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Abstract: The cyclicity of a graph is the largest integer n for which the graph is
contractible to the cycle on n vertices. By analyzing the cycle space of a graph, we
establish upper and lower bounds on cyclicity. These bounds facilitate the compu-
tation of cyclicity for several classes of graphs, including chordal graphs, complete
n-partite graphs, n-cubes, products of trees and cycles, and planar graphs. c© 1999
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1. INTRODUCTION

A graph G with vertex set V (G) and edge set E(G) is contractible to a graph
H , if there is a partition {Vy|y ∈ V (H)} of V (G) with the property that each Vy

induces a connected subgraph of G, and an edge of G joins Vx to Vy if and only
if xy ∈ E(H). Heuristically, H is obtained from G by collapsing to a vertex each
subgraph induced by Vy and fusing any resulting multiple edges.

The cyclicity, η(G), of a connected graph G is the largest integer n for which G
is contractible to the n-cycle Cn. By convention, we set C1 = K1 and C2 = K2, so
it is possible for a graph to have cyclicity 1 or 2. Clearly η(Cn) = n for all natural
numbers n, and it is easy to check that η(G) ≥ 3 if and only if G has a cycle. Thus,
η(G) = 1 if and only if G = K1, and η(G) = 2 if and only if G is a nontrivial tree.
Classification of graphs of cyclicity 3 (or greater) is an open question.

Little is known about the cyclicity of arbitrary graphs. Ideally, one would like to
express this invariant in terms of some simple formula or structural property, but
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this may be difficult or impossible. Alternatively, one can concentrate on certain
classes of graphs, and that is the approach we take in this article. In Section 2,
we establish upper and lower bounds on cyclicity of an arbitrary connected graph.
These bounds tell us the cyclicities of chordal graphs and completen-partite graphs,
and play a significant role in the remainder of the article. Section 3 deals with the
cyclicities of Cartesian products of graphs. We show that the cyclicity of a product
is bounded above and below by functions of certain invariants of its factors, and
this leads to formulas for the cyclicity of products of cycles and trees (and, hence,
also for n-cubes). The problem of computing cyclicity in the class of planar graphs
is addressed in Section 4. It is proved there that the cyclicity of a two-connected
planar graph equals the maximum number of disjoint paths joining two faces of a
planar embedding. This suggests a polynomial-time algorithm for computing the
cyclicity of such a graph.

Cyclicity was introduced by Blum in [3] as an aid in the study of a related
invariant called circularity (see [1, 2]). Consequently, it is called co-circularity in
[3]; we have renamed it here for clarity, and to emphasize that it is, by itself, an
interesting concept. In this article, we investigate cyclicity topologically, in terms
of contractions, whereas Blum uses combinatorial labelings. There is some overlap
between the two approaches. The cyclic maps introduced below are equivalent
to Blum’s co-admissible maps, and our contractions to a cycle are similar to her
k-adequate subgraphs.

We close this section with a summary of notation and definitions used throughout
this article. Other definitions will be introduced as they arise.

If X ⊆ V (G), then G[X] denotes the subgraph of G induced by X . If K is a
subgraph of G, then G−K is the graph obtained by removing from G the vertices
of K and all edges incident with them. If A and B are disjoint subgraphs of G,
then E(A,B) = {vw ∈ E(G)|v ∈ V (A), w ∈ V (B)}. The cardinality of a set S
is denoted |S|.

The vertices of the n-cycle Cn are identified with the elements of the cyclic
group Zn = Z/nZ and written as V (Cn) = {0, 1, . . . , n − 1}, with E(Cn) =
{a(a + 1)|a ∈ V (Cn)}. As mentioned above, C1 = K1 and C2 = K2, though
these are not (of course) regarded as cycles. The length of a cycle (or a path) is the
cardinality of its edge set.

A graph map from a graph G to a graph H is a map g : V (G) → V (H) with the
property that for each vw ∈ E(G), either g(v) = g(w) or g(v)g(w) ∈ E(H). The
graph map g is surjective if it is a surjective map on vertex sets and has the added
property that every edge of H can be written as g(v)g(w) for some vw ∈ E(G).
A graph map g is often denoted as g : G → H . If y ∈ V (H), then G[g−1(y)] is
called the fiber of g over y.

The edge space E(G) of a graph G is the power set of E(G) endowed with
the structure of a vector space over the two-element field F2 = {0, 1}. Addition
in E(G) is symmetric difference of sets, and zero is the empty set. Similarly, the
vertex space V(G) of G is the power set of V (G) viewed as a vector space over
F2. The set E(G) is a basis for E(G), and V (G) is a basis for V(G). A graph map
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g : G → H induces a linear map g∗ : E(G) → E(H) defined on the basis E(G)
as g∗(vw) = 0 if g(v) = g(w), and g∗(vw) = g(v)g(w) if g(v)g(w) ∈ E(H).
Likewise g induces a linear map g′ : V(G) → V(H) defined on the basis V (G) as
g′(v) = g(v).

For any graphG, there is a linear incidence mapBG :E(G) → V(G) whose effect
on the basis E(G) is BG(vw) = v + w. The kernel of this map is denoted C(G)
and called the cycle space of G, because it is the subspace of E(G) spanned by the
edge sets of cycles in G ([6], Proposition 1.9.7). The cycle space consists exactly of
the edge sets E(K) of subgraphs K of G, which have no vertex of odd degree ([6],
Proposition 1.9.2). If G is connected, C(G) has dimension |E(G)| − |V (G)| + 1
([6], Theorem 1.9.6). A basis for C(G), which consists entirely of edge sets of cycles
is called a cycle basis. Since the induced cycles of G span C(G) ([6], Proposition
1.9.1), it is always possible to find a cycle basis consisting of induced cycles.

To avoid proliferation of notation, we will often blur the distinction between a
subgraph K of G and its edge set E(K) ∈ E(G). Thus, if J and K are subgraphs,
an expression such as J + K always means E(J) + E(K), with the operation
taking place in E(G) (or, more often, in C(G)).

A graph map g : G → H gives rise to the following diagram, whose right-hand
square is commutative (check this on the basis E(G)).

C(G) ↪→ E(G) BG−→ V(G)
↓ g∗ ↓ g′

C(H) ↪→ E(H) BH−→ V(H).

If K ∈ C(G), then BH(g∗(K)) = g′(BG(K)) = g′(0) = 0, so g∗(K) ∈
ker(BH) = C(H). It follows that g∗ restricts to a map g∗ : C(G) → C(H).

The map g∗ : C(G) → C(H) induced by a graph map g : G → H plays a
key role in this article. Of particular interest will be the case H = Cn, in which
C(Cn) = {∅, E(Cn)} is isomorphic to F2.

2. UPPER AND LOWER BOUNDS ON CYCLICITY

If G is contractible to Cn, then there is a partition {Va|a ∈ V (Cn) = Zn} of
V (G) with each G[Va] connected, and, for a /= b, E(Va, Vb) /= ∅ exactly when
ab ∈ E(Cn). This gives rise to a graph map g : G → Cn defined by g(v) = a
if v ∈ Va. This map is clearly surjective, and each fiber G[g−1(a)] = G[Va] is
connected. With this in mind, we call a graph map g :G → Cn cyclic if it is surjective
and the fiber G[g−1(a)] is connected for each a ∈ V (Cn). Thus, each contraction
of G to Cn gives rise to a cyclic map g : G → Cn. On the other hand, given a cyclic
map g : G → Cn, the graph G is contractible to Cn, for {g−1(a)|a ∈ V (Cn)} is
a partition of V (G) with each G[g−1(a)] connected and E(g−1(a), g−1(b)) /= ∅
exactly when ab ∈ E(Cn). Therefore, we have the following.
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Proposition 2.1. The cyclicity of a graph G is the largest integer n for which there
is a cyclic map G → Cn.

In practice, this proposition is used to establish lower bounds on the cyclicity of
a graph; if we can exhibit a cyclic map G → Cn, then n ≤ η(G). Before proving
a result on upper bounds, we will need a lemma.

Lemma 2.1. If n ≥ 3 and g : G → Cn is cyclic, then g∗ : C(G) → C(Cn) is
nonzero.

Proof. Since g is surjective, for each a(a + 1) ∈ E(Cn) there is an edge
vawa+1 ∈ E(G) with g(va) = a and g(wa+1) = a + 1. Since the fibers of g are
connected, for each a ∈ V (Cn), there is awa–va pathPa with g(V (Pa)) = a. Form
the cycle C = P0v0w1P1v1w2P2v2w3 · · ·Pn−1vn−1w0 ∈ C(G), and notice that
g∗(E(C)) =

∑
a∈V (Cn)(g∗(E(Pa))+g∗(vawa+1)) =

∑
a∈V (Cn) (0+a(a+1)) =

E(Cn) /= 0. (The condition n ≥ 3 implies each g∗(vawa+1) = a(a+1) is distinct,
so there is no cancellation of the terms a(a + 1) in the sum.)

Proposition 2.2. The cyclicity of a connected graph G, which contains a cycle, is
at most the length of the longest cycle in any cycle basis of C(G).

Proof. By Proposition 2.1, there is a cyclic map g : G → Cη(G), and g∗ :
C(G) → C(Cη(G)) is nonzero by Lemma 2.1. Therefore, any cycle basis B of C(G)
has an element B ∈ B for which g∗(B) /= 0, meaning g∗(B) = E(Cη(G)). It
follows that η(G) is at most the number of edges in B.

Later we will obtain sharp upper bounds for cyclicity by applying Proposition
2.2 to a judicious choice of cycle basis. For now we mention an immediate corollary
and two of its consequences. Since C(G) is spanned by the induced cycles in G,
we have the following.

Corollary 2.1. The cyclicity of a graph that contains a cycle is at most the length
of its longest induced cycle.

This corollary tells us the cyclicity of the complete graphs, though it applies to
the wider class of chordal graphs. Recall that a graph is chordal if all its induced
cycles are triangles.

Corollary 2.2. Every chordal graph that contains a cycle has cyclicity 3. In par-
ticular, η(Kn) = 3 for n ≥ 3.

To conclude this section, we characterize the cyclicity of the complete n-partite
graphs K(p1, . . . , pn).

Proposition 2.3. If p ≥ 1, then η(K(1, p)) = 2; also η(K(2, 2)) = 4. All other
complete n-partite graphs (n ≥ 2) have cyclicity 3.

Proof. Since K(1, p) is a nontrivial tree, its cyclicity is 2, and η(K(2, 2)) = 4
becauseK(2, 2) ∼= C4. LetG = K(p1, p2, . . . , pn) be any other complete n-partite
graph. One easily checks that G has a cycle, so 3 ≤ η(G). Combine this with the
fact that all induced cycles of G have length 3 or 4, and Corollary 2.1 implies
3 ≤ η(G) ≤ 4. To finish the proof we show that G = K(2, 2) if η(G) = 4.
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Suppose that η(G) = 4, so G is contractible to C4. Then there is a partition
{V0, V1, V2, V3} of V (G) (indexed over V (C4) = Z4) with each G[Va] connected
and, for a /= b, E(Va, Vb) /= ∅ if and only if b = a + 1 or a = b + 1. To see that
G = K(2, 2) = C4, we just need to show that each Va consists of a single vertex.
Take any a ∈ V (C4) and notice that E(Va, Va+2) = ∅, so the vertices Va ∪ Va+2
belong to the same partite set of G. Then G[Va] has no edges, yet is connected, so
it is a single vertex.

3. PRODUCTS

Recall that the Cartesian product of graphs G and H is the graph G × H with
V (G × H) = V (G) × V (H) and (v, x)(w, y) ∈ E(G × H), if v = w and
xy ∈ E(H), or x = y and vw ∈ E(G). If L and M are subgraphs of G and H ,
respectively, thenL×M is regarded as a subgraph ofG×H in the obvious manner.
Given graphs G1, . . . , Gn, we write G1 × · · ·×Gn =

∏n
i=1 Gi.

In this section, we relate the cyclicity of a Cartesian product of graphs to the cycle
structures of its factors. Though our main result gives upper and lower bounds for
the cyclicity of a product, this is sometimes enough to yield an exact value. For
instance, we obtain formulas for the cyclicities of products of cycles and trees,
hence also for n-cubes.

If B is a cycle basis for C(G), let l(B) be the length of the longest cycle in B.
Define λ(G) = min{l(B)|B is a cycle basis for C(G)}, or λ(G) = 0 if G has no
cycles. Our primary result in this section is the following.

Proposition 3.1. If G and H are nontrivial connected graphs, then
max{4, η(G), η(H)} ≤ η(G×H) ≤ max{4, λ(G), λ(H)}.

Proof. To prove that max{4, η(G), η(H)} ≤ η(G×H), we show that η(G) ≤
η(G × H), η(H) ≤ η(G × H), and 4 ≤ η(G × H). Choose a cyclic map g :
G → Cη(G), and let π : V (G×H) → V (G) be projection to the first factor, which
is a surjective graph map. Then the composition g ◦ π : G × H → Cη(G) is a
surjective graph map. Moreover, this composition is cyclic, for given any a ∈
V (Cη(G)), the fiber (G × H)[(g ◦ π)−1(a)] = (G × H)[g−1(a) × V (H)] =
G[g−1(a)]×H is connected. By Proposition 2.1, it follows that η(G) ≤ η(G×H),
and similarly η(H) ≤ η(G×H).

To show that 4 ≤ η(G×H), we describe a contraction of G×H to C4. Choose
vertices v0 ∈ V (G) and y0 ∈ V (H) for which both G′ = G−v0 and H ′ = H−y0
are connected. Using indices from V (C4) = Z4, form a partition {V0, V1, V2, V3}
of V (G ×H) as follows: V0 = {(v0, y0)}, V1 = V (G′ × y0), V2 = V (G′ ×H ′)
and V3 = V (v0 ×H ′). Each (G×H)[Va] is connected, and E(Va, Vb) /= ∅ exactly
when ab ∈ E(C4), so G ×H is contractible to C4. This completes the proof that
max{4, η(G), η(H)} ≤ η(G×H).

It remains to show η(G × H) ≤ max{4,λ(G),λ(H)}. Since η(G × H) ≤
λ(G×H) by Proposition 2.2, it suffices to show that λ(G×H) ≤ max{4,λ(G),
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λ(H)}, and this can be accomplished by producing a cycle basis of C(G × H)
whose longest element has length max{4,λ(G),λ(H)}. Construction of this basis
takes up the remainder of the proof.

Take cycle basesBG andBH ofC(G) andC(H)whose longest cycles have lengths
λ(G) and λ(H), respectively. (If G has no cycles, then BG = ∅, and similarly for
H .) Let S be a spanning tree of G and let T be a spanning tree of H . Form the
following sets of cycles in C(G×H):

F = {e× f | e ∈ E(S), f ∈ E(T )},

G = {C × y |C ∈ BG, y ∈ V (H)},

H = {v × C | v ∈ V (G), C ∈ BH}.
The longest cycle in F ∪ G ∪H has length max{4,λ(G),λ(H)}, by construction.
The proof will be complete when we show that this set is a basis for C(G×H).

Now, G ∪H is an independent set, for G and H are, respectively, bases for the
cycle spaces of the edge-disjoint subgraphs G× V (H) and V (G)×H of G×H .
We next show that F is independent, then that F ∪ G ∪H is independent.

Suppose that 0 =
∑

e∈E(S)
∑

f∈E(T ) αef (e× f), where each αef is in F2. Take
any e0 ∈ E(S) and f0 = x0y0 ∈ E(T ). We prove that F is an independent set by
showing αe0f0 = 0. Rewrite the above equation as

∑

e∈E(S)

αef0(e× f0) =
∑

e∈E(S)




∑

f∈E(T )−{f0}
αef (e× f)



 .

Think of the left-hand side as an edge set, and notice that it contains no edges
of the form v × f0, v ∈ V (G), for no such edge appears in the right-hand sum.
The left-hand side is, therefore, an element of C(G × H) consisting entirely of
edges in the forest S × {x0, y0}, so it must be zero (if every vertex of a forest
has even degree, the forest has no edges). Thus, 0 =

∑
e∈E(S) αef0(e × f0), or

rather αe0f0(e0 × f0) =
∑

e∈E(S)−{e0} αef0(e× f0). The cycle e0 × f0 on the left
contains the edge e0×x0, but this edge does not appear on the right. Consequently,
αe0f0 = 0, and this completes the proof that F is a set of independent vectors.

So far we have that F and G ∪H are independent sets and we wish to show that
F ∪ G ∪H is independent. To do this, suppose that A and B are in the spans of F
and G∪H, respectively, and A+B = 0. We show that B (hence, also A) is zero. If
B were nonzero, then–-by definition of G and H–-some of its edges would form a
cycle C in one of the subgraphs G×y or v×H for y ∈ V (H), v ∈ V (G). Without
loss of generality, let’s say that C is a cycle in G × y. Since A = B (because
A+B = 0), it follows that E(C) ⊆ B ∩E(G× y) = A∩E(G× y) ⊆ E(S× y).
This means that the edges of the cycleC lie in the treeS×y. Since this is impossible,
we conclude B = 0.

Finally, we check that the independent set F ∪ G ∪ H is actually a basis for
C(G × H) by showing the cardinality of the former equals the dimension of the
latter. Say that G has p vertices and q edges, while H has r vertices and s edges.
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Then |F ∪ G ∪ H| = |F| + |G| + |H| = (p − 1)(r − 1) + (q − p + 1)r + p
(s−r+1) = (ps+qr)−pr+1 = |E(G×H)|−|V (G×H)|+1 = dim(C(G×H)).

In the above proof, we showed that max{4, η(G), η(H)} ≤ η(G × H) ≤
λ(G×H) ≤ max{4,λ(G),λ(H)}. Combining these inequalities inductively gives
the following immediate generalization.

Proposition 3.2. If G1, . . . , Gn is a set of connected nontrivial graphs, then
max{4, η(G1), . . . , η(Gn)} ≤ η(

∏n
i=1 Gi) ≤ max{4, λ(G1), . . . ,λ(Gn)}.

It sometimes happens that a graph G obeys η(G) ≥ λ(G). For example, η(G) =
λ(G) if G is a cycle, and η(G) > λ(G) if G is a tree. When this is the case for all
factors in a product, the upper and lower bounds in Proposition 3.2 coincide.

Proposition 3.3. If each of the nontrivial graphs G1, . . . , Gn satisfies η(G) ≥
λ(G), then η(

∏n
i=1 Gi) = max{4, η(G1), . . . , η(Gn)}.

Corollary 3.1. Given integers k1, k2, . . . , kn ≥ 2, then η(
∏n

i=1 Cki) =
max{4, k1, k2, . . . , kn}.

The cyclicity of the n-cube Qn =
∏n

i=1 K2 can now be easily computed.

Corollary 3.2. The cyclicity of any product of nontrivial trees is 4. In particular,
for n ≥ 2, the cyclicity of the n-cube is 4.

4. PLANAR GRAPHS

In this section, we prove that the cyclicity of a two-connected planar graph equals
the maximum number of disjoint paths joining two faces of an embedding of the
graph in the plane. From this result comes a polynomial-time algorithm, which
computes the cyclicity of such a graph.

A planar graph with a fixed embedding in the Euclidean plane R2 is called a
plane graph and is regarded as a subspace of R2. If G ⊆ R2 is a plane graph, then
the connected components of R2 −G are called the faces of G, and the set of faces
is denoted by F (G). The boundary ∂Y of a face Y is the subgraph of G, which
lies in the topological closure of Y . If G is a two-connected plane graph, then the
boundary of each of its faces is a cycle ([6], Proposition 4.2.5).

Suppose that G is a plane graph and g : G → Cn is cyclic. A face Y of G is
saturated, if the restriction g : ∂Y → Cn is surjective. Clearly, Y is saturated if
g∗(∂Y ) = Cn. We will need the following lemma, due to Blum ([3], Theorem 4.6).
We offer a different proof.

Lemma 4.1. If G is a two-connected plane graph and g : G → Cn (n ≥ 3) is
cyclic, then G has two saturated faces.1

Proof. Let G and g be as in the statement of the lemma. Since G is two-
connected, ∂Y is a cycle for each Y ∈ F (G). By Theorem 5.4 of [4], the set

1 Blum proves a stronger result: If n ≥ 3, there are exactly two saturated faces.
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Y = {∂Y |Y ∈ F (G)} spans C(G). (Alternatively, just observe that any cycle C of
Gdivides R2 into two regions, andC equals the sum of the boundaries of all the faces
in one of these regions). By Lemma 2.1, the map g∗ : C(G) → C(Cn) = {0, Cn}
is nonzero, so it is nonzero on some element of the spanning set Y . Thus, there
is a face Z ∈ F (G) for which g∗(∂Z) = Cn, meaning that Z is saturated. Now,
each edge of G is in the boundary of exactly two faces, so 0 =

∑
Y ∈F (G) ∂Y , or

∂Z =
∑

Y ∈F (G)−{Z} ∂Y . Taking g∗ of both sides, Cn =
∑

Y ∈F (G)−{Z} g
∗(∂Y ),

so it is impossible that g∗(∂Y ) = 0 for every Y ∈ F (G)−{Z}. Hence, there must
be some Y ∈ F (G) − {Z} for which g∗(∂Y ) /= 0, so g∗(∂Y ) = Cn. Therefore,
Y and Z are saturated.

As Blum observed ([3], Corollary 4.7), this gives rise to an upper bound for
the cyclicity of a two-connected plane graph G; namely, η(G) is bounded above
by the maximum number n for which G has two faces with at least n vertices.
There are, however, cases in which this bound is not attained. For example, any
planar embedding of the graph K(2, 3) has exactly three faces, whose boundaries
are 4-cycles, yet its cyclicity is 3 by Proposition 2.3. In the next proposition, we
characterize cyclicity of a two-connected plane graph in terms of the maximum
number of disjoint paths joining two faces.

We say there are n disjoint paths joining faces Y and Z of the plane graph G, if
G contains n paths with pairwise disjoint vertex sets, each joining a vertex of ∂Y to
a vertex of ∂Z. (If ∂Y and ∂Z share a vertex, it is possible that such a path consists
only of that vertex.) Given two faces Y and Z, let M(Y, Z) denote the maximum
number of disjoint paths joining Y and Z.

Proposition 4.1. If G is a two-connected plane graph, then η(G) =
max{M(Y , Z)|Y , Z ∈ F (G)}.

Proof. Let G be a two-connected plane graph, and choose a cyclic map
g : G → Cη(G). Now, η(G) ≥ 3 because G, being two-connected, contains a cycle.
By Lemma 4.1,G has two saturated faces Y0 andZ0, so, for each a ∈ V (Cη(G)), the
fiber G[g−1(a)] contains vertices of both Y0 and Z0. Since the fibers are connected
and pairwise disjoint, there are η(G) disjoint paths joining Y0 to Z0. Consequently,
η(G) ≤ M(Y0, Z0) ≤ max{M(Y, Z)|Y, Z ∈ F (G)}.

To establish the reverse inequality, choose any two faces Y and Z of G. It is
enough to exhibit a cyclic map g : G → CM(Y,Z), for then η(G) ≥ M(Y, Z) (by
Proposition 2.1), so η(G) ≥ max{M(Y, Z)|Y, Z ∈ F (G)}.

To define g, set n = M(Y, Z) and choose n disjoint paths P0, P1, . . . , Pn−1
joining Y to Z. Assume the paths are listed in clockwise order around the face
Y , and that the indexing is taken over V (Cn) = Zn. Let K = G −

⋃
a∈Zn

Pa,
and observe that each component of K is adjacent to exactly one path Pa or ex-
actly two paths Pa and Pa+1 (for some a ∈ Zn). For each a ∈ Zn, let La be
the union (possibly empty) of the components of K that are adjacent only to Pa.
Let Ma be the union of the components of K that are adjacent to both Pa and
Pa+1. Then {V (Pa) ∪ V (La) ∪ V (Ma)|a ∈ Zn} is a partition of V (G). Define
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g : V (G) → V (Cn) as g(v) = a if v ∈ V (Pa) ∪ V (La) ∪ V (Ma). The rest of the
proof is devoted to proving g is cyclic.

To confirm that g is a graph map, notice that any edge e = vw of G is in
one of the sets E(Pa), E(La), E(Ma), E(La, Pa), E(Ma, Pa), E(Ma, Pa+1), or
E(Pa, Pa+1) for some a ∈ Zn. It follows that either g(v) = g(w), or g(v)g(w) =
a(a + 1) ∈ E(Cn). Further, for each a ∈ Zn, the fiber G[g−1(a)] =
G[V (Pa)∪ V (La)∪ V (Ma)] is connected, because each of the connected compo-
nents of La and Ma is adjacent to the (connected) path Pa. Finally, g is surjective,
for given an edge a(a + 1) ∈ E(Cn), the cycle ∂Y clearly contains edges in
E(Ma, Pa+1) or E(Pa, Pa+1). If vw is such an edge, then g(v)g(w) = a(a+1).

The hypothesis of two-connectedness in Proposition 4.1 is somewhat artificial
in that it is imposed only to ensure that the boundary of each face is a cycle (which
simplifies the proof). The cyclicity of an arbitrary plane graph can be found by
applying the proposition to the two-connected blocks of the graph, as will be implied
by Proposition 5.1, below.

We close this section by describing an algorithm—arising from Proposition
4.2—that computes the cyclicity of a two-connected plane graph. Given faces
Y, Z ∈ F (G), let GY Z be a new graph formed from G by adding two new vertices
y and z and new edges joining y and z to the vertices of ∂Y and ∂Z, respec-
tively. Specifically, V (GY Z) = V (G) ∪ {y, z} and E(GY Z) = E(G) ∪ {yx|x ∈
V (∂Y )} ∪ {zx|x ∈ V (∂Z)}. Now M(Y, Z) can be interpreted as the maximum
number of internally disjoint y-z paths inGY Z . This number is the value of the max-
imal flow in a certain network associated to GY Z , and this flow can be computed
using, say, the Edmunds–Karp max-flow min-cut algorithm ([5], Algorithm 5.1).
For details, the reader is referred to Theorem 5.9 of [5], as well as Section 5.4,
where it is shown that the complexity of using this method to compute M(Y, Z) is
O(pq2), where G has p vertices and q edges.

Proposition 4.1 says η(G) can be found by computing M(Y, Z) for all pairs
of faces in G and selecting the largest value thus obtained. If G has r faces,
then M(Y, Z) must be computed r(r − 1)/2 times. But r(r − 1)/2 < r2 =
(q− p+ 2)2 < q2, so the complexity of using this method to find η(G) is O(pq4).

5. CONCLUSION

There are many open questions concerning cyclicity. Foremost is the determination
of the cyclicity of an arbitrary graph.

Problem A. Express the cyclicity of an arbitrary connected graph in terms of some
structural property.

Since we have a polynomial-time algorithm for determining the cyclicity of
two-connected planar graphs, it is natural to ask if one exists for arbitrary graphs.

Problem B. Find a good algorithm that computes cyclicity of an arbitrary con-
nected graph, or show this problem is NP-hard.
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These may be difficult problems. Alternatively, one could concentrate on certain
classes of graphs, such as bipartite graphs, cubic graphs, cages, circulants, etc.
In another direction, one could ask what graphs have a given cyclicity. Since we
understand which graphs have cyclicity 1 or 2, a natural problem is the following.

Problem C. Characterize the graphs of cyclicity 3 (or greater).
In answering these and other questions, it may be useful to impose additional

structure on our graphs. We close with one final result which implies that—as far as
computation of cyclicity is concerned—there is no loss of generality in assuming
a graph is irreducible.

Recall that a graph is irreducible if it is not separated by any complete subgraph.
If G is not irreducible, it can be decomposed into two induced subgraphs G1 and
G2 for which G = G1∪G2 and K = G1∩G2 is a complete graph. In turn, each of
G1 and G2 may be similarly decomposed, and so on, until all subgraphs obtained
are irreducible. These subgraphs are called irreducible components of G. Though
G can always be decomposed into irreducible components, this decomposition is
generally not unique ([6], Chapter 12, Exercise 16). The next proposition shows
that the computation of the cyclicity of a graph can be reduced to the computation
of the cyclicities of its irreducible components. This proposition is a generalization
of Theorem 3.6 of [2], applied to cyclicity (rather than circularity).

Proposition 5.1. If the connected graph G can be decomposed into irreducible
components G1, . . . , Gn, then η(G) = max{η(G1), . . . , η(Gn)}.

Proof. It suffices to show that η(G) = max{η(G1), η (G2)}, when G =
G1 ∪G2 and K = G1 ∩G2 is a complete separating subgraph of G.

Let g : G → Cn be a cyclic map. According to Proposition 2.1, to prove η(G) ≤
max{η(G1), η(G2)}, it is enough to show that g restricts to a cyclic map on one
of G1 or G2. Certainly the restriction of g to either G1 or G2 inherits from g the
property of being a graph map. Also, note that the restriction g : G1 → Cn (and
g : G2 → Cn) has connected fibers: If v, w ∈ V (G1) are in the fiber over a ∈ Cn,
then, since g : G → Cn has connected fibers, there is a v-w path P in G with
g(V (P )) = a. Let P be the shortest path with this property. Then P lies entirely
in G1, for otherwise P = v1v2 · · · vi · · · vj · · · vk · · · vl−1vl, with v1 = v, vl = w,
vj ∈ V (G2) − V (G1), and vi, vk ∈ V (K); then P ′ = v1v2 · · · vivk · · · vl−1vl is a
shorter v-w path with g(V (P ′)) = a. Thus, g : G1 → Cn (similarly, g : G2 → Cn)
has connected fibers. So far we have shown that each restriction g : G1 → Cn and g
: G2 → Cn is a graph map with connected fibers, and it remains to confirm that one
of these restrictions is surjective. Let B be a basis of C(G) consisting of induced
cycles, so every element of B is a cycle in G1 or G2. Now, g∗ : C(G) → C(Cn) is
nonzero by Lemma 2.1, so g∗(B) = Cn for some B ∈ B. Since B lies entirely in
one of G1 or G2, it follows that one of the restrictions of g to G1 or G2 is surjective.
This completes the proof that η(G) ≤ max{η(G1), η(G2)}.

To prove η(G) ≥ max{η(G1), η(G2)}, we show that any cyclic map g : G1 →
Cn (or g : G2 → Cn) extends to a cyclic map g̃ : G → Cn. Suppose that g :
G1 → Cn is cyclic. Let W1,W2, . . . ,Wk be the components of G2 −G1, and, for
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each i ∈ {1, 2, . . . , k}, choose a vertexwi ∈ V (K) ⊆ V (G1) that is adjacent toWi.
Define g̃(v) = g(v) if v ∈ V (G1) and g̃(v) = g(wi) if v ∈ V (Wi). Notice that g̃ has
been defined in such a way that each of its fibers is connected. Moreover, it inherits
surjectivity from g. We just need to check that it is indeed a graph map. To do this,
take vw ∈ E(G). We must show that either g̃(v) = g̃(w) or g̃(v)g̃(w) ∈ E(Cn).
Now, either vw ∈ E(G1), or vw ∈ E(Wi), or vw ∈ E(G1,Wi) for some i. In the
first case, g̃(v) = g̃(w) or g̃(v)g̃(w) ∈ E(Cn), because g̃ restricts to the graph map
g onG1. In the second case, g̃(v) = g̃(w) by definition. Finally, if vw ∈ E(G1,Wi),
then v ∈ V (K) andw ∈ V (Wi). If v = wi, then g̃(v) = g(wi) = g̃(w). Otherwise,
since vwi ∈ E(K) ⊆ E(G1), it follows that g̃(v) = g̃(wi) or g̃(v)g̃(wi) ∈ E(Cn).
But since g̃(w) = g̃(wi), this becomes g̃(v) = g̃(w) or g̃(v)g̃(w) ∈ E(Cn). This
concludes the proof that g : G1 → Cn extends to a cyclic map g̃ : G → Cn, and,
similarly, any cyclic map g : G2 → Cn has such an extension as well.

References

[1] Bell, Brown, Dickman, and Green, Circularity of graphs and continua: com-
binatorics, Houston J Math 6 (1980), 455–469.

[2] Bell, Brown, Dickman, and Green, Circularity of graphs and continua: topol-
ogy, Fund Math 122 (1981), 103–110.

[3] D. Blum, Circularity of graphs, PhD Thesis, Virginia Polytechnic Inst State
Univ, 1982.

[4] C. Bonnongton, and C. Little, Foundations of topological graph theory,
Springer–Verlag, New York, 1995.

[5] G. Chartrand, and O. Ollermann, Applied and algorithmic graph theory,
McGraw–Hill, New York, 1993.

[6] R. Diestel, Graph theory, Springer–Verlag, New York, 1997.


