ORIGINAL PAPER

Zero Divisors Among Digraphs

Richard Hammack · Heather Smith

Received: 23 September 2010 / Revised: 2 October 2012 © Springer Japan 2012

Abstract A digraph *C* is called a zero divisor if there exist non-isomorphic digraphs *A* and *B* for which $A \times C \cong B \times C$, where the operation is the direct product. In other words, *C* being a zero divisor means that cancellation property $A \times C \cong B \times C \Rightarrow A \cong B$ fails. Lovász proved that *C* is a zero divisor if and only if it admits a homomorphism into a disjoint union of directed cycles of prime lengths. Thus any digraph *C* that is homomorphically equivalent to a directed cycle (or path) is a zero divisor. Given such a zero divisor *C* and an arbitrary digraph *A*, we present a method of computing all solutions *X* to the digraph equation $A \times C \cong X \times C$.

Keywords Digraphs · Direct product of digraphs · Cancellation

Mathematics Subject Classification (2000) 05C76

1 Introduction

The article [1] solves the following variation of the cancellation problem for the direct product of graphs: Given graphs *A* and *C*, find all graphs *B* for which $A \times C \cong B \times C$.

R. Hammack (🖂)

Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond VA 23284, USA e-mail: rhammack@vcu.edu

H. Smith Department of Mathematics, University of South Carolina, Columbia SC 29208, USA e-mail: smithhc5@mailbox.sc.edu

This work extends and generalizes some earlier results by R. Hammack and K. Toman [Cancellation of direct products of digraphs, *Discusiones Mathematicae Graph Theory*, **30** (2010) 575–590].

Fig. 1 Some digraphs

The analogous problem where *A*, *B* and *C* are digraphs presents some special challenges, and a complete solution is not yet realized. The article [2] solves the problem for those digraphs *C* that are homomorphically equivalent to a single arc $\overrightarrow{P_2}$. (Such *C* are of special interest because they are the most "pathological" of all zero divisors, in a sense that will be explained in Sect. 3 below.)

The current article solves the problem for a more general class of digraphs C, namely those that are homomorphically equivalent to directed cycles or paths of arbitrary lengths. Specifically, given a digraph A and a digraph C that is homomorphically equivalent to a directed path or cycle, we classify those digraphs B for which $A \times C \cong B \times C$.

We first fix the notation by recalling some relevant concepts. A *digraph* A is a binary relation E(A) on a finite vertex set V(A), that is, a subset $E(A) \subseteq V(A) \times V(A)$. For brevity, an ordered pair $(a, a') \in E(A)$ is denoted aa', and is visualized as an arrow pointing from a to a'. Elements of E(A) are called *arcs*. A reflexive arc *aa* is called a *loop*. A *graph* is a digraph that is symmetric (as a relation). We use the usual notation for graphs; in particular K_n is the complete graph on n vertices.

Given a positive integer *n*, the *directed cycle* $\overrightarrow{C_n}$ is the digraph with vertices $\{0, 1, 2, ..., n-1\}$ and arcs $\{01, 12, 23, ..., (n-1)0\}$. Thus $\overrightarrow{C_1}$ consists of a single vertex with a loop, and $\overrightarrow{C_2} = K_2$. The *directed path* $\overrightarrow{P_n}$ is $\overrightarrow{C_n}$ with one arc removed. Figure 1 shows some of these digraphs.

We denote the condition of X being a sub-digraph of A as $X \subseteq A$. A digraph A is *strongly connected* if for every pair a, a' of its vertices there is a sub-digraph $\overrightarrow{P_n} \subseteq A$ beginning at a and ending at a'. A digraph is *connected* if any a and a' are joined by a path, each arc of which has arbitrary orientation. The *connected components* (respectively *strongly connected components*) of A are the maximal sub-digraphs of A that are connected (respectively strongly connected).

If *A* and *B* are digraphs, then A + B denotes the disjoint union of *A* and *B*. The disjoint union of *n* copies of *A* is denoted *nA*. A *homomorphism* $\varphi : A \to B$ is a map $\varphi : V(A) \to V(B)$ for which $aa' \in E(A)$ implies $\varphi(a)\varphi(a') \in E(B)$. Digraphs *A* and *B* are *homomorphically equivalent* if there are homomorphisms $A \to B$ and $B \to A$.

The *direct product* of two digraphs A and B is the digraph $A \times B$ whose vertex set is the Cartesian product $V(A) \times V(B)$ and whose arcs are the pairs (a, b)(a', b') with $aa' \in E(A)$ and $bb' \in E(B)$. We assume the reader to be familiar with direct products and homomorphisms. For standard references see [3] and [4].

2 Cancellation Laws

Lovász [5] defines a digraph *C* to be a *zero divisor* if there exist non-isomorphic digraphs *A* and *B* for which $A \times C \cong B \times C$. For example, Fig. 2 shows that $\overrightarrow{C_3}$ is a

Fig. 2 Example of a zero divisor

zero divisor: If $A = \overrightarrow{C_3}$ and $B = 3\overrightarrow{C_1}$, then clearly $A \ncong B$, yet $A \times \overrightarrow{C_3} \cong B \times \overrightarrow{C_3}$ (both products are isomorphic to $3\overrightarrow{C_3}$). Here is the main result concerning zero divisors.

Theorem 1 (Lovász [5], Theorem 8) A digraph C is a zero divisor if and only if there is a homomorphism $\varphi : C \to \overrightarrow{C_{p_1}} + \overrightarrow{C_{p_2}} + \overrightarrow{C_{p_3}} + \cdots + \overrightarrow{C_{p_k}}$ for prime numbers p_1, p_2, \ldots, p_k .

Thus, in particular, $\overrightarrow{C_n}$ with n > 1 is a zero divisor (even if *n* is not prime, there is an $\frac{n}{p}$ -fold homomorphic cover $\varphi : \overrightarrow{C_n} \to \overrightarrow{C_p}$ for any prime divisor *p* of *n*). Also each $\overrightarrow{P_n}$ is a zero divisor, for clearly there is a homomorphism $\overrightarrow{P_n} \to \overrightarrow{C_p}$ for any *n* and *p*.

Theorem 1 can be regarded as a cancellation law for the direct product, as it gives exact conditions on *C* under which $A \times C \cong B \times C$ necessarily implies $A \cong B$. By contrast, the present article focuses on ways that cancellation can fail. Given a digraph *A* and a natural number *n*, we will describe a method of finding all digraphs *B* for which $A \times \overrightarrow{P_n} \cong B \times \overrightarrow{P_n}$, as well as all digraphs *B* for which $A \times \overrightarrow{C_n} \cong B \times \overrightarrow{C_n}$. Further, given a digraph *C* that is homomorphically equivalent to $\overrightarrow{P_n}$ or $\overrightarrow{C_n}$, we describe how to find all *B* for which $A \times C \cong B \times C$.

Theorem 1 characterizes zero divisors as those digraphs *C* that admit a homomorphism $C \to \overrightarrow{C_{p_1}} + \overrightarrow{C_{p_2}} + \dots + \overrightarrow{C_{p_k}}$. If *C* is connected, such a homomorphism has an image in just one directed cycle, so it can be regarded as a homomorphism $C \to \overrightarrow{C_p}$. Often there are only finitely many *p* for which homomorphisms $C \to \overrightarrow{C_p}$ exist. But for some *C* it may happen that there is a homomorphism $C \to \overrightarrow{C_p}$ for each prime number *p*. Then, by taking p > |V(C)|, we see that *C* admits a homomorphism $C \to \overrightarrow{P_n}$ for some *n*. Conversely, since there are homomorphisms $\overrightarrow{P_n} \to \overrightarrow{C_p}$ for any *n* and *p*, the existence of a homomorphism $C \to \overrightarrow{P_n}$ guarantees a homomorphism $C \to \overrightarrow{C_p}$ for every *p*. Therefore connected zero divisors *C* can be divided into two distinct and mutually exclusive types: On one hand there are those that admit a homomorphism $C \to \overrightarrow{C_p}$ for only finitely many prime numbers *p*.

This suggests that the expressions $A \times \overrightarrow{P_n} \cong B \times \overrightarrow{P_n}$ and $A \times \overrightarrow{C_n} \cong B \times \overrightarrow{C_n}$ are of fundamental importance in the study of zero divisors, and motivates the results of the present article.

Fig. 3 Examples of permuted digraphs

Our methods will require the following theorems due to Lovász.

Theorem 2 (Lovász [5], Theorem 6) Let A, B, C and D be digraphs. If $A \times C \cong B \times C$ and there is a homomorphism from D to C, then $A \times D \cong B \times D$.

Theorem 3 (Lovász [5], Theorem 7) Let A, B, C be digraphs. If $A \times C \cong B \times C$, then there is an isomorphism from $A \times C$ to $B \times C$ of the form $(a, c) \mapsto (\beta(a, c), c)$, for some map $\beta : A \times C \to B$.

3 Permuted Digraphs

Given a digraph A, we denote the set of permutations of V(A) as Perm(V(A)). The next definition is central to the remainder of this paper. For a permutation $\alpha \in Perm(V(A))$, we define the *permuted digraph* A^{α} as follows.

Definition 1 Given a digraph A and $\alpha \in \text{Perm}(V(A))$, the *permuted digraph* A^{α} has vertices $V(A^{\alpha}) = V(A)$. Its arcs are $E(A^{\alpha}) = \{a\alpha(a') : aa' \in E(A)\}$. Thus $aa' \in E(A)$ if and only if $a\alpha(a') \in E(A^{\alpha})$, and $aa' \in E(A^{\alpha})$ if and only if $a\alpha^{-1}(a') \in E(A)$.

Figure 3 shows several examples. In the upper part of the figure, the cyclic permutation (0124) of the vertices of $\overrightarrow{C_6}$ yields a permuted graph $\overrightarrow{C_6}^{(0124)} \cong 2\overrightarrow{C_3}$. The permuted digraph $\overrightarrow{C_6}^{(23)}$ is also shown. The lower part of the figure shows a digraph *A* and two of its permuted digraphs. For another example, note that $A^{id} = A$ for any digraph *A*. We remark that it may be possible that $A^{\alpha} \cong A$ for some non-identity permutation α . For instance, $\overrightarrow{C_6}^{(024)} \cong \overrightarrow{C_6}$.

The following fundamental result about permuted digraphs was proved in [2]. We omit its proof here because it will be a consequence of our more general Theorem 4 below.

Proposition 1 If A and B are digraphs, then $A \times \overrightarrow{P_2} \cong B \times \overrightarrow{P_2}$ if and only if $B \cong A^{\alpha}$ for some $\alpha \in \text{Perm}(V(A))$.

This yields a corollary that describes a relationship that must hold between *A* and *B* whenever $A \times C \cong B \times C$.

Corollary 1 Suppose *A*, *B* and *C* are digraphs and *C* has at least one arc. If $A \times C \cong B \times C$, then $B \cong A^{\alpha}$ for some $\alpha \in \text{Perm}(V(A))$.

Proof Suppose $A \times C \cong B \times C$. Since *C* has at least one arc, there is a homomorphism $\overrightarrow{P_2} \to C$. Theorem 2 implies $A \times \overrightarrow{P_2} \cong B \times \overrightarrow{P_2}$. Proposition 1 now guarantees a permutation $\alpha \in \text{Perm}(V(A))$ for which $B \cong A^{\alpha}$.

If there happens to be a homomorphism $C \to \overrightarrow{P_2}$ (that is, if *C* is homomorphically equivalent to $\overrightarrow{P_2}$) then the converse of the above corollary becomes true. Indeed, if $B \cong A^{\alpha}$, then Proposition 1 guarantees $A \times \overrightarrow{P_2} \cong B \times \overrightarrow{P_2}$, whence Theorem 2 gives $A \times C \cong B \times C$. We thus get a second corollary.

Corollary 2 If *C* is homomorphically equivalent to $\overrightarrow{P_2}$, then $A \times C \cong B \times C$ if and only if $B \cong A^{\alpha}$ for some $\alpha \in \text{Perm}(V(A))$.

Corollaries 1 and 2 show that $A \times C \cong B \times C$ implies $B \cong A^{\alpha}$ for some permutation α , but the converse holds only if *C* is homomorphically equivalent to an arc $\overrightarrow{P_2}$. Thus digraphs *C* that are homomorphically equivalent to an arc are the most "pathological" of all zero divisors in the sense that for a given *A* there are potentially |V(A)|! digraphs $B \cong A^{\alpha} \ncong A$ for which $A \times C \cong B \times C$. For other digraphs *C* we expect fewer such *B*. In other words, cancellation of $A \times C \cong B \times C$ is "most likely" to fail if *C* is homomorphically equivalent to an arc.

In general if A, C and α are arbitrary, we do not expect that $A \times C \cong A^{\alpha} \times C$ unless there is some special relationship between A, C and α . To describe this relationship we will need a construction called the *factorial* of a digraph.

4 The Digraph Factorial

The following definition was introduced in [2].

Definition 2 Given a digraph *A*, its *factorial* is another digraph, denoted as *A*!, and is defined as follows. The vertex set is V(A!) = Perm(V(A)). Given two permutations $\alpha, \beta \in V(A!)$, there is an arc from α to β provided that $aa' \in E(A) \iff \alpha(a)\beta(a') \in E(A)$ for all pairs $a, a' \in V(A)$. We denote an arc from α to β as $(\alpha)(\beta)$ to avoid confusion with composition.

We remark in passing that A! is a subgraph of the digraph exponential A^A (see Sect. 2.4 of [4]). Observe that the definition implies there is a loop at $\alpha \in V(A!)$ if and only if α is an automorphism of A. In particular any A! has a loop at the identity id.

Figure 4 shows some examples of digraph factorials. For another example, which explains the origins of the term "factorial," let K_n^* be the complete (symmetric) graph with a loop at each vertex and note that

$$K_n^*! \cong K_n^* \times K_{n-1}^* \times K_{n-2}^* \times \cdots \times K_3^* \times K_2^* \times K_1^*.$$

Fig. 4 Examples of digraphs and their factorials

The components of the factorial hold a special significance, as the next proposition indicates.

Proposition 2 If λ and μ are in the same component of A!, then $A^{\lambda} \cong A^{\mu}$.

Proof Suppose $(\alpha)(\beta) \in E(A!)$. It suffices to show that $A^{\alpha} \cong A^{\beta}$. Observe that

$$aa' \in E(A^{\beta}) \iff a\beta^{-1}(a') \in E(A) \iff \alpha(a)\beta\beta^{-1}(a') \in E(A)$$
$$\iff \alpha(a)a' \in E(A) \iff \alpha(a)\alpha(a') \in E(A^{\alpha}).$$

Thus $\alpha : A^{\beta} \to A^{\alpha}$ is an isomorphism.

The converse of Proposition 2 is generally false, so Proposition 2 does not completely characterize the conditions under which $A^{\lambda} \cong A^{\mu}$. Instead the characterization involves the following relation \simeq on V(A!).

Definition 3 Suppose *A* is a digraph and $\lambda, \mu \in V(A!)$. Then $\lambda \simeq \mu$ if and only if there is an arc $(\alpha)(\beta) \in E(A!)$ for which $\mu = \alpha^{-1}\lambda\beta$.

It is proved in [2] that this is an equivalence relation that obeys the following:

Proposition 3 If A is a digraph and $\lambda, \mu \in \text{Perm}(V(A))$, then $A^{\lambda} \cong A^{\mu}$ if and only if $\lambda \simeq \mu$.

5 Results

We are now ready to prove our main results. We begin with a result that—given a digraph A and a natural number *n*—characterizes those digraphs B for which $A \times \overrightarrow{P_n} \cong B \times \overrightarrow{P_n}$. In what follows, $\overrightarrow{P_n}$ has vertices 0, 1, 2, ..., *n* - 1, and edges 01, 12, 23, ..., (*n* - 2)(*n* - 1).

Theorem 4 Suppose A and B are digraphs, and n > 1. Then $A \times \overrightarrow{P_n} \cong B \times \overrightarrow{P_n}$ if and only if $B \cong A^{\alpha}$, where α is a vertex of a directed walk of length n - 2 in the factorial A!.

Proof Suppose that $B \cong A^{\alpha}$, where α is a vertex of a directed walk of length n - 2in *A*!. Call this walk $(\alpha_1)(\alpha_2) \cdots (\alpha_{n-1})$ where $\alpha = \alpha_i$ for some *i*. By Proposition 2, $B \cong A^{\alpha_1}$, so we just need to show $A \times \overrightarrow{P_n} \cong A^{\alpha_1} \times \overrightarrow{P_n}$. Define a map $\varphi : V(A \times \overrightarrow{P_n}) \to V(A^{\alpha_1} \times \overrightarrow{P_n})$ as

$$\varphi(a, i) = \begin{cases} (\alpha_1 \alpha_2 \cdots \alpha_i(a), i) \text{ if } i \neq 0\\ (a, i) & \text{ if } i = 0. \end{cases}$$

🖄 Springer

Clearly this is a bijection because each α_i is a permutation on the vertices of A. We need to show that it is an isomorphism. First consider edges of $A \times \overrightarrow{P_n}$ that have form (a, 0)(a', 1). Note that $(a, 0)(a', 1) \in E(A \times \overrightarrow{P_n})$ if and only if $(a, 0)(\alpha_1(a'), 1) \in E(A^{\alpha_1} \times \overrightarrow{P_n})$ if and only if $\varphi(a, 0)\varphi(a', 1) \in E(A^{\alpha_1} \times \overrightarrow{P_n})$.

The remaining edges of $A \times \overrightarrow{P_n}$ have form (a, i)(a', i + 1), for $1 \le i < n - 1$. For these,

$$(a, i)(a', i + 1) \in E(A \times \overrightarrow{P_n})$$

$$\iff aa' \in E(A)$$

$$\iff \alpha_i(a)\alpha_{i+1}(a') \in E(A) \qquad (\text{since } (\alpha_i)(\alpha_{i+1}) \in E(A!))$$

$$\iff \alpha_{i-1}\alpha_i(a)\alpha_i\alpha_{i+1}(a') \in E(A)$$

$$\vdots$$

$$\iff \alpha_1 \cdots \alpha_i(a)\alpha_2\alpha_3 \cdots \alpha_{i+1}(a') \in E(A)$$

$$\iff \alpha_1\alpha_2 \cdots \alpha_i(a)\alpha_1\alpha_2 \cdots \alpha_{i+1}(a') \in E(A^{\alpha_1})$$

$$\iff (\alpha_1\alpha_2 \cdots \alpha_i(a), i)(\alpha_1\alpha_2 \cdots \alpha_{i+1}(a'), i + 1) \in E(A^{\alpha_1} \times \overrightarrow{P_n})$$

$$\iff \varphi(a, i)\varphi(a', i + 1) \in E(A^{\alpha_1} \times \overrightarrow{P_n}).$$

Hence φ is a isomorphism.

Conversely, assume that $A \times \overrightarrow{P_n} \cong B \times \overrightarrow{P_n}$. By Theorem 3, there is an isomorphism $\varphi : A \times \overrightarrow{P_n} \to B \times \overrightarrow{P_n}$ of the form $\varphi(a, i) = (\beta(a, i), i)$. For each index $0 \le i < n-1$, define $\beta_i : V(A) \to V(B)$ as $\beta_i(a) = \beta(a, i)$. Since φ is an isomorphism, it follows readily that each β_i is a bijection. For any $aa' \in E(A)$ and $i \in \{0, \ldots, n-2\}$ we have

$$aa' \in E(A) \iff (a, i)(a', i+1) \in E(A \times \overrightarrow{P_n})$$
$$\iff \varphi(a, i)\varphi(a', i+1) \in E(B \times \overrightarrow{P_n})$$
$$\iff (\beta_i(a), i)(\beta_{i+1}(a'), i+1) \in E(B \times \overrightarrow{P_n})$$
$$\iff \beta_i(a)\beta_{i+1}(a') \in E(B).$$
$$(1)$$

Let 0 < i < n - 1. Using the above Equivalence (1), we find that $aa' \in E(A)$ if and only if $\beta_i(a)\beta_{i+1}(a') \in E(B)$ if and only if $\beta_{i-1}^{-1}\beta_i(a)\beta_i^{-1}\beta_{i+1}(a') \in E(A)$. By Definition 2 we now have an arc $(\beta_{i-1}^{-1}\beta_i)(\beta_i^{-1}\beta_{i+1})$ in A!. Consequently A! has a directed walk

$$(\beta_0^{-1}\beta_1)(\beta_1^{-1}\beta_2)(\beta_2^{-1}\beta_3)\cdots(\beta_{n-2}^{-1}\beta_{n-1})$$

of length n - 2 whose first vertex is $\beta_0^{-1}\beta_1$.

To complete the proof, we need to show that $B \cong A^{\alpha}$ for some permutation α on this walk. In fact, we will show that $\beta_0 : A^{\beta_0^{-1}\beta_1} \to B$ is an isomorphism. Indeed

$$aa' \in E(A^{\beta_0^{-1}\beta_1}) \iff a \ (\beta_0^{-1}\beta_1)^{-1}(a') \in E(A) \quad \text{(by definition of } A^{\beta_0^{-1}\beta_1})$$
$$\iff a \ \beta_1^{-1}\beta_0(a') \in E(A)$$
$$\iff \beta_0(a)\beta_1\beta_1^{-1}\beta_0(a') \in E(B) \quad \text{(by Equivalence (1))}$$
$$\iff \beta_0(a)\beta_0(a') \in E(B).$$

This completes the proof.

Notice that Proposition 1 is the special case n = 2 of Theorem 4. Indeed, if n = 2, then a walk of length n - 2 in A! is a single vertex of A!, that is, a permutation α of V(A), and Theorem 4 reduces to Proposition 1.

Corollary 3 Suppose a digraph C is homomorphically equivalent to $\overrightarrow{P_n}$. Then $A \times C \cong B \times C$ if and only if $B \cong A^{\alpha}$, where α is on a directed walk of length n - 2 in the factorial of A.

Proof Let *C* be homomorphically equivalent to $\overrightarrow{P_n}$. By Theorem 2, $A \times C \cong B \times C$ if and only if $A \times \overrightarrow{P_n} \cong B \times \overrightarrow{P_n}$. The corollary then follows from Theorem 4.

Corollary 3 and Proposition 3 combine to give the following.

Theorem 5 Suppose A and C are digraphs, and C is homomorphically equivalent to $\overrightarrow{P_n}$. Let

 $\Upsilon_n = \{ \alpha \in V(A!) : \alpha \text{ is on a directed walk of length } n - 2 \text{ in } A! \}.$

Form a partition $\Upsilon = [\alpha_1] \cup [\alpha_2] \cup ... \cup [\alpha_k]$ of Υ_n , where each $[\alpha_i]$ is the \simeq equivalence class (Definition 3) containing a representative α_i . Then the isomorphism classes of digraphs B for which $A \times C \cong B \times C$ are precisely $B = A^{\alpha_i}$ for $1 \le i \le k$.

Next we develop analogues of these results where the path $\overrightarrow{P_n}$ is replaced by a directed cycle $\overrightarrow{C_n}$. A definition is necessary.

A null-walk in A! is a closed walk $(\alpha_0)(\alpha_1)(\alpha_2)(\alpha_3)\dots(\alpha_{n-1})(\alpha_0)$, where $(\alpha_i)(\alpha_{i+1}) \in E(A!)$ for each *i* (arithmetic modulo *n*) and $\alpha_0\alpha_1\alpha_2\alpha_3\cdots\alpha_{n-1} =$ id. (Null-walks are not particularly rare; any closed directed walk $W = (\alpha_0)(\alpha_1)(\alpha_2)\dots(\alpha_{n-1})(\alpha_0)$ in A! can be extended to a null-walk by traversing W k times, where k is the order of the permutation $\alpha_0\alpha_1\alpha_2\dots\alpha_{n-1}$.)

Theorem 6 If A and B are digraphs, and $n \ge 1$, then $A \times \overrightarrow{C_n} \cong B \times \overrightarrow{C_n}$ if and only if $B \cong A^{\alpha}$, where α is on a null-walk of length n in the factorial A!.

Proof Suppose $B \cong A^{\alpha}$, where α is on a null-walk $(\alpha_0)(\alpha_1)(\alpha_2) \dots (\alpha_{n-1})(\alpha_0)$ in the factorial. By Proposition 2, $B \cong A^{\alpha_0}$, so it suffices to show $A \times \overrightarrow{C_n} \cong A^{\alpha_0} \times \overrightarrow{C_n}$.

We construct this isomorphism as follows. Define a map $\varphi : A \times \overrightarrow{C_n} \to A^{\alpha_0} \times \overrightarrow{C_n}$ such that

$$\varphi(a,i) = (\alpha_0 \alpha_1 \cdots \alpha_i(a), i).$$

Because each α_i is a permutation on the vertices of A, it follows that φ is a bijection. Knowing that the arcs of the null-walk are arcs in A!, we can conclude

$$aa' \in E(A) \iff \alpha_i(a) \, \alpha_{i+1}(a') \in E(A)$$
$$\iff \alpha_{i-1}\alpha_i(a) \, \alpha_i \alpha_{i+1}(a') \in E(A)$$
$$\vdots$$
$$\iff \alpha_0 \alpha_1 \cdots \alpha_{i-1}\alpha_i(a) \, \alpha_1 \alpha_2 \cdots \alpha_i \alpha_{i+1}(a') \in E(A)$$
$$\iff \alpha_0 \alpha_1 \cdots \alpha_{i-1}\alpha_i(a) \, \alpha_0 \alpha_1 \alpha_2 \cdots \alpha_i \alpha_{i+1}(a') \in E(A^{\alpha_0})$$

for any non-negative i, where the index arithmetic is done modulo n. When i = n - 1, this reduces to $aa' \in E(A) \iff a\alpha_0(a') \in E(A^{\alpha_0})$, as the vertices of the null-walk multiply to the identity.

The above observations imply

$$(a, i)(a', i + 1) \in E(A \times \overrightarrow{C_n})$$

$$\iff (\alpha_0 \alpha_1 \cdots \alpha_i(a), i) (\alpha_0 \alpha_1 \cdots \alpha_{i+1}(a'), i + 1) \in E(A^{\alpha_0} \times \overrightarrow{C_n})$$

$$\iff \varphi(a, i)\varphi(a', i + 1) \in E(A^{\alpha_0} \times \overrightarrow{C_n}),$$

so we have an isomorphism $\varphi : A \times \overrightarrow{C_n} \to A^{\alpha_0} \times \overrightarrow{C_n}$. Conversely, suppose $A \times \overrightarrow{C_n} \cong B \times \overrightarrow{C_n}$. By Theorem 3, we are guaranteed an isomorphism $\varphi : A \times \overrightarrow{C_n} \to B \times \overrightarrow{C_n}$ of the form $\varphi(a, i) = (\beta_i(a), i)$. Since φ is an isomorphism, it follows that each $\beta_i : V(A) \to V(B)$ is bijective. We now argue as before. For any $aa' \in E(A)$,

$$aa' \in E(A) \iff (a,i)(a',i+1) \in E(A \times \overrightarrow{C_n})$$
$$\iff \varphi(a,i)\varphi(a',i+1) \in E(B \times \overrightarrow{C_n})$$
$$\iff (\beta_i(a),i)(\beta_{i+1}(a'),i+1) \in E(B \times \overrightarrow{C_n})$$
$$\iff \beta_i(a)\beta_{i+1}(a') \in E(B),$$
(2)

where the index arithmetic is done modulo n. By Equivalence (2), $aa' \in E(A)$ if and only if $\beta_i(a)\beta_{i+1}(a') \in E(B)$ if and only if $\beta_{i-1}^{-1}\beta_i(a)\beta_i^{-1}\beta_{i+1}(a') \in E(A)$. Consequently $(\beta_{i-1}^{-1}\beta_i)(\beta_i^{-1}\beta_{i+1})$ is an arc of A! for any $i \in \{0, 1, \dots, n-1\}$ that produces the closed walk $(\beta_0^{-1}\beta_1)(\beta_1^{-1}\beta_2)(\beta_2^{-1}\beta_3)\cdots(\beta_{n-1}^{-1}\beta_0)(\beta_0^{-1}\beta_1)$ in A!. The permutations in this walk multiply up to the identity, so in fact this is a null-walk.

To complete the proof, we need to show that $B \cong A^{\alpha}$ for some permutation α on this walk. In fact, we can show that $\beta_0 : A^{\beta_0^{-1}\beta_1} \to B$ is an isomorphism exactly as

Fig. 5 Isomorphic products guaranteed by Theorem 6

was done at the end of the proof of Theorem 4, but using Equivalence (2) instead of Equivalence (1). \Box

To illustrate this theorem, consider $A = \vec{C_3}$, whose factorial is given in Fig. 4. The factorial contains a null-walk (02)(01)(12)(02)(01)(12)(02) of length six. Theorem 6 guarantees $\vec{C_3} \times \vec{C_6} \cong \vec{C_3}^{(02)} \times \vec{C_6}$ and this is borne out in Fig. 5.

Note also that the closed directed walk (02)(01)(12)(02) of length three in A! is not a null-walk, as $(02)(01)(12) = (01) \neq id$. Indeed A! had no null-walk of length three. The theorem predicts $\vec{C_3} \times \vec{C_3} \ncong \vec{C_3}^{(02)} \times \vec{C_3}$, and this is in fact the case, as the reader may verify.

Corollary 4 Suppose a digraph C is homomorphically equivalent to $\overrightarrow{C_n}$. Then $A \times C \cong B \times C$ if and only if $B \cong A^{\alpha}$, where the factorial A! contains a null-walk of length n through α .

The proof repeats the argument used in Corollary 2. As in that case, our findings are summarized in a theorem.

Theorem 7 Suppose A and C are digraphs, and C is homomorphically equivalent to $\overrightarrow{C_n}$. Let

 $\Upsilon_n = \{ \alpha \in A! : \alpha \text{ lies on a null-walk of length } n \text{ in } A! \}.$

Consider the partition $\Upsilon = [\alpha_1] \cup [\alpha_2] \cup ... \cup [\alpha_k]$ of Υ_n , where each $[\alpha_i]$ is the \simeq -equivalence class containing the representative α_i . Then the digraphs *B* for which $A \times C \cong B \times C$ are precisely $B = A^{\alpha_i}$ for $1 \le i \le k$.

Final Remarks Our methods give a complete set of solutions *X* to the digraph equation $A \times C \cong X \times C$, where *C* is a zero divisor that is homomorphically equivalent to a directed path or cycle.

For more general types of zero divisors *C*, our methods give only partial solutions. As noted earlier, any zero divisor either has a homomorphism into some directed path $\overrightarrow{P_n}$, or it has homomorphisms into finitely many directed cycles $\overrightarrow{C_p}$ of prime lengths. For such *C*, Theorem 2 implies that any solution of $A \times \overrightarrow{P_n} \cong X \times \overrightarrow{P_n}$ (respectively $A \times \overrightarrow{C_p} \cong X \times \overrightarrow{C_p}$) is a solution to $A \times C \cong X \times C$. The results of this paper show how to find these solutions, but they do not guarantee that there may not be *more* solutions to $A \times C \cong X \times C$. Thus it remains to unravel the mysteries of zero divisors that are not homomorphically equivalent to directed paths or cycles.

References

- 1. Hammack, R.: On direct product cancellation of graphs. Discret. Math. 309, 2538-2543 (2009)
- Hammack, R., Toman, K.: Cancellation of direct products of digraphs. Discusiones Mathematicae Graph Theory 30, 575–590 (2010)
- Hammack R. Imrich W. and Klavžar S. (2011) Handbook of Product Graphs, 2nd edn. Discrete Mathematics and its applications, CRC Press/Taylor and Francis, Boca Raton
- 4. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford Lecture Series in Mathematics. Oxford University Press, Oxford (2004)
- 5. Lovász, L.: On the cancellation law among finite relational structures. Period. Math. Hungar 1(2), 145–156 (1971)