Perfect r-Codes in Strong Products of Graphs

Ghidewon Abay-Asmerom
Richard H. Hammack
Dewey T. Taylor
Department of Mathematics and Applied Mathematics
Virginia Commonwealth University
Richmond, VA 23284-2014, USA
ghidewon@vcu.edu
rhammack@vcu.edu
dttaylor2@vcu.edu

Abstract

A perfect r-code in a graph is a subset of the graph's vertices with the property that each vertex in the graph is within distance r of exactly one vertex in the subset. We prove that the n-fold strong product of simple graphs has a perfect r-code if and only if each factor has a perfect r-code.

1 Introduction

For a positive integer r, a perfect r-code in a simple graph $G=(V(G), E(G))$ is a subset C of $V(G)$ for which the balls of radius r centered at the vertices of C form a partition of $V(G)$. This idea, introduced in [1], generalizes the notion of a standard error-correcting code. Perfect r-codes have also been used to model the problem of efficient placement of resources in a network. If the vertices in the code represent locations of resources, then every vertex in the graph is within distance r of exactly one resource. Aside from applications, the study of perfect r-codes is an interesting combinatorial problem unto itself.

Perfect codes appear naturally in products of graphs. Perfect Hamming codes can be understood as perfect r-codes in Cartesian products of complete graphs and perfect Lee codes as perfect r-codes in Cartesian products
of cycles. The most elusive problem in this area concerns perfect codes in the Lee metric. In [4] Golomb and Welch conjectured the nonexistence of n-dimensional perfect codes in the Lee metric for $n \geq 3$ and $r \geq 2$. This conjecture was only partially confirmed, see $[11,5,6,12]$ for details. Other results concerning perfect r-codes in Cartesian products appear in [2, 3].

Recently a number of authors have studied perfect r-codes in direct products $[8,9,10,13]$. Perfect r-codes in a third type of product called the strong product have received little or no attention. Our note is a response to this deficiency. We prove constructively that an n-fold strong product has a perfect r-code if and only if each of its factors has a perfect r-code. This result is used to characterize which products of cycles and paths have perfect r-codes.

The distance between vertices u and v in G, denoted by $d_{G}(u, v)$, is the number of edges in a shortest path from u to v. For a vertex $v \in V(G)$, let $B(v, r)=\left\{u \in V(G) \mid d_{G}(u, v) \leq r\right\}$ denote the r-ball centered at v. Thus, a subset $C \subseteq V(G)$ is a perfect r-code in G if $\{B(c, r) \mid c \in C\}$ forms a partition of $V(G)$. If $x \in B(c, r)$, where $c \in C$, we say x is r-dominated by c. In other words, a perfect r-code in a simple graph G is a subset C of $V(G)$ such that every vertex of G is r-dominated by exactly one vertex in C. For example, in Figure 1, the dark vertices form a perfect 3-code. Each vertex is 3 -dominated by exactly one member of the code. The 3 -balls centered at the dark vertices are indicated by dotted lines. It is a simple matter to show that any two perfect r-codes in a given graph have the same cardinality.

Figure 1
The strong product of graphs G and H is the graph $G \boxtimes H$ whose vertex set is the Cartesian product $V(G) \times V(H)$ and whose edges are the pairs $(g, h)\left(g^{\prime}, h^{\prime}\right)$ of distinct vertices for which one of the following holds:

1. $g=g^{\prime}$ and $h h^{\prime} \in E(H)$
2. $g g^{\prime} \in E(G)$ and $h=h^{\prime}$
3. $g g^{\prime} \in E(G)$ and $h h^{\prime} \in E(H)$.

The graphs G and H are called factors of the product. The strong product
also appears in literature as the strong direct product or symmetric composition. As an example of a strong product, Figure 2 shows $P_{3} \boxtimes C_{4}$ where P_{n} denotes the path on n vertices and C_{n} is a cycle on n vertices.

Figure 2
For clarity, the edges of form (1) and (2) are displayed bold. We note that edges of these types form what is called the Cartesian product of G and H. The edges of form (3) yield the direct or tensor product of G and H. (See [7] for details.) Thus the edges of $G \boxtimes H$ are the union of the edges of the Cartesian and direct products.

The strong product is associative in the sense that the map $\left(g_{1},\left(g_{2}, g_{3}\right)\right) \mapsto$ $\left(\left(g_{1}, g_{2}\right), g_{3}\right)$ is an isomorphism from $G_{1} \boxtimes\left(G_{2} \boxtimes G_{3}\right)$ to $\left(G_{1} \boxtimes G_{2}\right) \boxtimes G_{3}$. Thus $G_{1} \boxtimes G_{2} \boxtimes \cdots \boxtimes G_{2}$ is well-definded without regard to grouping of factors, so it is natural to drop the parentheses. Doing this leads to the following fact which we accept as the definition of an n-fold strong product. The n-fold strong product $\boxtimes_{i=1}^{n} G_{i}=G_{1} \boxtimes G_{2} \boxtimes \cdots \boxtimes G_{n}$ consists of vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right) \times \cdots \times V\left(G_{n}\right)$ where a pair $\left(g_{1}, g_{2}, \ldots, g_{n}\right)\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots, g_{n}^{\prime}\right)$ of distinct vertices is an edge exactly when $g_{i}=g_{i}^{\prime}$ or $g_{i} g_{i}^{\prime} \in E\left(G_{i}\right)$ for each $1 \leq i \leq n$.

By [7, Lemma 2.1] the distance between two vertices $u=\left(u_{1}, \ldots, u_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ in the graph $G=\boxtimes_{i=1}^{n} G_{i}$ is

$$
\begin{equation*}
d_{G}(u, v)=\max _{1 \leq i \leq n} d_{G_{i}}\left(u_{i}, v_{i}\right) . \tag{1}
\end{equation*}
$$

In what follows π_{i} denotes the usual projection functions, $\pi_{i}: V\left(\boxtimes_{i=1}^{n} G_{i}\right)$ $\rightarrow V\left(G_{i}\right)$ defined by $\pi_{i}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{i}$. For more details on the strong product see [7].

2 Results

In this section we examine the relationship between perfect r-codes in the n fold strong product of graphs and perfect r-codes in their factors. We show
that an n-fold strong product of graphs has a perfect r-code if and only if each factor has a perfect r-code. We start by proving the converse.
Proposition 2.1 Suppose $G_{1}, G_{2}, \ldots, G_{n}$ are graphs and G_{i} has a perfect r-code $C_{i} \subseteq V\left(G_{i}\right)$ for $1 \leq i \leq n$. Then $C_{1} \times C_{2} \times \cdots \times C_{n}$ is a perfect r-code in $G_{1} \boxtimes G_{2} \boxtimes \cdots \boxtimes G_{n}$.

Proof. Set $G=G_{1} \boxtimes G_{2} \boxtimes \cdots \boxtimes G_{n}$. Suppose that $C_{i} \subseteq V\left(G_{i}\right)$ is a perfect r code in G_{i} for $1 \leq i \leq n$. Form the Cartesian product $C=C_{1} \times C_{2} \times \cdots \times C_{n}$. We claim that C is a perfect r-code in G.

Let $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in V(G)$. Then each $g_{i} \in V\left(G_{i}\right)$ is within a distance r of some $c_{i} \in C_{i}$. Let $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. Then by (1), $d_{G}(g, c)=$ $\max _{1 \leq i \leq n} d_{G_{i}}\left(g_{i}, c_{i}\right) \leq r$. Hence every vertex in G is r-dominated by a vertex in $C_{1} \times C_{2} \times \cdots \times C_{n}$.

Now suppose there exists some $g=\left(g_{1}, g_{2}, \ldots, g_{n}\right) \in V(G)$ that is r dominated by vertices $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ and $c^{\prime}=\left(c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}\right)$ in C. Then $d_{G}(g, c)=\max \left\{d_{G_{i}}\left(g_{i}, c_{i}\right)\right\} \leq r$ and $d_{G}\left(g, c^{\prime}\right)=\max \left\{d_{G_{i}}\left(g_{i}, c_{i}^{\prime}\right)\right\} \leq r$. Thus for each $1 \leq i \leq n$, we have $d_{G_{i}}\left(g_{i}, c_{i}\right) \leq r$ and $d_{G_{i}}\left(g_{i}, c_{i}^{\prime}\right) \leq r$ for code elements $c_{i}, c_{i}^{\prime} \in C_{i}$. Hence $c_{i}=c_{i}^{\prime}$, so $c=c^{\prime}$. Thus C is a perfect r-code in G.

Figure 3a illustrates Proposition 2.1 where the dark vertices belong to perfect 2 -codes in the factors and product. Indeed, the Cartesian product of the codes in the factors is a code in the product. However, as illustrated in Figure 3b, not every code in a product is a Cartesian product of codes in the factors. Thus a simple projection of a code in the product to a factor will not always produce a code in the factor. The next proposition shows how to construct codes in the factors from a code in the product.

Proposition 2.2 Let $G_{1}, G_{2}, \ldots, G_{n}$ be graphs and let $G=G_{1} \boxtimes G_{2} \boxtimes \cdots \boxtimes$ G_{n}. Suppose that C is a perfect r-code in G and fix $\left(g_{1}, \ldots, g_{n}\right) \in V(G)$.

For $1 \leq i \leq n$, set $D_{i}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V(G) \mid d_{G_{j}}\left(g_{j}, x_{j}\right) \leq r\right.$ for $\left.j \neq i\right\}$. Then $C_{i}=\pi_{i}\left(C \cap D_{i}\right)$ is a perfect r-code in G_{i} for each $1 \leq i \leq n$.
Proof. Suppose C is a perfect r-code in $G=G_{1} \boxtimes G_{2} \boxtimes \cdots \boxtimes G_{n}$ and let v be any vertex in G_{i}. Since G has perfect r-code C, the vertex $\left(g_{1}, g_{2}, \ldots, g_{i-1}, v, g_{i+1}, \ldots, g_{n}\right)$ in G must be r-dominated by some $\left(c_{1}, c_{2}, .\right.$. ., $\left.c_{i-1}, c_{i}, c_{i+1}, \ldots, c_{n}\right) \in C$. Thus

$$
d_{G}\left(\left(g_{1}, g_{2}, \ldots, g_{i-1}, v, g_{i+1}, \ldots, g_{n}\right),\left(c_{1}, c_{2}, \ldots, c_{i-1}, c_{i}, c_{i+1}, \ldots, c_{n}\right)\right) \leq r
$$

which by (1) implies that

$$
\begin{equation*}
\max \left\{d_{G_{1}}\left(g_{1}, c_{1}\right), d_{G_{2}}\left(g_{2}, c_{2}\right), \ldots, d_{G_{i}}\left(v, c_{i}\right), \ldots, d_{G_{n}}\left(g_{n}, c_{n}\right)\right\} \leq r \tag{2}
\end{equation*}
$$

Thus, $d_{G_{j}}\left(g_{j}, c_{j}\right) \leq r$ for each $j \neq i$ so $\left(c_{1}, \ldots, c_{i}, \ldots, c_{n}\right) \in C \cap D_{i}$. Hence $c_{i} \in \pi_{i}\left(C \cap D_{i}\right)=C_{i}$. But (2) also implies $d_{G_{i}}\left(v, c_{i}\right) \leq r$, hence v is r-dominated by $c_{i} \in C_{i}$.

Now suppose that v is r-dominated by two elements c_{i} and c_{i}^{\prime} in C_{i}. Then $c_{i}=\pi_{i}\left(\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right)$ where $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in C \cap D_{i}$ and $c_{i}^{\prime}=$ $\pi_{i}\left(\left(c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}\right)\right)$ where $\left(c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}\right) \in C \cap D_{i}$. Thus, by definition of D_{i} we have, $d_{G_{j}}\left(g_{j}, c_{j}\right) \leq r$ and $d_{G_{j}}\left(g_{j}, c_{j}^{\prime}\right) \leq r$ for $j \neq i$. By assumption, $d_{G_{i}}\left(v, c_{i}\right) \leq r$ and $d_{G_{i}}\left(v, c_{i}^{\prime}\right) \leq r$. Therefore by (1),

$$
d_{G}\left(\left(g_{1}, g_{2}, \ldots, g_{i-1}, v, g_{i+1}, \ldots, g_{n}\right),\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right) \leq r
$$

and

$$
d_{G}\left(\left(g_{1}, g_{2}, \ldots, g_{i-1}, v, g_{i+1}, \ldots, g_{n}\right),\left(c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}\right)\right) \leq r
$$

This implies that $\left(c_{1}, \ldots, c_{n}\right)=\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right)$, in particular $c_{i}=c_{i}^{\prime}$. Thus C_{i} is a perfect r-code in G_{i} for every $1 \leq i \leq n$.
Theorem 2.1 Suppose $G_{1}, G_{2}, \ldots, G_{n}$ are graphs and let $G=G_{1} \boxtimes G_{2} \boxtimes$ $\ldots \boxtimes G_{n}$. Then G has more than one perfect r-code if and only if each factor G_{i} for $1 \leq i \leq n$ has at least one perfect r-code and one factor has more than one perfect r-code.

Proof. Suppose that G has perfect r-codes C and C^{\prime}. Then by Proposition $2.2, G_{i}$ has at least one perfect r-code for each $1 \leq i \leq n$. We show now that G_{k}, for some $1 \leq k \leq n$, has two perfect r-codes. Since G has two perfect r-codes there must exist a vertex $\left(g_{1}, \ldots, g_{n}\right)$ in G that is r-dominated by $\left(c_{1}, \ldots, c_{n}\right) \in C$ and $\left(c_{1}^{\prime}, \ldots, c_{n}^{\prime}\right) \in C^{\prime}$ where $c_{k} \neq c_{k}^{\prime}$ for some $1 \leq k \leq n$. By Proposition 2.2, $C_{k}=\pi_{k}\left(C \cap D_{k}\right)$ and $C_{k}^{\prime}=\pi_{k}\left(C \cap D_{k}^{\prime}\right)$ are perfect r-codes in G_{k}. Notice that C_{k} and C_{k}^{\prime} are not equal. Clearly $c_{k} \in C_{k}$ and $c_{k}^{\prime} \in C_{k}^{\prime}$, however, $c_{k} \notin C_{k}^{\prime}$ for this would imply that $g_{k} \in G_{k}$ would be r-dominated by c_{k} and c_{k}^{\prime} in C_{k}^{\prime}. Thus, C_{k} and C_{k}^{\prime} are distinct r-codes in G_{k}.

Conversely, suppose that G_{i} has perfect r-code C_{i} for each $1 \leq i \leq n$. Suppose also that C_{1}^{\prime} is another perfect r-code in G_{1}. Then by Proposition 2.1, $C_{1} \times C_{2} \times \cdots \times C_{n}$ and $C_{1}^{\prime} \times C_{2} \times \cdots \times C_{n}$ are both perfect r-codes in G.

Although we have the above theorem, Figures 4a and 4b illustrate that it is not possible to determine the number of perfect r-codes in a strong product based on the number of perfect r-codes in the factors. The graph G admits two perfect 2 -codes and the graphs H and K both admit three perfect 2codes. However, $H \boxtimes G$ has six perfect 2-codes formed by the Cartesian product of the codes in the factors while $K \boxtimes G$ has twelve perfect 2-codes, six coming from the Cartesian products of the codes in the factors and six more that contain vertices in a staggered pattern. The dark vertices in $K \boxtimes G$ indicate one of the staggered perfect 2 -codes.

In a series of papers $[8,9,10,13]$, Jerebic, Jha, Klavžar, Špacapan and Z̆erovnik characterize the conditions under which a direct product of cycles admits a perfect r-code. The situation is remarkably complex. By contrast, our propositions show the analogous problem for the strong product is quite simple. In fact, we can state a result not just for the strong product of cycles, but paths as well. It is simple to check that, for a given r, the cycle Z_{s} on s vertices admits a perfect r-code if and only s is a multiple of $2 r+1$, and that any path P_{t} admits a perfect r-code no matter the value of t.

Corollary 2.1 A product $\left(\boxtimes_{i=1}^{m} Z_{s_{i}}\right) \boxtimes\left(\boxtimes_{i=1}^{n} P_{t_{i}}\right)$ admits a perfect r-code if and only if each s_{i} is a multiple of $2 r+1$.

Acknowledgment. We thank the referee for a prompt review and thoughtful suggestions.

References

[1] N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B, Vol. 15, (1973), 289-296.
[2] H. Chen, N. Tzeng, Efficient resource placement in hypercubes using multiple adjacency codes, III Trans. Comput., Vol. 43, (1994), 23-33.
[3] H. Choo, S.-M. Yoo, H.Y. Youn, Processor scheduling and allocation for 3D torus multicomputer systems, IEEE Trans. Parrallel Distrib. Systems, Vol. 11, (2000), 475-484.
[4] S. W. Golomb, L. R. Welch, Perfect codes in the Lee metric and the packing of polyominoes, SIAM J. Appl. Math., Vol. 18, (1970) 302-317.
[5] S. Gravier, M. Mollard, C. Payan, On the non-existence of 3-dimensional tiling in the Lee metric, European J. Combin., Vol. 19, No. 5, (1998), 567-572.
[6] S. Gravier, M. Mollard, C. Payan, On the nonexistence of threedimensional tiling in the Lee metric. II. Combinatorics (Prague, 1998), Discrete Math. , Vol. 235, No. 1-3, (2001), 151-157.
[7] W. Imrich and S. Klavžar, Product Graphs: Structure and recognition, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley and Sons, (2000).
[8] J. Jerebic, S. Klavžar, S. Špacapan, Characterizing r-perfect codes in direct products of two and three cycles, Inform. Process. Lett., Vol. 94, No. 1 (2005), 1-6.
[9] P. K. Jha, Perfect r-Domination in the Kronecker Product of Three Cyles, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, Vol. 49, No. 1, 2002, 89-92.
[10] S. Klavžar, S. Špacapan, J. Žerovnik, An almost complete description of perfect codes in direct products of cycles, Adv. in Appl. Math., Vol. 37, No. 1 (2006), 2-18.
[11] K. A. Post, Nonexistence theorems on perfect Lee codes over large alphabets, Information and Control, Vol. 29, No. 4, (1975), 369-380.
[12] S. Špacapan, Nonexistence of face-to-face four-dimensional tilings in the Lee metric, European J. Combin., Vol. 28, No. 1, (2007), 127-133.
[13] J. Žerovnik, Perfect codes in direct products of cycles - a complete characterization, Advances in Applied Mathematics, to appear.

