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Abstract. A perfect r-code in a graph is a subset of the graph’s
vertices with the property that each vertex in the graph is within
distance r of exactly one vertex in the subset. We prove that
the n-fold strong product of simple graphs has a perfect r-code
if and only if each factor has a perfect r-code.

1 Introduction

For a positive integer r, a perfect r-code in a simple graph G = (V (G), E(G))
is a subset C of V (G) for which the balls of radius r centered at the vertices
of C form a partition of V (G). This idea, introduced in [1], generalizes the
notion of a standard error-correcting code. Perfect r-codes have also been
used to model the problem of efficient placement of resources in a network.
If the vertices in the code represent locations of resources, then every ver-
tex in the graph is within distance r of exactly one resource. Aside from
applications, the study of perfect r-codes is an interesting combinatorial
problem unto itself.

Perfect codes appear naturally in products of graphs. Perfect Hamming
codes can be understood as perfect r-codes in Cartesian products of com-
plete graphs and perfect Lee codes as perfect r-codes in Cartesian products
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of cycles. The most elusive problem in this area concerns perfect codes
in the Lee metric. In [4] Golomb and Welch conjectured the nonexistence
of n-dimensional perfect codes in the Lee metric for n ≥ 3 and r ≥ 2.
This conjecture was only partially confirmed, see [11, 5, 6, 12] for details.
Other results concerning perfect r-codes in Cartesian products appear in
[2, 3].

Recently a number of authors have studied perfect r-codes in direct prod-
ucts [8, 9, 10, 13]. Perfect r-codes in a third type of product called the
strong product have received little or no attention. Our note is a response
to this deficiency. We prove constructively that an n-fold strong product
has a perfect r-code if and only if each of its factors has a perfect r-code.
This result is used to characterize which products of cycles and paths have
perfect r-codes.

The distance between vertices u and v in G, denoted by dG(u, v), is the
number of edges in a shortest path from u to v. For a vertex v ∈ V (G), let
B(v, r) = {u ∈ V (G)|dG(u, v) ≤ r} denote the r-ball centered at v. Thus,
a subset C ⊆ V (G) is a perfect r-code in G if {B(c, r)|c ∈ C} forms a
partition of V (G). If x ∈ B(c, r), where c ∈ C, we say x is r-dominated
by c. In other words, a perfect r-code in a simple graph G is a subset C
of V (G) such that every vertex of G is r-dominated by exactly one vertex
in C. For example, in Figure 1, the dark vertices form a perfect 3-code.
Each vertex is 3-dominated by exactly one member of the code. The 3-balls
centered at the dark vertices are indicated by dotted lines. It is a simple
matter to show that any two perfect r-codes in a given graph have the same
cardinality.

Figure 1

The strong product of graphs G and H is the graph G £ H whose vertex
set is the Cartesian product V (G) × V (H) and whose edges are the pairs
(g, h)(g′, h′) of distinct vertices for which one of the following holds:

1. g = g′ and hh′ ∈ E(H)

2. gg′ ∈ E(G) and h = h′

3. gg′ ∈ E(G) and hh′ ∈ E(H).

The graphs G and H are called factors of the product. The strong product
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also appears in literature as the strong direct product or symmetric compo-
sition. As an example of a strong product, Figure 2 shows P3 £ C4 where
Pn denotes the path on n vertices and Cn is a cycle on n vertices.

P3

C4 P3 £ C4

Figure 2

For clarity, the edges of form (1) and (2) are displayed bold. We note that
edges of these types form what is called the Cartesian product of G and
H. The edges of form (3) yield the direct or tensor product of G and H.
(See [7] for details.) Thus the edges of G £ H are the union of the edges of
the Cartesian and direct products.

The strong product is associative in the sense that the map (g1, (g2, g3)) 7→
((g1, g2), g3) is an isomorphism from G1 £ (G2 £ G3) to (G1 £ G2) £ G3.
Thus G1 £ G2 £ · · · £ G2 is well-definded without regard to grouping of
factors, so it is natural to drop the parentheses. Doing this leads to the
following fact which we accept as the definition of an n-fold strong product.
The n-fold strong product £n

i=1Gi = G1 £ G2 £ · · ·£ Gn consists of vertex
set V (G1)×V (G2)×· · ·×V (Gn) where a pair (g1, g2, . . . , gn)(g′1, g

′
2, . . . , g

′
n)

of distinct vertices is an edge exactly when gi = g′i or gig
′
i ∈ E(Gi) for each

1 ≤ i ≤ n.

By [7, Lemma 2.1] the distance between two vertices u = (u1, . . . , un) and
v = (v1, . . . , vn) in the graph G = £n

i=1Gi is

dG(u, v) = max
1≤i≤n

dGi(ui, vi). (1)

In what follows πi denotes the usual projection functions, πi : V (£n
i=1Gi)

→ V (Gi) defined by πi(g1, g2, . . . , gn) = gi. For more details on the strong
product see [7].

2 Results

In this section we examine the relationship between perfect r-codes in the n-
fold strong product of graphs and perfect r-codes in their factors. We show
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that an n-fold strong product of graphs has a perfect r-code if and only if
each factor has a perfect r-code. We start by proving the converse.

Proposition 2.1 Suppose G1, G2, . . . , Gn are graphs and Gi has a perfect
r-code Ci ⊆ V (Gi) for 1 ≤ i ≤ n. Then C1 × C2 × · · · × Cn is a perfect
r-code in G1 £ G2 £ · · ·£ Gn.

Proof. Set G = G1£G2£ · · ·£Gn. Suppose that Ci ⊆ V (Gi) is a perfect r-
code in Gi for 1 ≤ i ≤ n. Form the Cartesian product C = C1×C2×· · ·×Cn.
We claim that C is a perfect r-code in G.

Let g = (g1, g2, . . . , gn) ∈ V (G). Then each gi ∈ V (Gi) is within a distance
r of some ci ∈ Ci. Let c = (c1, c2, . . . , cn). Then by (1), dG(g, c) =
max1≤i≤n dGi

(gi, ci) ≤ r. Hence every vertex in G is r-dominated by a
vertex in C1 × C2 × · · · × Cn.

Now suppose there exists some g = (g1, g2, . . . , gn) ∈ V (G) that is r-
dominated by vertices c = (c1, c2, . . . , cn) and c′ = (c′1, c

′
2, . . . , c

′
n) in C.

Then dG(g, c) = max{dGi
(gi, ci)} ≤ r and dG(g, c′) = max{dGi

(gi, c
′
i)} ≤ r.

Thus for each 1 ≤ i ≤ n, we have dGi
(gi, ci) ≤ r and dGi

(gi, c
′
i) ≤ r for

code elements ci, c
′
i ∈ Ci. Hence ci = c′i, so c = c′. Thus C is a perfect

r-code in G.

Figure 3a illustrates Proposition 2.1 where the dark vertices belong to per-
fect 2-codes in the factors and product. Indeed, the Cartesian product of
the codes in the factors is a code in the product. However, as illustrated in
Figure 3b, not every code in a product is a Cartesian product of codes in
the factors. Thus a simple projection of a code in the product to a factor
will not always produce a code in the factor. The next proposition shows
how to construct codes in the factors from a code in the product.

P7

P8

P8 £ P7 P7

P8

P8 £ P7

Figure 3a Figure 3b

Proposition 2.2 Let G1, G2, . . . , Gn be graphs and let G = G1£G2£· · ·£
Gn. Suppose that C is a perfect r-code in G and fix (g1, . . . , gn) ∈ V (G).
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For 1 ≤ i ≤ n, set Di = {(x1, . . . , xn) ∈ V (G)|dGj (gj , xj) ≤ r for j 6= i}.
Then Ci = πi (C ∩Di) is a perfect r-code in Gi for each 1 ≤ i ≤ n.

Proof. Suppose C is a perfect r-code in G = G1 £ G2 £ · · · £ Gn and
let v be any vertex in Gi. Since G has perfect r-code C, the vertex
(g1, g2, . . . , gi−1, v, gi+1, . . . , gn) in G must be r-dominated by some (c1, c2, ..
., ci−1, ci, ci+1, . . . , cn) ∈ C. Thus

dG((g1, g2, . . . , gi−1, v, gi+1, . . . , gn), (c1, c2, . . . , ci−1, ci, ci+1, . . . , cn)) ≤ r,

which by (1) implies that

max{dG1(g1, c1), dG2(g2, c2), . . . , dGi(v, ci), . . . , dGn(gn, cn)} ≤ r. (2)

Thus, dGj (gj , cj) ≤ r for each j 6= i so (c1, . . . , ci, . . . , cn) ∈ C ∩Di. Hence
ci ∈ πi(C ∩ Di) = Ci. But (2) also implies dGi

(v, ci) ≤ r, hence v is
r-dominated by ci ∈ Ci.

Now suppose that v is r-dominated by two elements ci and c′i in Ci.
Then ci = πi((c1, c2, . . . , cn)) where (c1, c2, . . . , cn) ∈ C ∩ Di and c′i =
πi((c′1, c

′
2, . . . , c

′
n)) where (c′1, c

′
2, . . . , c

′
n) ∈ C ∩ Di. Thus, by definition of

Di we have, dGj (gj , cj) ≤ r and dGj (gj , c
′
j) ≤ r for j 6= i. By assumption,

dGi(v, ci) ≤ r and dGi(v, c′i) ≤ r. Therefore by (1),

dG((g1, g2, . . . , gi−1, v, gi+1, . . . , gn), (c1, c2, . . . , cn)) ≤ r

and
dG((g1, g2, . . . , gi−1, v, gi+1, . . . , gn), (c′1, c

′
2, . . . , c

′
n)) ≤ r.

This implies that (c1, . . . , cn) = (c′1, . . . , c
′
n), in particular ci = c′i. Thus Ci

is a perfect r-code in Gi for every 1 ≤ i ≤ n.

Theorem 2.1 Suppose G1, G2, . . . , Gn are graphs and let G = G1 £ G2 £
. . . £ Gn. Then G has more than one perfect r-code if and only if each
factor Gi for 1 ≤ i ≤ n has at least one perfect r-code and one factor has
more than one perfect r-code.

Proof. Suppose that G has perfect r-codes C and C ′. Then by Proposition
2.2, Gi has at least one perfect r-code for each 1 ≤ i ≤ n. We show now that
Gk, for some 1 ≤ k ≤ n, has two perfect r-codes. Since G has two perfect
r-codes there must exist a vertex (g1, . . . , gn) in G that is r-dominated by
(c1, . . . , cn) ∈ C and (c′1, . . . , c

′
n) ∈ C ′ where ck 6= c′k for some 1 ≤ k ≤ n.

By Proposition 2.2, Ck = πk(C ∩ Dk) and C ′k = πk(C ∩ D′
k) are perfect

r-codes in Gk. Notice that Ck and C ′k are not equal. Clearly ck ∈ Ck and
c′k ∈ C ′k, however, ck /∈ C ′k for this would imply that gk ∈ Gk would be
r-dominated by ck and c′k in C ′k. Thus, Ck and C ′k are distinct r-codes in
Gk.
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Conversely, suppose that Gi has perfect r-code Ci for each 1 ≤ i ≤ n.
Suppose also that C ′1 is another perfect r-code in G1. Then by Proposition
2.1, C1 ×C2 × · · · ×Cn and C ′1 ×C2 × · · · ×Cn are both perfect r-codes in
G.

Although we have the above theorem, Figures 4a and 4b illustrate that it is
not possible to determine the number of perfect r-codes in a strong product
based on the number of perfect r-codes in the factors. The graph G admits
two perfect 2-codes and the graphs H and K both admit three perfect 2-
codes. However, H £ G has six perfect 2-codes formed by the Cartesian
product of the codes in the factors while K £G has twelve perfect 2-codes,
six coming from the Cartesian products of the codes in the factors and six
more that contain vertices in a staggered pattern. The dark vertices in
K £ G indicate one of the staggered perfect 2-codes.

G

H

H £ G G

K

K £ G

Figure 4a Figure 4b

In a series of papers [8, 9, 10, 13], Jerebic, Jha, Klavžar, Špacapan and
Žerovnik characterize the conditions under which a direct product of cycles
admits a perfect r-code. The situation is remarkably complex. By contrast,
our propositions show the analogous problem for the strong product is quite
simple. In fact, we can state a result not just for the strong product of
cycles, but paths as well. It is simple to check that, for a given r, the
cycle Zs on s vertices admits a perfect r-code if and only s is a multiple of
2r + 1, and that any path Pt admits a perfect r-code no matter the value
of t.

Corollary 2.1 A product (£m
i=1Zsi)£ (£n

i=1Pti) admits a perfect r-code if
and only if each si is a multiple of 2r + 1.

Acknowledgment. We thank the referee for a prompt review and thought-
ful suggestions.
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