N(g2)× · · · ×N(gi−1)× V (Gi)×N(gi+1)× · · · ×N(gn)])
is a total perfect code in Gi.

Proof. Let X = N(g1) × · · · ×N(gi−1) × V (Gi) ×N(gi+1) × · · · ×N(gn).
We want to show that Ci = πi(C ∩X) is a total perfect code in Gi. Take
an arbitrary vertex x of Gi and observe that x is covered by some element
of Ci as follows. The vertex (g1, g2, . . . , gi−1, x, gi+1, . . . , gn) of G must
be covered by some element (g′1, g

′
2, . . . , g

′
i, . . . , g

′
n) ∈ C. Necessarily, g′k ∈

N(gk) for 1 ≤ k ≤ n and k 6= i, so (g′1, g
′
2, . . . , g

′
i, . . . , g

′
n) ∈ C ∩ X. Thus

g′i ∈ πi(C ∩X) = Ci and x is covered by g′i ∈ Ci.

Now, if x were also covered by some g′′i ∈ Ci, there would be a vertex
(g′′1 , g′′2 , . . . , g′′i , . . . , g′′n) ∈ C ∩ X that covers (g1, g2, . . . , x, . . . , gn). Then
(g1, g2, . . . , x, . . . , gn) would be covered by both (g′1, g

′
2, . . . , g

′
i, . . . , g

′
n) and

(g′′1 , g′′2 , . . . , g′′i , . . . , g′′n) in C. Hence, g′k = g′′k for all 1 ≤ k ≤ n. In partic-
ular, g′i = g′′i , so x is covered by exactly one element of Ci. Thus Ci is a
total perfect code in Gi.
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Propositions 2.1 and 2.2 imply that a tensor product of graphs has a total
perfect code if and only if each factor has a total perfect code. In fact, we
have the following stronger result.

Theorem 2.1 Let G1, G2, . . . , Gn be graphs and let G = G1⊗G2⊗· · ·⊗Gn.
Then

1. G has exactly one total perfect code if and only if each factor Gi for
1 ≤ i ≤ n has exactly one total perfect code.

2. G has more than one total perfect code if and only if each factor Gi

for 1 ≤ i ≤ n has at least one total perfect code and one factor has
more than one total perfect code.

Proof. Observe that Part 1 of the theorem follows from Part 2 together
with Propositions 2.1 and 2.2, thus it suffices to prove only Part 2.

Suppose that G has two total perfect codes C and D. By Proposition 2.2,
each Gi has at least one total perfect code. We now show that Gk for
some 1 ≤ k ≤ n has two total perfect codes. Choose (g1, g2, . . . , gn) ∈
V (G) that is adjacent to (g′1, g

′
2, . . . , g

′
n) ∈ C and (g′′1 , g′′2 , . . . , g′′n) ∈ D

with g′k 6= g′′k for some k. Then by Proposition 2.2, the sets Ck = πk(C ∩
[N(g1)×N(g2)×· · ·×N(gk−1)×V (Gk)×N(gk+1)×· · ·×N(gn)]) and Dk =
πk(D∩[N(g1)×N(g2)×· · ·×N(gk−1)×V (Gk)×N(gk+1)×· · ·×N(gn)]) are
total perfect codes for Gk. Note that g′k ∈ Ck and g′′k ∈ Dk by construction,
but g′′k /∈ Ck for otherwise the vertex gk in Gk is covered by both g′k and g′′k
in Ck. Thus Ck 6= Dk and Gk has at least two total perfect codes.

Conversely, suppose that each factor Gi for 1 ≤ i ≤ n has a total perfect
code Ci and some factor has more than one total perfect code. Without
loss of generality, assume that G1 has two total perfect codes C1 and C ′

1. It
follows from Proposition 2.1 that C1×C2×· · ·×Cn and C ′

1×C2×· · ·×Cn

are distinct total perfect codes for G.

We mention one application of these results. Klostermeyer and Goldwasser
[6] chacterize the values of m and n for which the Cartesian product Pm×Pn

of two paths admits a total perfect code. Even with just two factors, the
situation is remarkably rich. By contrast, Propositions 2.1 and 2.2 make
the analogous problem for the tensor product relatively simple, and we can
state a result not just for the product of m paths, but for cycles as well. It
was shown in [4] that a path Pn has a total perfect code if and only if n 6≡ 1
(mod 4), and in [3] that an n-cycle Zn has a total perfect code if and only
if n ≡ 0 (mod 4). Thus Theorem 2.1 implies the following corollary.

Corollary 2.1 A product (
⊗m

i=1 Ppi
)⊗ (

⊗n
i=1 Zqi

) has a total perfect code
if and only if pi 6≡ 1 (mod 4) for 1 ≤ i ≤ m and qi ≡ 0 (mod 4) for
1 ≤ i ≤ n.

4



Despite Theorem 2.1, it is not possible in general to determine the number
of total perfect codes in a product from the number of total perfect codes in
its factors. This is illustrated in figures 4(a) and 4(b). For clarity, only one
component of each product is shown; in each case the missing component
is isomorphic to the one drawn.
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Figure 4(a) Figure 4(b)

In each case, the factor H admits exactly two total perfect codes. Factors
G and K each admit four total perfect codes, as follows. Any code in G
consists of two adjacent vertices incident with one of the two edges on the
far left, together with two adjacent vertices incident with one of the two
edges on the far right, for a total of four distinct codes. Any code in K
consists of just two vertices incident with any of the four edges. But observe
that G⊗H admits more codes than does K⊗H. Any code in the indicated
component of G⊗H consists of a choice of two vertices incident with any
one of the four edges on the far left, together with two vertices incident with
any one of the four edges on the far right, for a total of 16 codes. The other
component of G ⊗H also has 16 codes, so all together G ⊗H admits 256
distinct codes. But any code in the indicated component of K⊗H consists
of just two vertices incident with any one of the eight edges. Likewise the
other component of K ⊗H has eight distinct codes, so all together K ⊗H
has only 64 codes.

We thank the referee for a prompt review and for suggesting the strength-
ened version of Theorem 2.1 presented above.
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