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a b s t r a c t

We prove that if the direct product of two connected bipartite
graphs has isomorphic components, then one of the factors
admits an automorphism that interchanges its partite sets. This
proves a conjecture made by Jha, Klavžar and Zmazek in 1997
[P. Jha, S. Klavzar, B. Zmazek, Isomorphic components of Kronecker
product of bipartite graphs, Discussiones Mathematicae Graph
Theory 17 (1997) 302–308].
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1. Introduction

IfG andH are graphs (possiblywith loops) then their direct product is the graphG×H whose vertex
set is the Cartesian product V (G)× V (H) and whose edges are all pairs (g, h)(g ′, h′)with gg ′ ∈ E(G)
and hh′ ∈ E(H).
It is a standard fact, first proved by Weichsel [8], that if G and H are connected and bipartite, then

G × H has exactly two components. These components may or may not be isomorphic, depending
on G and H . For example, Fig. 1 shows two products of bipartite graphs, where in each case the
two components are distinguished by solid and dashed lines. In Fig. 1(a) the components are not
isomorphic, and in Fig. 1(b) they are.
A number of authors have sought structural conditions on G and H that characterize the condition

of G × H having isomorphic components. Jha, Klavžar and Zmazek [6] observed that this condition
seems to be related to a certain kind of symmetry in at least one of the factors. They prove that if
either G or H admits an automorphism that interchanges its partite sets, then G × H has isomorphic
components. They conjecture that the converse is true. In [3] it is proved that the converse is true if G
and H are square-free. This note presents a general proof of the converse.
To summarize our main result, we state the following definition and theorem. (The definition was

introduced in [6].)
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Fig. 1. Products of bipartite graphs.

Definition 1. A connected bipartite graph has property π if it admits an automorphism that
interchanges its partite sets.

Theorem 1. SupposeG andH are connected bipartite graphs. The two components of G×H are isomorphic
if and only if at least one of G or H has property π .

As an example, neither G nor H in Fig. 1(a) has property π , and indeed the components of G × H
are not isomorphic. By contrast, in Fig. 1(b) G has property π (the nontrivial automorphism switches
the bipartition) and the components of G× H are isomorphic.
One direction of Theorem 1 is proved as follows. Suppose G orH (say G) has property π . Then there

is an automorphism ϕ of G that interchanges its partite sets. By [6] (Theorem 3.2), the map given by
(g, h) 7→ (ϕ(g), h) restricts to an isomorphism of one component of G×H to the other, so if one of G
or H has property π , then G × H has isomorphic components. The remainder of this note is devoted
to proving the converse.

2. Preliminaries

We assume that the reader is familiar with the basic properties of direct products and graph
homomorphisms. (For excellent surveys, see [5,4].) For convenience, we collect in this section some
necessary definitions, ideas and standard results.
Observe that the direct product can be regarded as a product on digraphs. Given a digraph G, we

let gg ′ denote an arc pointing from g to g ′. Then G× H is the digraph with arcs (g, h)(g ′, h′) directed
from (g, h) to (g ′, h′)whenever there are arcs gg ′ in G and hh′ in H . Since any graph can be identified
with a symmetric digraph (where each edge is replaced by a double arc) the direct product of graphs
is a special case of the direct product of digraphs. Though our main result is about graphs, we will use
digraphs where necessary in the proofs.
Suppose G is a digraph whose vertices are ordered as g1, g2, . . . , gm. The adjacency matrix for G

relative to this ordering is them×mmatrix A for which aij = 1 or 0 according to whether gigj is or is
not an arc of G. Graphs are identified with symmetric digraphs, so the adjacency matrix of a graph is
symmetric, that is it satisfies AT = A, where T indicates transpose.
The tensor product of two matrices A and B is the matrix A ⊗ B obtained by replacing each

entry aij of A with the block aijB. The rows and columns of A ⊗ B thus divide into blocks
corresponding to the rows and columns of A. The rows (columns) of A ⊗ B are indexed by
ordered pairs so that (i, j) indexes the row (column) corresponding to the jth row (column) of
B in the ith row-block (column-block). Therefore the entry of A ⊗ B in row (i, j) and column
(k, `) equals aikbj`. Although A ⊗ B 6= B ⊗ A in general, there are permutation matrices
M and N for which M(A ⊗ B)N = B ⊗ A. (Matrix M corresponds to the permutation that
rearranges the row list (1, 1), (1, 2) . . . , (1, n), (2, 1), (2, 2) . . . (2, n), . . . , (m, 1), (m, 2) . . . (m, n)
as (1, 1), (2, 1) . . . , (m, 1), (1, 2), (2, 2) . . . (m, 2), . . . , (1, n), (2, n) . . . (m, n), etc.) In fact, M(C ⊗
D)N = D⊗ C for any C and D having the same sizes as A and B, respectively.
It is simple to verify that if digraphs G andH have adjacencymatrices A and B, respectively, relative

to vertex orderings g1, g2, . . . , gm and h1, h2, . . . , hn, respectively, then G × H has adjacency matrix
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A⊗ B relative to the ordering (g1, h1), (g1, h2), . . . , (g1, hn), (g2, h1), (g2, h2), . . . , (g2, hn), . . . ,
(gm, h1), (gm, h2), . . . , (gm, hn) of its vertices.

Proposition 1 ([2, Lemma 8.1.1]). Suppose G and H are digraphs with adjacency matrices A and B
respectively. Then G ∼= H if and only if there is a permutation matrix P for which PAPT = B.

In using Proposition 1, we keep in mind the connection between the matrix P and the
corresponding isomorphism θ : G → H , namely pij = 1 if and only if θ(gi) = hj. For example,
suppose G and H are connected bipartite graphs, and the vertices of each graph are ordered so that all
vertices of one partite set are listed first, followed by vertices in the other partite set. Since θ preserves
partite sets, P must have block form

[
Q 0
0 R

]
or
[
0 R
Q 0

]
.

The following classic result of Lovász plays a major role in our main proof.

Proposition 2 (Lovász, [7, Theorem 6]). Let A, B, C and D be digraphs, and suppose there exists a
homomorphism D→ C. If C × A ∼= C × B, then D× A ∼= D× B.

3. Results

We begin with some observations about the adjacency matrices of the direct product of two
bipartite graphs. Suppose G and H are connected bipartite graphs with bipartitions (G0,G1) =
({w1, w2, . . . wm}, {x1, x2, . . . , xn}) and (H0,H1) = ({y1, y2, . . . yp}, {z1, z2, . . . , zq}), respectively.
Then the adjacency matrices of G and H relative to these vertex orderings have the forms[

0 A
AT 0

]
and

[
0 B
BT 0

]
, (1)

respectively. Now, it is simple to check that the two components of G× H are induced on the vertex
sets (G0 × H0) ∪ (G1 × H1) and (G0 × H1) ∪ (G1 × H0), respectively. We now construct adjacency
matrices for the two components.
List the vertices of (G0 × H0) ∪ (G1 × H1) in the following order:

(w1, y1), (w1, y2), . . . , (w1, yp), (w2, y1), (w2, y2), . . . , (w2, yp),
. . . . . . . . . . . . , (wm, y1), (wm, y2), . . . , (wm, yp),
(x1, z1), (x1, z2), . . . , (x1, zq), (x2, z1), (x2, z2), . . . , (x2, zq),
. . . . . . . . . . . . , (xn, z1), (xn, z2), . . . , (xn, zq).

Likewise, list the vertices of (G0 × H1) ∪ (G1 × H0) as

(w1, z1), (w1, z2), . . . , (w1, zq), (w2, z1), (w2, z2), . . . , (w2, zq),
. . . . . . . . . . . . , (wm, z1), (wm, z2), . . . , (wm, zq),
(x1, y1), (x1, y2), . . . , (x1, yp), (x2, y1), (x2, y2), . . . , (x2, yp),
. . . . . . . . . . . . , (xn, y1), (xn, y2), . . . , (xn, yp).

As was observed in [1], it is simple to check that, relative to these vertex orderings, the two
components of G× H have adjacency matrices[

0 A⊗ B
AT ⊗ BT 0

]
and

[
0 A⊗ BT

AT ⊗ B 0

]
. (2)

Now suppose the two components of G × H are isomorphic. Any isomorphism θ between them
preserves their partite sets, so either θ(G0 × H0) = G0 × H1 and θ(G1 × H1) = G1 × H0, or
θ(G0 × H0) = G1 × H0 and θ(G1 × H1) = G0 × H1. Proposition 1 (and the remark that follows
it) applied to (2) guarantees permutation matrices Q and R for which either[

Q 0
0 R

] [
0 A⊗ B

AT ⊗ BT 0

] [
Q 0
0 R

]T
=

[
0 A⊗ BT

AT ⊗ B 0

]
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or [
0 R
Q 0

] [
0 A⊗ B

AT ⊗ BT 0

] [
0 R
Q 0

]T
=

[
0 A⊗ BT

AT ⊗ B 0

]
.

Multiplying thematrices,we see that eitherQ (A⊗B)RT = A⊗BT in the first case, orQ (A⊗B)RT = AT⊗B
in the second. Renaming R as RT, we have the following lemma.

Lemma 1. Suppose connected bipartite graphs G and H have adjacency matrices
[
0 A
AT 0

]
and[

0 B
BT 0

]
, respectively. If the components of G × H are isomorphic, then there are permutation matrices

Q and R for which either Q (A⊗ B)R = A⊗ BT or Q (A⊗ B)R = AT ⊗ B.

Lemma 2. Let bipartite graph G have matrix
[
0 A
AT 0

]
. If there are permutation matrices Q ′ and R′ with

Q ′AR′ = AT, then G has property π .
Proof. Suppose Q ′AR′ = AT. Then[

0 R′T

Q ′ 0

] [
0 A
AT 0

] [
0 R′T

Q ′ 0

]T
=

[
0 A
AT 0

]
.

By Proposition 1 and the remark that follows it, we have an isomorphism from G to itself that reverses
the partite sets, so G has property π . �

Now we can see how the proof of our main theorem will work. Suppose G × H has isomorphic
components. By Lemma1, there are permutationmatricesQ and R forwhich eitherQ (A⊗B)R = AT⊗B
or Q (A ⊗ B)R = A ⊗ BT. Roughly speaking, we want to ‘‘cancel’’ the common factor of B (or A) and
deduce that there are permutation matrices Q ′ and R′ for which Q ′AR′ = AT or Q ′BR′ = BT, from
which Proposition 2 implies G or H has property π . The fact that this cancellation is justified follows
from the next lemma.

Lemma 3. Suppose A, A′ and C are 0–1 matrices for which C 6= O, and A is square and has at least one
nonzero entry in each row. Suppose also there are permutation matrices Q and R for which Q (C ⊗ A)R =
C⊗A′. Then there are permutation matrices Q ′ and R′ for which Q ′AR′ = A′. Also, if Q (A⊗C)R = A′⊗C,
then there are permutation matrices Q ′ and R′ for which Q ′AR′ = A′.
Proof. We begin with the first statement. Suppose Q (C ⊗ A)R = C ⊗ A′. Let D be the digraph with
adjacency matrix A, let D′ be the digraph with adjacency matrix A′, and let E be the digraph with
adjacency matrix of block form[

0 C
0CT 0

]
. (3)

(The lower left block is written as 0CT rather than 0 to indicate its size.) The adjacency matrices of
E × D and E × D′ are then[

0 C ⊗ A
0 0

]
and

[
0 C ⊗ A′

0 0

]
respectively. Notice that the lower left block of zeros in the matrix for E × D has the same size as
CT ⊗ A. Since A is square, this block is also the same size as CT ⊗ AT = (C ⊗ A)T, so this block can be
multiplied by RT. (Recall Q (C ⊗ A)R = C ⊗ A′, which means RT(C ⊗ A)TQ T = (C ⊗ A′)T.) By letting Q
and RT be blocks in a larger permutation matrix, we have[

Q 0
0 RT

] [
0 C ⊗ A
0 0

] [
Q 0
0 RT

]T
=

[
0 Q (C ⊗ A)R
0 0

]
=

[
0 C ⊗ A′

0 0

]
.

Then from Proposition 1 we deduce E × D ∼= E × D′.
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Recall that the graph E corresponds to the matrix C that we want to ‘‘eliminate’’. In pursuit of this
goal, we next show that the E in the expression E × D ∼= E × D′ can be replaced by a very simple
graph K . Let K be the digraph on two vertices k and k′ consisting of the single arc kk′. We claim that
K × D ∼= K × D′: Since C 6= O, we know from (3) that E has at least one arc ee′. Then the map sending
k to e and k′ to e′ is a homomorphism K → E. Proposition 2 now applies to give K × D ∼= K × D′.
The adjacency matrices for K × D and K × D′ are

[
0 A
0A 0

]
and

[
0 A′

0A′ 0

]
, respectively. Since

K × D ∼= K × D′, Proposition 1 guarantees a permutation matrix P for which

P
[
0 A
0A 0

]
PT =

[
0 A′

0A′ 0

]
. (4)

Since A has nonzero rows it follows that left-multiplying by P in (4) does not permute any of the rows
of the upper blocks to rows of the lower blocks. Therefore P has block form P =

[
Q ′ 0
0 R′

]
, so (4) yields

Q ′AR′T = A′. We now have permutation matrices Q ′ and R′ with Q ′AR′ = A′. This proves the first part
of the lemma.
For the second part of the lemma it must be shown that Q (A ⊗ C)R = A′ ⊗ C implies there are

permutation matrices Q ′ and R′ for which Q ′AR′ = A′. Let M and N be the permutation matrices for
which M(A ⊗ C)N = C ⊗ A and M(A′ ⊗ C)N = C ⊗ A′. From Q (A ⊗ C)R = A′ ⊗ C it follows that
MQMT(C ⊗ A)NTRN = C ⊗ A′. Then the first part of the lemma guarantees there are permutation
matrices Q ′ and R′ with Q ′AR′ = A′. �

Theorem 1. SupposeG andH are connected bipartite graphs. The two components of G×H are isomorphic
if and only if at least one of G or H has property π .

Proof. As was noted earlier, the necessity was proved in [6]. We prove the sufficiency here. Suppose
the two components of G × H are isomorphic. Using the notation established in (1), along with
Lemma 1, we get that either Q (A⊗ B)R = AT ⊗ B or Q (A⊗ B)R = A⊗ BT.
If Q (A⊗ B)R = AT ⊗ B, it follows that A is square; and since G is connected A has nonzero entries

in each row and column. Thus Lemma 3 implies the existence of permutation matrices Q ′ and R′ for
which Q ′AR′ = AT, so Lemma 2 implies G has property π . On the other hand, if Q (A⊗ B)R = A⊗ BT,
the same reasoning shows H has property π . �
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