# Zero Divisors Among Digraphs 

Richard Hammack • Heather Smith

Received: 23 September 2010 / Revised: 2 October 2012
© Springer Japan 2012


#### Abstract

A digraph $C$ is called a zero divisor if there exist non-isomorphic digraphs $A$ and $B$ for which $A \times C \cong B \times C$, where the operation is the direct product. In other words, $C$ being a zero divisor means that cancellation property $A \times C \cong B \times C \Rightarrow A \cong$ $B$ fails. Lovász proved that $C$ is a zero divisor if and only if it admits a homomorphism into a disjoint union of directed cycles of prime lengths. Thus any digraph $C$ that is homomorphically equivalent to a directed cycle (or path) is a zero divisor. Given such a zero divisor $C$ and an arbitrary digraph $A$, we present a method of computing all solutions $X$ to the digraph equation $A \times C \cong X \times C$.


Keywords Digraphs • Direct product of digraphs • Cancellation
Mathematics Subject Classification (2000) 05C76

## 1 Introduction

The article [1] solves the following variation of the cancellation problem for the direct product of graphs: Given graphs $A$ and $C$, find all graphs $B$ for which $A \times C \cong B \times C$.

[^0]

Fig. 1 Some digraphs

The analogous problem where $A, B$ and $C$ are digraphs presents some special challenges, and a complete solution is not yet realized. The article [2] solves the problem for those digraphs $C$ that are homomorphically equivalent to a single arc $\overrightarrow{P_{2}}$. (Such $C$ are of special interest because they are the most "pathological" of all zero divisors, in a sense that will be explained in Sect. 3 below.)

The current article solves the problem for a more general class of digraphs $C$, namely those that are homomorphically equivalent to directed cycles or paths of arbitrary lengths. Specifically, given a digraph $A$ and a digraph $C$ that is homomorphically equivalent to a directed path or cycle, we classify those digraphs $B$ for which $A \times C \cong B \times C$.

We first fix the notation by recalling some relevant concepts. A digraph $A$ is a binary relation $E(A)$ on a finite vertex set $V(A)$, that is, a subset $E(A) \subseteq V(A) \times V(A)$. For brevity, an ordered pair $\left(a, a^{\prime}\right) \in E(A)$ is denoted $a a^{\prime}$, and is visualized as an arrow pointing from $a$ to $a^{\prime}$. Elements of $E(A)$ are called arcs. A reflexive arc $a a$ is called a loop. A graph is a digraph that is symmetric (as a relation). We use the usual notation for graphs; in particular $K_{n}$ is the complete graph on $n$ vertices.

Given a positive integer $n$, the directed cycle $\vec{C}_{n}$ is the digraph with vertices $\{0,1,2, \ldots, n-1\}$ and arcs $\{01,12,23, \ldots,(n-1) 0\}$. Thus $\vec{C}_{1}$ consists of a single vertex with a loop, and $\overrightarrow{C_{2}}=K_{2}$. The directed path $\vec{P}_{n}$ is $\vec{C}_{n}$ with one arc removed. Figure 1 shows some of these digraphs.

We denote the condition of $X$ being a sub-digraph of $A$ as $X \subseteq A$. A digraph $A$ is strongly connected if for every pair $a, a^{\prime}$ of its vertices there is a sub-digraph $\vec{P}_{n} \subseteq A$ beginning at $a$ and ending at $a^{\prime}$. A digraph is connected if any $a$ and $a^{\prime}$ are joined by a path, each arc of which has arbitrary orientation. The connected components (respectively strongly connected components) of $A$ are the maximal sub-digraphs of $A$ that are connected (respectively strongly connected).

If $A$ and $B$ are digraphs, then $A+B$ denotes the disjoint union of $A$ and $B$. The disjoint union of $n$ copies of $A$ is denoted $n A$. A homomorphism $\varphi: A \rightarrow B$ is a map $\varphi: V(A) \rightarrow V(B)$ for which $a a^{\prime} \in E(A)$ implies $\varphi(a) \varphi\left(a^{\prime}\right) \in E(B)$. Digraphs $A$ and $B$ are homomorphically equivalent if there are homomorphisms $A \rightarrow B$ and $B \rightarrow A$.

The direct product of two digraphs $A$ and $B$ is the digraph $A \times B$ whose vertex set is the Cartesian product $V(A) \times V(B)$ and whose arcs are the pairs $(a, b)\left(a^{\prime}, b^{\prime}\right)$ with $a a^{\prime} \in E(A)$ and $b b^{\prime} \in E(B)$. We assume the reader to be familiar with direct products and homomorphisms. For standard references see [3] and [4].

## 2 Cancellation Laws

Lovász [5] defines a digraph $C$ to be a zero divisor if there exist non-isomorphic digraphs $A$ and $B$ for which $A \times C \cong B \times C$. For example, Fig. 2 shows that $\vec{C}_{3}$ is a


Fig. 2 Example of a zero divisor
zero divisor: If $A=\overrightarrow{C_{3}}$ and $B=3 \overrightarrow{C_{1}}$, then clearly $A \not \equiv B$, yet $A \times \overrightarrow{C_{3}} \cong B \times \overrightarrow{C_{3}}$ (both products are isomorphic to $3 \overrightarrow{C_{3}}$ ). Here is the main result concerning zero divisors.

Theorem 1 (Lovász [5], Theorem 8) A digraph $C$ is a zero divisor if and only if there is a homomorphism $\varphi: C \rightarrow \overrightarrow{C_{p_{1}}}+\overrightarrow{C_{p_{2}}}+\overrightarrow{C_{p_{3}}}+\cdots+\overrightarrow{C_{p_{k}}}$ for prime numbers $p_{1}, p_{2}, \ldots, p_{k}$.

Thus, in particular, $\overrightarrow{C_{n}}$ with $n>1$ is a zero divisor (even if $n$ is not prime, there is an $\frac{n}{p}$-fold homomorphic cover $\varphi: \overrightarrow{C_{n}} \rightarrow \overrightarrow{C_{p}}$ for any prime divisor $p$ of $n$ ). Also each $\vec{P}_{n}$ is a zero divisor, for clearly there is a homomorphism $\vec{P}_{n} \rightarrow \overrightarrow{C_{p}}$ for any $n$ and $p$.

Theorem 1 can be regarded as a cancellation law for the direct product, as it gives exact conditions on $C$ under which $A \times C \cong B \times C$ necessarily implies $A \cong B$. By contrast, the present article focuses on ways that cancellation can fail. Given a digraph $A$ and a natural number $n$, we will describe a method of finding all digraphs $B$ for which $A \times \overrightarrow{P_{n}} \cong B \times \overrightarrow{P_{n}}$, as well as all digraphs $B$ for which $A \times \overrightarrow{C_{n}} \cong B \times \overrightarrow{C_{n}}$. Further, given a digraph $C$ that is homomorphically equivalent to $\vec{P}_{n}$ or $\vec{C}_{n}$, we describe how to find all $B$ for which $A \times C \cong B \times C$.

Theorem 1 characterizes zero divisors as those digraphs $C$ that admit a homomorphism $C \rightarrow \overrightarrow{C_{p_{1}}}+\overrightarrow{C_{p_{2}}}+\cdots+\overrightarrow{C_{p_{k}}}$. If $C$ is connected, such a homomorphism has an image in just one directed cycle, so it can be regarded as a homomorphism $C \rightarrow \overrightarrow{C_{p}}$. Often there are only finitely many $p$ for which homomorphisms $C \rightarrow \overrightarrow{C_{p}}$ exist. But for some $C$ it may happen that there is a homomorphism $C \rightarrow \overrightarrow{C_{p}}$ for each prime number $p$. Then, by taking $p>|V(C)|$, we see that $C$ admits a homomorphism $C \rightarrow \vec{P}_{n}$ for some $n$. Conversely, since there are homomorphisms $\vec{P}_{n} \rightarrow \overrightarrow{C_{p}}$ for any $n$ and $p$, the existence of a homomorphism $C \rightarrow \overrightarrow{P_{n}}$ guarantees a homomorphism $C \rightarrow \overrightarrow{C_{p}}$ for every $p$. Therefore connected zero divisors $C$ can be divided into two distinct and mutually exclusive types: On one hand there are those that admit a homomorphism $C \rightarrow \overrightarrow{P_{n}}$ for some $n$ (and thus a homomorphism $C \rightarrow \overrightarrow{C_{p}}$ for all $p$ ); on the other hand there are those that admit homomorphisms $C \rightarrow \overrightarrow{C_{p}}$ for only finitely many prime numbers $p$.

This suggests that the expressions $A \times \vec{P}_{n} \cong B \times \vec{P}_{n}$ and $A \times \vec{C}_{n} \cong B \times \vec{C}_{n}$ are of fundamental importance in the study of zero divisors, and motivates the results of the present article.


Fig. 3 Examples of permuted digraphs

Our methods will require the following theorems due to Lovász.
Theorem 2 (Lovász [5], Theorem 6) Let $A, B, C$ and $D$ be digraphs. If $A \times C$ $\cong B \times C$ and there is a homomorphism from $D$ to $C$, then $A \times D \cong B \times D$.

Theorem 3 (Lovász [5], Theorem 7) Let $A, B, C$ be digraphs. If $A \times C \cong B \times C$, then there is an isomorphism from $A \times C$ to $B \times C$ of the form $(a, c) \mapsto(\beta(a, c), c)$, for some map $\beta: A \times C \rightarrow B$.

## 3 Permuted Digraphs

Given a digraph $A$, we denote the set of permutations of $V(A)$ as $\operatorname{Perm}(V(A))$. The next definition is central to the remainder of this paper. For a permutation $\alpha \in \operatorname{Perm}(V(A))$, we define the permuted digraph $A^{\alpha}$ as follows.

Definition 1 Given a digraph $A$ and $\alpha \in \operatorname{Perm}(V(A))$, the permuted digraph $A^{\alpha}$ has vertices $V\left(A^{\alpha}\right)=V(A)$. Its arcs are $E\left(A^{\alpha}\right)=\left\{a \alpha\left(a^{\prime}\right): a a^{\prime} \in E(A)\right\}$. Thus $a a^{\prime} \in$ $E(A)$ if and only if $a \alpha\left(a^{\prime}\right) \in E\left(A^{\alpha}\right)$, and $a a^{\prime} \in E\left(A^{\alpha}\right)$ if and only if $a \alpha^{-1}\left(a^{\prime}\right) \in E(A)$.

Figure 3 shows several examples. In the upper part of the figure, the cyclic permutation (0124) of the vertices of $\overrightarrow{C_{6}}$ yields a permuted graph $\vec{C}_{6}(0124) \cong 2 \overrightarrow{C_{3}}$. The permuted digraph $\vec{C}_{6}{ }^{(23)}$ is also shown. The lower part of the figure shows a digraph $A$ and two of its permuted digraphs. For another example, note that $A^{\text {id }}=A$ for any digraph $A$. We remark that it may be possible that $A^{\alpha} \cong A$ for some non-identity permutation $\alpha$. For instance, $\vec{C}_{6}\left({ }^{(024)} \cong \vec{C}_{6}\right.$.

The following fundamental result about permuted digraphs was proved in [2]. We omit its proof here because it will be a consequence of our more general Theorem 4 below.
Proposition 1 If $A$ and $B$ are digraphs, then $A \times \overrightarrow{P_{2}} \cong B \times \overrightarrow{P_{2}}$ if and only if $B \cong A^{\alpha}$ for some $\alpha \in \operatorname{Perm}(V(A))$.

This yields a corollary that describes a relationship that must hold between $A$ and $B$ whenever $A \times C \cong B \times C$.

Corollary 1 Suppose $A, B$ and $C$ are digraphs and $C$ has at least one arc. If $A \times C \cong$ $B \times C$, then $B \cong A^{\alpha}$ for some $\alpha \in \operatorname{Perm}(V(A))$.

Proof Suppose $A \times C \cong B \times C$. Since $C$ has at least one arc, there is a homomorphism $\overrightarrow{P_{2}} \rightarrow C$. Theorem 2 implies $A \times \overrightarrow{P_{2}} \cong B \times \overrightarrow{P_{2}}$. Proposition 1 now guarantees a permutation $\alpha \in \operatorname{Perm}(V(A))$ for which $B \cong A^{\alpha}$.

If there happens to be a homomorphism $C \rightarrow \overrightarrow{P_{2}}$ (that is, if $C$ is homomorphically equivalent to $\overrightarrow{P_{2}}$ ) then the converse of the above corollary becomes true. Indeed, if $B \cong A^{\alpha}$, then Proposition 1 guarantees $A \times \overrightarrow{P_{2}} \cong B \times \overrightarrow{P_{2}}$, whence Theorem 2 gives $A \times C \cong B \times C$. We thus get a second corollary.

Corollary 2 If $C$ is homomorphically equivalent to $\overrightarrow{P_{2}}$, then $A \times C \cong B \times C$ if and only if $B \cong A^{\alpha}$ for some $\alpha \in \operatorname{Perm}(V(A))$.

Corollaries 1 and 2 show that $A \times C \cong B \times C$ implies $B \cong A^{\alpha}$ for some permutation $\alpha$, but the converse holds only if $C$ is homomorphically equivalent to an arc $\overrightarrow{P_{2}}$. Thus digraphs $C$ that are homomorphically equivalent to an arc are the most "pathological" of all zero divisors in the sense that for a given $A$ there are potentially $|V(A)|$ ! digraphs $B \cong A^{\alpha} \nsupseteq A$ for which $A \times C \cong B \times C$. For other digraphs $C$ we expect fewer such $B$. In other words, cancellation of $A \times C \cong B \times C$ is "most likely" to fail if $C$ is homomorphically equivalent to an arc.

In general if $A, C$ and $\alpha$ are arbitrary, we do not expect that $A \times C \cong A^{\alpha} \times C$ unless there is some special relationship between $A, C$ and $\alpha$. To describe this relationship we will need a construction called the factorial of a digraph.

## 4 The Digraph Factorial

The following definition was introduced in [2].
Definition 2 Given a digraph $A$, its factorial is another digraph, denoted as $A!$, and is defined as follows. The vertex set is $V(A!)=\operatorname{Perm}(V(A))$. Given two permutations $\alpha, \beta \in V(A!)$, there is an arc from $\alpha$ to $\beta$ provided that $a a^{\prime} \in E(A) \Longleftrightarrow \alpha(a) \beta\left(a^{\prime}\right) \in$ $E(A)$ for all pairs $a, a^{\prime} \in V(A)$. We denote an arc from $\alpha$ to $\beta$ as $(\alpha)(\beta)$ to avoid confusion with composition.

We remark in passing that $A$ ! is a subgraph of the digraph exponential $A^{A}$ (see Sect. 2.4 of [4]). Observe that the definition implies there is a loop at $\alpha \in V(A!)$ if and only if $\alpha$ is an automorphism of $A$. In particular any $A$ ! has a loop at the identity id.

Figure 4 shows some examples of digraph factorials. For another example, which explains the origins of the term "factorial," let $K_{n}^{*}$ be the complete (symmetric) graph with a loop at each vertex and note that

$$
K_{n}^{*}!\cong K_{n}^{*} \times K_{n-1}^{*} \times K_{n-2}^{*} \times \cdots \times K_{3}^{*} \times K_{2}^{*} \times K_{1}^{*} .
$$

 $\begin{array}{ccccc}i d & (02) & (01) & (12) & (012) \\ 0 & (021) \\ 0 & 0 & 0\end{array}$


Fig. 4 Examples of digraphs and their factorials

The components of the factorial hold a special significance, as the next proposition indicates.

Proposition 2 If $\lambda$ and $\mu$ are in the same component of $A$ !, then $A^{\lambda} \cong A^{\mu}$.
Proof Suppose $(\alpha)(\beta) \in E(A!)$. It suffices to show that $A^{\alpha} \cong A^{\beta}$. Observe that

$$
\begin{aligned}
a a^{\prime} \in E\left(A^{\beta}\right) & \Longleftrightarrow a \beta^{-1}\left(a^{\prime}\right) \in E(A) \\
& \Longleftrightarrow \alpha(a) a^{\prime} \in E(A)
\end{aligned} \Longleftrightarrow \alpha(a) \beta \beta^{-1}\left(a^{\prime}\right) \in E(A)
$$

Thus $\alpha: A^{\beta} \rightarrow A^{\alpha}$ is an isomorphism.
The converse of Proposition 2 is generally false, so Proposition 2 does not completely characterize the conditions under which $A^{\lambda} \cong A^{\mu}$. Instead the characterization involves the following relation $\simeq$ on $V(A!)$.

Definition 3 Suppose $A$ is a digraph and $\lambda, \mu \in V(A!)$. Then $\lambda \simeq \mu$ if and only if there is an $\operatorname{arc}(\alpha)(\beta) \in E(A!)$ for which $\mu=\alpha^{-1} \lambda \beta$.

It is proved in [2] that this is an equivalence relation that obeys the following:
Proposition 3 If $A$ is a digraph and $\lambda, \mu \in \operatorname{Perm}(V(A))$, then $A^{\lambda} \cong A^{\mu}$ if and only if $\lambda \simeq \mu$.

## 5 Results

We are now ready to prove our main results. We begin with a result that-given a digraph $A$ and a natural number $n$-characterizes those digraphs $B$ for which $A \times \vec{P}_{n} \cong B \times \overrightarrow{P_{n}}$. In what follows, $\vec{P}_{n}$ has vertices $0,1,2, \ldots, n-1$, and edges $01,12,23, \ldots,(n-2)(n-1)$.

Theorem 4 Suppose $A$ and $B$ are digraphs, and $n>1$. Then $A \times \vec{P}_{n} \cong B \times \overrightarrow{P_{n}}$ if and only if $B \cong A^{\alpha}$, where $\alpha$ is a vertex of a directed walk of length $n-2$ in the factorial A!.

Proof Suppose that $B \cong A^{\alpha}$, where $\alpha$ is a vertex of a directed walk of length $n-2$ in $A$ !. Call this walk $\left(\alpha_{1}\right)\left(\alpha_{2}\right) \cdots\left(\alpha_{n-1}\right)$ where $\alpha=\alpha_{i}$ for some $i$. By Proposition 2, $B \cong A^{\alpha_{1}}$, so we just need to show $A \times \overrightarrow{P_{n}} \cong A^{\alpha_{1}} \times \overrightarrow{P_{n}}$. Define a map $\varphi: V\left(A \times \overrightarrow{P_{n}}\right) \rightarrow$ $V\left(A^{\alpha_{1}} \times \vec{P}_{n}\right)$ as

$$
\varphi(a, i)= \begin{cases}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{i}(a),\right. & \text { if } i \neq 0 \\ (a, i) & \text { if } i=0 .\end{cases}
$$

Clearly this is a bijection because each $\alpha_{i}$ is a permutation on the vertices of $A$. We need to show that it is an isomorphism. First consider edges of $A \times \overrightarrow{P_{n}}$ that have form $(a, 0)\left(a^{\prime}, 1\right)$. Note that $(a, 0)\left(a^{\prime}, 1\right) \in E\left(A \times \vec{P}_{n}\right)$ if and only if $(a, 0)\left(\alpha_{1}\left(a^{\prime}\right), 1\right) \in$ $E\left(A^{\alpha_{1}} \times \overrightarrow{P_{n}}\right)$ if and only if $\varphi(a, 0) \varphi\left(a^{\prime}, 1\right) \in E\left(A^{\alpha_{1}} \times \overrightarrow{P_{n}}\right)$.

The remaining edges of $A \times \vec{P}_{n}$ have form $(a, i)\left(a^{\prime}, i+1\right)$, for $1 \leq i<n-1$. For these,

$$
\begin{aligned}
& (a, i)\left(a^{\prime}, i+1\right) \in E\left(A \times \vec{P}_{n}\right) \\
\Longleftrightarrow & a a^{\prime} \in E(A) \\
\Longleftrightarrow & \alpha_{i}(a) \alpha_{i+1}\left(a^{\prime}\right) \in E(A) \quad\left(\text { since }\left(\alpha_{i}\right)\left(\alpha_{i+1}\right) \in E(A!)\right) \\
\Longleftrightarrow & \alpha_{i-1} \alpha_{i}(a) \alpha_{i} \alpha_{i+1}\left(a^{\prime}\right) \in E(A) \\
\vdots & \\
\Longleftrightarrow & \alpha_{1} \cdots \alpha_{i}(a) \alpha_{2} \alpha_{3} \cdots \alpha_{i+1}\left(a^{\prime}\right) \in E(A) \\
\Longleftrightarrow & \alpha_{1} \alpha_{2} \cdots \alpha_{i}(a) \alpha_{1} \alpha_{2} \cdots \alpha_{i+1}\left(a^{\prime}\right) \in E\left(A^{\alpha_{1}}\right) \\
\Longleftrightarrow & \left(\alpha_{1} \alpha_{2} \cdots \alpha_{i}(a), i\right)\left(\alpha_{1} \alpha_{2} \cdots \alpha_{i+1}\left(a^{\prime}\right), i+1\right) \in E\left(A^{\alpha_{1}} \times \vec{P}_{n}\right) \\
\Longleftrightarrow & \varphi(a, i) \varphi\left(a^{\prime}, i+1\right) \in E\left(A^{\alpha_{1}} \times \vec{P}_{n}\right) .
\end{aligned}
$$

Hence $\varphi$ is a isomorphism.
Conversely, assume that $A \times \overrightarrow{P_{n}} \cong B \times \overrightarrow{P_{n}}$. By Theorem 3, there is an isomorphism $\varphi: A \times \vec{P}_{n} \rightarrow B \times \vec{P}_{n}$ of the form $\varphi(a, i)=(\beta(a, i), i)$. For each index $0 \leq i<n-1$, define $\beta_{i}: V(A) \rightarrow V(B)$ as $\beta_{i}(a)=\beta(a, i)$. Since $\varphi$ is an isomorphism, it follows readily that each $\beta_{i}$ is a bijection. For any $a a^{\prime} \in E(A)$ and $i \in\{0, \ldots, n-2\}$ we have

$$
\begin{align*}
a a^{\prime} \in E(A) & \Longleftrightarrow(a, i)\left(a^{\prime}, i+1\right) \in E\left(A \times \vec{P}_{n}\right) \\
& \Longleftrightarrow \varphi(a, i) \varphi\left(a^{\prime}, i+1\right) \in E\left(B \times \overrightarrow{P_{n}}\right)  \tag{1}\\
& \Longleftrightarrow\left(\beta_{i}(a), i\right)\left(\beta_{i+1}\left(a^{\prime}\right), i+1\right) \in E\left(B \times \vec{P}_{n}\right) \\
& \Longleftrightarrow \beta_{i}(a) \beta_{i+1}\left(a^{\prime}\right) \in E(B) .
\end{align*}
$$

Let $0<i<n-1$. Using the above Equivalence (1), we find that $a a^{\prime} \in E(A)$ if and only if $\beta_{i}(a) \beta_{i+1}\left(a^{\prime}\right) \in E(B)$ if and only if $\beta_{i-1}^{-1} \beta_{i}(a) \beta_{i}^{-1} \beta_{i+1}\left(a^{\prime}\right) \in E(A)$. By Definition 2 we now have an arc $\left(\beta_{i-1}^{-1} \beta_{i}\right)\left(\beta_{i}^{-1} \beta_{i+1}\right)$ in $A$ !. Consequently $A$ ! has a directed walk

$$
\left(\beta_{0}^{-1} \beta_{1}\right)\left(\beta_{1}^{-1} \beta_{2}\right)\left(\beta_{2}^{-1} \beta_{3}\right) \cdots\left(\beta_{n-2}^{-1} \beta_{n-1}\right)
$$

of length $n-2$ whose first vertex is $\beta_{0}^{-1} \beta_{1}$.

To complete the proof, we need to show that $B \cong A^{\alpha}$ for some permutation $\alpha$ on this walk. In fact, we will show that $\beta_{0}: A^{\beta_{0}^{-1} \beta_{1}} \rightarrow B$ is an isomorphism. Indeed

$$
\begin{aligned}
a a^{\prime} \in E\left(A^{\beta_{0}^{-1} \beta_{1}}\right) & \left.\Longleftrightarrow a\left(\beta_{0}^{-1} \beta_{1}\right)^{-1}\left(a^{\prime}\right) \in E(A) \quad \text { (by definition of } A^{\beta_{0}^{-1} \beta_{1}}\right) \\
& \Longleftrightarrow a \beta_{1}^{-1} \beta_{0}\left(a^{\prime}\right) \in E(A) \\
& \left.\Longleftrightarrow \beta_{0}(a) \beta_{1} \beta_{1}^{-1} \beta_{0}\left(a^{\prime}\right) \in E(B) \quad \text { (by Equivalence }(1)\right) \\
& \Longleftrightarrow \beta_{0}(a) \beta_{0}\left(a^{\prime}\right) \in E(B) .
\end{aligned}
$$

This completes the proof.
Notice that Proposition 1 is the special case $n=2$ of Theorem 4. Indeed, if $n=2$, then a walk of length $n-2$ in $A$ ! is a single vertex of $A$ !, that is, a permutation $\alpha$ of $V(A)$, and Theorem 4 reduces to Proposition 1.

Corollary 3 Suppose a digraph $C$ is homomorphically equivalent to $\vec{P}_{n}$. Then $A \times$ $C \cong B \times C$ if and only if $B \cong A^{\alpha}$, where $\alpha$ is on a directed walk of length $n-2$ in the factorial of $A$.

Proof Let $C$ be homomorphically equivalent to $\overrightarrow{P_{n}}$. By Theorem $2, A \times C \cong B \times C$ if and only if $A \times \overrightarrow{P_{n}} \cong B \times \overrightarrow{P_{n}}$. The corollary then follows from Theorem 4.

Corollary 3 and Proposition 3 combine to give the following.
Theorem 5 Suppose $A$ and $C$ are digraphs, and $C$ is homomorphically equivalent to $\overrightarrow{P_{n}}$. Let

$$
\Upsilon_{n}=\{\alpha \in V(A!): \alpha \text { is on a directed walk of length } n-2 \text { in } A!\} .
$$

Form a partition $\Upsilon=\left[\alpha_{1}\right] \cup\left[\alpha_{2}\right] \cup \ldots \cup\left[\alpha_{k}\right]$ of $\Upsilon_{n}$, where each $\left[\alpha_{i}\right]$ is the $\simeq$ equivalence class (Definition 3) containing a representative $\alpha_{i}$. Then the isomorphism classes of digraphs $B$ for which $A \times C \cong B \times C$ are precisely $B=A^{\alpha_{i}}$ for $1 \leq i \leq k$.

Next we develop analogues of these results where the path $\overrightarrow{P_{n}}$ is replaced by a directed cycle $\overrightarrow{C_{n}}$. A definition is necessary.

A null-walk in $A$ ! is a closed walk $\left(\alpha_{0}\right)\left(\alpha_{1}\right)\left(\alpha_{2}\right)\left(\alpha_{3}\right) \ldots\left(\alpha_{n-1}\right)\left(\alpha_{0}\right)$, where $\left(\alpha_{i}\right)\left(\alpha_{i+1}\right) \in E(A!)$ for each $i$ (arithmetic modulo $n$ ) and $\alpha_{0} \alpha_{1} \alpha_{2} \alpha_{3} \cdots \alpha_{n-1}=$ id. (Null-walks are not particularly rare; any closed directed walk $W=\left(\alpha_{0}\right)\left(\alpha_{1}\right)$ $\left(\alpha_{2}\right) \ldots\left(\alpha_{n-1}\right)\left(\alpha_{0}\right)$ in $A$ ! can be extended to a null-walk by traversing $W k$ times, where $k$ is the order of the permutation $\alpha_{0} \alpha_{1} \alpha_{2} \ldots \alpha_{n-1}$.)

Theorem 6 If $A$ and $B$ are digraphs, and $n \geq 1$, then $A \times \vec{C}_{n} \cong B \times \vec{C}_{n}$ if and only if $B \cong A^{\alpha}$, where $\alpha$ is on a null-walk of length $n$ in the factorial $A$ !.

Proof Suppose $B \cong A^{\alpha}$, where $\alpha$ is on a null-walk $\left(\alpha_{0}\right)\left(\alpha_{1}\right)\left(\alpha_{2}\right) \ldots\left(\alpha_{n-1}\right)\left(\alpha_{0}\right)$ in the factorial. By Proposition $2, B \cong A^{\alpha_{0}}$, so it suffices to show $A \times \overrightarrow{C_{n}} \cong A^{\alpha_{0}} \times \overrightarrow{C_{n}}$.

We construct this isomorphism as follows. Define a map $\varphi: A \times \overrightarrow{C_{n}} \rightarrow A^{\alpha_{0}} \times \overrightarrow{C_{n}}$ such that

$$
\varphi(a, i)=\left(\alpha_{0} \alpha_{1} \cdots \alpha_{i}(a), i\right)
$$

Because each $\alpha_{i}$ is a permutation on the vertices of $A$, it follows that $\varphi$ is a bijection.
Knowing that the arcs of the null-walk are arcs in $A$ !, we can conclude

$$
\begin{aligned}
a a^{\prime} \in E(A) & \Longleftrightarrow \alpha_{i}(a) \alpha_{i+1}\left(a^{\prime}\right) \in E(A) \\
& \Longleftrightarrow \alpha_{i-1} \alpha_{i}(a) \alpha_{i} \alpha_{i+1}\left(a^{\prime}\right) \in E(A) \\
& \vdots \\
& \Longleftrightarrow \alpha_{0} \alpha_{1} \cdots \alpha_{i-1} \alpha_{i}(a) \alpha_{1} \alpha_{2} \cdots \alpha_{i} \alpha_{i+1}\left(a^{\prime}\right) \in E(A) \\
& \Longleftrightarrow \alpha_{0} \alpha_{1} \cdots \alpha_{i-1} \alpha_{i}(a) \alpha_{0} \alpha_{1} \alpha_{2} \cdots \alpha_{i} \alpha_{i+1}\left(a^{\prime}\right) \in E\left(A^{\alpha_{0}}\right)
\end{aligned}
$$

for any non-negative $i$, where the index arithmetic is done modulo $n$. When $i=n-1$, this reduces to $a a^{\prime} \in E(A) \Longleftrightarrow a \alpha_{0}\left(a^{\prime}\right) \in E\left(A^{\alpha_{0}}\right)$, as the vertices of the null-walk multiply to the identity.

The above observations imply

$$
\begin{aligned}
& (a, i)\left(a^{\prime}, i+1\right) \in E\left(A \times \overrightarrow{C_{n}}\right) \\
\Longleftrightarrow & \left(\alpha_{0} \alpha_{1} \cdots \alpha_{i}(a), i\right)\left(\alpha_{0} \alpha_{1} \cdots \alpha_{i+1}\left(a^{\prime}\right), i+1\right) \in E\left(A^{\alpha_{0}} \times \vec{C}_{n}\right) \\
\Longleftrightarrow & \varphi(a, i) \varphi\left(a^{\prime}, i+1\right) \in E\left(A^{\alpha_{0}} \times \vec{C}_{n}\right),
\end{aligned}
$$

so we have an isomorphism $\varphi: A \times \vec{C}_{n} \rightarrow A^{\alpha_{0}} \times \vec{C}_{n}$.
Conversely, suppose $A \times \overrightarrow{C_{n}} \cong B \times \overrightarrow{C_{n}}$. By Theorem 3, we are guaranteed an isomorphism $\varphi: A \times \overrightarrow{C_{n}} \rightarrow B \times \vec{C}_{n}$ of the form $\varphi(a, i)=\left(\beta_{i}(a), i\right)$. Since $\varphi$ is an isomorphism, it follows that each $\beta_{i}: V(A) \rightarrow V(B)$ is bijective. We now argue as before. For any $a a^{\prime} \in E(A)$,

$$
\begin{align*}
a a^{\prime} \in E(A) & \Longleftrightarrow(a, i)\left(a^{\prime}, i+1\right) \in E\left(A \times \overrightarrow{C_{n}}\right) \\
& \Longleftrightarrow \varphi(a, i) \varphi\left(a^{\prime}, i+1\right) \in E\left(B \times \overrightarrow{C_{n}}\right) \\
& \Longleftrightarrow\left(\beta_{i}(a), i\right)\left(\beta_{i+1}\left(a^{\prime}\right), i+1\right) \in E\left(B \times \overrightarrow{C_{n}}\right) \\
& \Longleftrightarrow \beta_{i}(a) \beta_{i+1}\left(a^{\prime}\right) \in E(B), \tag{2}
\end{align*}
$$

where the index arithmetic is done modulo $n$. By Equivalence (2), $a a^{\prime} \in E(A)$ if and only if $\beta_{i}(a) \beta_{i+1}\left(a^{\prime}\right) \in E(B)$ if and only if $\beta_{i-1}^{-1} \beta_{i}(a) \beta_{i}^{-1} \beta_{i+1}\left(a^{\prime}\right) \in E(A)$. Consequently $\left(\beta_{i-1}^{-1} \beta_{i}\right)\left(\beta_{i}^{-1} \beta_{i+1}\right)$ is an arc of $A$ ! for any $i \in\{0,1, \ldots, n-1\}$ that produces the closed walk $\left(\beta_{0}^{-1} \beta_{1}\right)\left(\beta_{1}^{-1} \beta_{2}\right)\left(\beta_{2}^{-1} \beta_{3}\right) \cdots\left(\beta_{n-1}^{-1} \beta_{0}\right)\left(\beta_{0}^{-1} \beta_{1}\right)$ in $A$ !. The permutations in this walk multiply up to the identity, so in fact this is a null-walk.

To complete the proof, we need to show that $B \cong A^{\alpha}$ for some permutation $\alpha$ on this walk. In fact, we can show that $\beta_{0}: A^{\beta_{0}^{-1} \beta_{1}} \rightarrow B$ is an isomorphism exactly as


Fig. 5 Isomorphic products guaranteed by Theorem 6
was done at the end of the proof of Theorem 4, but using Equivalence (2) instead of Equivalence (1).

To illustrate this theorem, consider $A=\vec{C}_{3}$, whose factorial is given in Fig. 4. The factorial contains a null-walk $(02)(01)(12)(02)(01)(12)(02)$ of length six. Theorem 6 guarantees $\overrightarrow{C_{3}} \times \overrightarrow{C_{6}} \cong \vec{C}_{3}{ }^{(02)} \times \overrightarrow{C_{6}}$ and this is borne out in Fig. 5 .

Note also that the closed directed walk (02)(01)(12)(02) of length three in $A$ ! is not a null-walk, as $(02)(01)(12)=(01) \neq \mathrm{id}$. Indeed $A$ ! had no null-walk of length three. The theorem predicts $\overrightarrow{C_{3}} \times \overrightarrow{C_{3}} \neq \overrightarrow{C_{3}}{ }^{(02)} \times \overrightarrow{C_{3}}$, and this is in fact the case, as the reader may verify.

Corollary 4 Suppose a digraph $C$ is homomorphically equivalent to $\vec{C}_{n}$. Then $A \times$ $C \cong B \times C$ if and only if $B \cong A^{\alpha}$, where the factorial $A$ ! contains a null-walk of length $n$ through $\alpha$.

The proof repeats the argument used in Corollary 2. As in that case, our findings are summarized in a theorem.

Theorem 7 Suppose $A$ and $C$ are digraphs, and $C$ is homomorphically equivalent to $\overrightarrow{C_{n}}$. Let

$$
\Upsilon_{n}=\{\alpha \in A!: \alpha \text { lies on a null-walk of length } n \text { in } A!\} .
$$

Consider the partition $\Upsilon=\left[\alpha_{1}\right] \cup\left[\alpha_{2}\right] \cup \ldots \cup\left[\alpha_{k}\right]$ of $\Upsilon_{n}$, where each $\left[\alpha_{i}\right]$ is the $\simeq$-equivalence class containing the representative $\alpha_{i}$. Then the digraphs $B$ for which $A \times C \cong B \times C$ are precisely $B=A^{\alpha_{i}}$ for $1 \leq i \leq k$.

Final Remarks Our methods give a complete set of solutions $X$ to the digraph equation $A \times C \cong X \times C$, where $C$ is a zero divisor that is homomorphically equivalent to a directed path or cycle.

For more general types of zero divisors $C$, our methods give only partial solutions. As noted earlier, any zero divisor either has a homomorphism into some directed path $\overrightarrow{P_{n}}$, or it has homomorphisms into finitely many directed cycles $\overrightarrow{C_{p}}$ of prime lengths. For such $C$, Theorem 2 implies that any solution of $A \times \overrightarrow{P_{n}} \cong X \times \overrightarrow{P_{n}}$ (respectively $A \times \overrightarrow{C_{p}} \cong X \times \overrightarrow{C_{p}}$ ) is a solution to $A \times C \cong X \times C$. The results of this paper show how to find these solutions, but they do not guarantee that there may not be more solutions to $A \times C \cong X \times C$. Thus it remains to unravel the mysteries of zero divisors that are not homomorphically equivalent to directed paths or cycles.

## References

1. Hammack, R.: On direct product cancellation of graphs. Discret. Math. 309, 2538-2543 (2009)
2. Hammack, R., Toman, K.: Cancellation of direct products of digraphs. Discusiones Mathematicae Graph Theory 30, 575-590 (2010)
3. Hammack R. Imrich W. and Klavžar S. (2011) Handbook of Product Graphs, 2nd edn. Discrete Mathematics and its applications, CRC Press/Taylor and Francis, Boca Raton
4. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics. Oxford University Press, Oxford (2004)
5. Lovász, L.: On the cancellation law among finite relational structures. Period. Math. Hungar 1(2), 145-156 (1971)

[^0]:    This work extends and generalizes some earlier results by R. Hammack and K. Toman [Cancellation of direct products of digraphs, Discusiones Mathematicae Graph Theory, 30 (2010) 575-590].
    R. Hammack ( $\triangle$ )

    Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond VA 23284, USA
    e-mail: rhammack@vcu.edu
    H. Smith

    Department of Mathematics, University of South Carolina, Columbia SC 29208, USA
    e-mail: smithhc5@mailbox.sc.edu

