Minimum cycle bases of direct products of complete graphs

Richard Hammack
Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA
Received 17 May 2006; received in revised form 17 October 2006; accepted 28 December 2006

Available online 16 January 2007
Communicated by S.E. Hambrusch

Abstract

This paper presents a construction of a minimum cycle basis for the direct product of two complete graphs on three or more vertices. With the exception of two special cases, such bases consist entirely of triangles. © 2007 Elsevier B.V. All rights reserved.

Keywords: Combinatorial problems; Minimum cycle basis; Graph direct product

1. Introduction

Cycle bases and minimum cycle bases for graphs have a long history in applied discrete mathematics, going back at least as far as G. Kirchhoff's 1847 treatise on electrical networks [10]. More recently, minimal cycle bases have been employed in structural flexibility analysis [9], and in search-and-retrieval of molecular structures in chemical information systems [1,2]. Spurred by these and other applications, much attention has focused on the problem of constructing minimum cycle bases of graphs. Although Horton [5] presents a polynomial algorithm that finds a minimum cycle basis in any graph, the algorithmic approach can lead us to miss deeper connections between the structures of graphs and their cycle bases. Consequently, some authors have recently examined the problem of direct (non-algorithmic) constructions of minimum cycle bases for certain classes of graphs [8,11,12].

[^0]In particular, several papers have addressed the problem of finding minimum cycle bases for the various graph-theoretical products. In the article Minimum Cycle Bases of Product Graphs [7], W. Imrich and P. Stadler construct minimum cycle bases for Cartesian and strong products of graphs. F. Berger solves the same problem for the lexicographical product [1]. The corresponding construction for the direct product appears to be intriguingly subtle, for there seems to be no clear connection between the minimum cycle bases of the product and of its factors. Currently only partial results have been established. (See, for instance, [4], which constructs an MCB for the direct product of two bipartite graphs.) The present contribution addresses the case of the direct product $K_{p} \times K_{q}$ of two complete graphs with $p, q \geqslant 3$. The situation is fairly complex even in this simple setting, but this work could possibly provide insights into the general case.

Recall that if $G=(V(G), E(G))$ is a simple graph, its cycle space, denoted $\mathcal{C}(G)$, is the vector space (over the two-element field $\mathbb{F}_{2}=\{0,1\}$) whose elements are the subsets $X \subseteq E(G)$ for which each vertex of G is incident with an even number of the elements of X. Ad-
dition in $\mathcal{C}(G)$ is symmetric difference of sets, and zero is the empty set. Elements of $\mathcal{C}(G)$ are called generalized cycles, or just cycles. The dimension of $\mathcal{C}(G)$ is $\nu(G)=|E(G)|-|V(G)|+c$, where c is the number of components of G. (See [3], Theorem 1.9.6.) A basis \mathscr{B} of $\mathcal{C}(G)$ is called a cycle basis of G, and its length is $l(\mathscr{B})=\sum_{C \in \mathcal{B}}|C|$. Among all cycle bases of G, one with smallest possible length is called a minimum cycle basis, or MCB.

The direct product of graphs G and H is the graph $G \times H$ whose vertex set is the Cartesian product $V(G) \times V(H)$ and whose edges are $(w, x)(y, z)$ where $w y \in E(G)$ and $x z \in E(H)$. Observe $G \times H$ has $2|E(G) \| E(H)|$ edges and $|V(G)||V(H)|$ vertices, so $\nu(G \times H)=2|E(G)||E(H)|-|V(G)||V(H)|+1$ if $G \times H$ is connected. The vertices of the complete graph K_{p} are denoted as $\{1,2,3, \ldots, p\}$. Thus, the edges of $K_{p} \times K_{q}$ are exactly the pairs $(i, j)(k, \ell)$ with $1 \leqslant i$, $k \leqslant p$, and $1 \leqslant j, \ell \leqslant q$, and $i \neq k$ and $j \neq \ell$. Note that for $p, q \geqslant 3, K_{p} \times K_{q}$ is connected, so
$\nu\left(K_{p} \times K_{q}\right)=2\binom{p}{2}\binom{q}{2}-p q+1$.
Any triangle $(a, d)(b, e)(c, f)(a, d)$ in $K_{p} \times K_{q}$ projects uniquely to two triangles $a b c a$ and defd in K_{p} and K_{q}, respectively. Conversely, given such triangles $a b c a$ and defd, the graph $K_{p} \times K_{q}$ has six triangles that project onto them, namely $(\pi(a), d)(\pi(b), e)(\pi(c)$, $f)(\pi(a), d)$, where π is any permutation of $\{a, b, c\}$. Consequently, $K_{p} \times K_{q}$ has exactly $6\binom{p}{3}\binom{q}{3}$ triangles. The following pages show that whenever this number is at least as large as $v\left(K_{p} \times K_{q}\right)$, the triangles will span $\mathcal{C}\left(K_{p} \times K_{q}\right)$, and an MCB can be extracted from them.

2. Two special cases

Here we describe MCBs for $K_{3} \times K_{3}$ and $K_{3} \times K_{4}$. These graphs are special in that their MCBs contain both triangles and squares. By contrast, the subsequent section will show that if $p, q \geqslant 4$, any MCB for $K_{p} \times$ K_{q} consists solely of triangles. The arguments in this section use ideas from homology theory, but they do not employ the machinery of this theory, for the benefit of readers who are not conversant with algebraic topology. Topologists will see how the arguments can be shortened.

Consider $\Gamma=K_{3} \times K_{3}$. Fig. 1 shows an embedding of Γ on the torus, with vertices (i, j) abbreviated as $i j$. (The torus is presented as an identification space, with opposite sides of the large outer-most square identified. Note that these four sides are not edges of Γ.) This embedding has six triangular regions, two square

Fig. 1. $K_{3} \times K_{3}$ on the torus.

Fig. 2. $K_{3} \times K_{4}$ on the torus.
regions and one 10 -gon region. Denote by \mathcal{T} the set of six triangular subgraphs of Γ that bound of the triangular regions of the embedding. Elements of \mathcal{T} are pairwise edge-disjoint, so \mathcal{T} is a linearly independent set in $\mathcal{C}(\Gamma)$. Note that \mathcal{T} contains every triangle in Γ, so if it is enlarged to a cycle basis of Γ then longer cycles must be appended to it; if all such larger cycles are squares, we will have an MCB. Let $\&$ denote the (independent) set of the two square subgraphs that bound the square regions of the embedding. Set $\mathcal{R}=$ $\{(3,2)(2,3)(1,2)(2,1)(3,2),(2,2)(3,3)(1,2)(3,1)(2$, 2) \}. Observe that $\mathcal{T} \cup \delta \cup \mathcal{R}$ is linearly independent: Suppose $T+S+R=0$, where T, S and R are in the spans of $\mathcal{T}, \&$ and \mathcal{R}, respectively. Note $T=0$ because each nonzero element of $\operatorname{Span}(\mathcal{T})$ has edges that do not belong to elements of $\delta \cup \mathcal{R}$, and therefore cannot be canceled by S and R. Next, $S=0$ because each nonzero element of $\operatorname{Span}(\delta)$ has edges belonging to no element of \mathcal{R}. Thus $T=S=R=0$, proving independence. Since $|\mathcal{T} \cup \mathcal{S} \cup \mathcal{R}|=10=v\left(K_{3} \times K_{3}\right)$, it follows $\mathcal{T} \cup \mathcal{S} \cup \mathcal{R}$ is an MCB of $K_{3} \times K_{3}$ consisting of six triangles and four squares.

Next, consider $\Lambda=K_{3} \times K_{4}$. Fig. 2 shows an embedding of Λ on the torus, again with vertices (i, j)
abbreviated as $i j$. The boundaries of the 24 regions of this embedding are the 24 triangles in Λ. Now, if all these triangles are added together, their edges will cancel pair-by-pair and give 0 , so they are not an independent set. However, we claim that a set of any 23 of them is independent. Let \mathcal{T} be a subset of $\mathcal{C}(\Lambda)$ consisting of 23 of the 24 triangles in Λ. Then \mathcal{T} is linearly independent because any sum of its elements that equals 0 cannot include the three triangles in \mathcal{T} with edges belonging to the missing triangle (for such edges could not then be canceled); nor can the sum include triangles with edges belonging to these three triangles, etc., and it follows from connectivity of the torus that only the trivial linear combination of elements of \mathcal{T} can equal 0 . Since $v(\Lambda)=25$, just two more cycles are needed to enlarge \mathcal{T} to an MCB, and since all the triangles have been used up, the extra cycles must have length greater than 3 . Set $\mathcal{R}=$ $\{(1,1)(3,3)(1,4)(3,2)(1,1),(1,1)(2,4)(1,3)(2,2)(1$, $1)\}$. (These squares are representatives of the two standard generators of the first homology group of the torus.) It is straightforward-if tedious-to check that $\mathcal{T} \cup \mathscr{R}$ is linearly independent and is therefore an MCB of $K_{3} \times K_{4}$.

These two examples have proved
Proposition 1. The product $K_{3} \times K_{3}$ has an MCB consisting of six triangles and four squares. The product $K_{3} \times K_{4}$ has an MCB consisting of 23 triangles and two squares.

3. A basis of triangles

Suppose $p, q \geqslant 4$, or $p=3$ and $q \geqslant 5$. Here is a construction of an MCB of $K_{p} \times K_{q}$ that consists entirely of triangles.

For each integer $m \in\{1,2,3, \ldots, q\}$, let G_{m} be the subgraph of $K_{p} \times K_{q}$ induced on the vertices $\{(i, j) \mid$ $2 \leqslant i \leqslant p, 1 \leqslant j \leqslant q, j \neq m\}$. Thus $G_{m} \cong K_{p-1} \times$ K_{q-1}, and is connected because its factors are connected, and at least one has an odd cycle (Theorem 5.29 of [6]). For each $2 \leqslant m \leqslant q$, let T_{m} be a spanning tree of G_{m}. Further, T_{2} and T_{3} are required to have a special form. Each vertex of form $(i, 1)$ is required to have degree 1 in T_{2}. Also, T_{3} is chosen to have no edges of form $(i, 1)(j, 2)$. (One easily checks that such trees exist for the stated values of p and q.)

Define the following edge sets in $K_{p} \times K_{q}$.
$S_{1}=E\left(G_{1}\right)$,
$S_{2}=E\left(T_{2}\right) \cup\left[E\left(G_{2}\right)-E\left(G_{1}\right)\right]$,
$S_{3}=E\left(T_{3}\right) \cup\left[E\left(G_{3}\right)-\left(E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)\right]$,

$$
\begin{aligned}
S_{4} & =E\left(T_{4}\right) \\
S_{5} & =E\left(T_{5}\right) \\
& \vdots \\
S_{q} & =E\left(T_{q}\right)
\end{aligned}
$$

Observe that these sets have been constructed so that the subgraph of $K_{p} \times K_{q}$ induced on edges $\left(S_{1} \cup S_{2} \cup \ldots \cup\right.$ $\left.S_{m-1}\right) \cap S_{m}$ is acyclic for $2 \leqslant m \leqslant q$. This is obvious for $4 \leqslant m \leqslant q$. For $m=2$, note that

$$
\begin{aligned}
S_{1} \cap S_{2}= & E\left(G_{1}\right) \cap\left[E\left(T_{2}\right) \cup\left[E\left(G_{2}\right)-E\left(G_{1}\right)\right]\right] \\
= & {\left[E\left(G_{1}\right) \cap E\left(T_{2}\right)\right] } \\
& \cup\left[E\left(G_{1}\right) \cap\left[E\left(G_{2}\right)-E\left(G_{1}\right)\right]\right] \\
= & {\left[E\left(G_{1}\right) \cap E\left(T_{2}\right)\right] \cup \emptyset }
\end{aligned}
$$

is acyclic. Also

$$
\begin{aligned}
\left(S_{1} \cup S_{2}\right) \cap S_{3}= & \left(S_{1} \cup S_{2}\right) \cap\left[E\left(T_{3}\right)\right. \\
& \left.\cup\left[E\left(G_{3}\right)-\left(E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)\right]\right] \\
= & {\left[\left(S_{1} \cup S_{2}\right) \cap E\left(T_{3}\right)\right] \cup\left[\left(S_{1} \cup S_{2}\right)\right.} \\
& \left.\cap\left[E\left(G_{3}\right)-\left(E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)\right]\right] \\
= & {\left[\left(S_{1} \cup S_{2}\right) \cap E\left(T_{3}\right)\right] \cup \emptyset }
\end{aligned}
$$

is acyclic.
In what follows, the cardinalities of the S_{m} will be needed, so these are now computed. First, since $G_{1} \cong$ $K_{p-1} \times K_{q-1}$ we have:
$\left|S_{1}\right|=2\binom{p-1}{2}\binom{q-1}{2}$.
For S_{2}, note $E\left(G_{2}\right)-E\left(G_{1}\right)=\{(i, 1)(k, \ell): 2 \leqslant i, k$ $\leqslant p, i \neq k, 3 \leqslant \ell \leqslant q\}$ contains exactly $(p-1)(p-$ 2) $(q-2)$ edges. By choice of T_{2}, each of its $p-1$ vertices of form $(i, 1)$ has degree 1 in T_{2}, so $\mid E\left(T_{2}\right) \cap$ $\left[E\left(G_{2}\right)-E\left(G_{1}\right)\right] \mid=p-1$. Hence $\left|S_{2}\right|=\left|T_{2}\right|+$ $\left|E\left(G_{2}\right)-E\left(G_{1}\right)\right|-(p-1)$, so

$$
\begin{align*}
\left|S_{2}\right|= & (p-1)(q-1)-1+(p-1)(p-2)(q-2) \\
& -(p-1) \tag{2}
\end{align*}
$$

Now consider S_{3}. Note $E\left(G_{3}\right)-\left(E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)$ $=\{(i, 1)(k, 2): 2 \leqslant i, k \leqslant p, i \neq k\}$ has cardinality $(p-1)(p-2)$. Recall that T_{3} was chosen to contain none of these edges, so

$$
\begin{equation*}
\left|S_{3}\right|=(p-1)(q-1)-1+(p-1)(p-2) \tag{3}
\end{equation*}
$$

Lastly, note that
$\left|S_{4}\right|=\left|S_{5}\right|=\cdots=\left|S_{q}\right|=(p-1)(q-1)-1$.
Now form the following sets of triangles in $K_{p} \times K_{q}$.

Fig. 3.
$\mathscr{B}_{1}=\left\{(1,1)(i, j)(k, \ell)(1,1) \mid(i, j)(k, \ell) \in E\left(S_{1}\right)\right\}$,
$\mathcal{B}_{2}=\left\{(1,2)(i, j)(k, \ell)(1,2) \mid(i, j)(k, \ell) \in E\left(S_{2}\right)\right\}$,
$\mathscr{B}_{3}=\left\{(1,3)(i, j)(k, \ell)(1,3) \mid(i, j)(k, \ell) \in E\left(S_{3}\right)\right\}$,
$\mathscr{B}_{q}=\left\{(1, q)(i, j)(k, \ell)(1, q) \mid(i, j)(k, \ell) \in E\left(S_{q}\right)\right\}$.
Fig. 3 illustrates these sets. Any triangle in \mathscr{B}_{m} is incident with vertex $(1, m)$ while its opposite edge is in S_{m}. Notice that the sets \mathscr{B}_{m} are pairwise disjoint and $\left|\mathscr{B}_{m}\right|=\left|S_{m}\right|$ for $1 \leqslant m \leqslant q$. Moreover, observe that each \mathscr{B}_{m} is linearly independent in $\mathcal{C}\left(K_{p} \times K_{q}\right)$: Each edge in S_{m} is on exactly one triangle in \mathscr{B}_{m}, and each triangle in \mathscr{B}_{m} contains exactly one edge of S_{m}. Consequently no nonempty subset of \mathscr{B}_{m} can sum to 0 , since such a sum will always contain edges in S_{m}.

Next, we argue that $\mathscr{B}_{1} \cup \mathscr{B}_{2} \cup \cdots \cup \mathscr{B}_{q}$ is a linearly independent set by showing for each $2 \leqslant m \leqslant q$ that $\operatorname{Span}\left(\mathscr{B}_{1} \cup \mathscr{B}_{2} \cup \cdots \cup \mathscr{B}_{m-1}\right) \cap \operatorname{Span}\left(\mathscr{B}_{m}\right)=0$. Suppose C is in this intersection. Since $C \in \operatorname{Span}\left(\mathscr{B}_{m}\right)$, any vertex of form $(1, j)$ incident with an edge of C must be of form $(1, m)$. But as no cycle in $\operatorname{Span}\left(\mathscr{B}_{1} \cup\right.$ $\left.\mathscr{B}_{2} \cup \cdots \cup \mathcal{B}_{m-1}\right)$ has an edge incident with such a vertex, no edge of C is incident with a vertex of form $(1, j)$. Then, from the definition of the sets \mathscr{B}_{j}, the fact that $C \in \operatorname{Span}\left(\mathscr{B}_{1} \cup \mathscr{B}_{2} \cup \cdots \cup \mathscr{B}_{m-1}\right)$ means $C \subseteq$ $S_{1} \cup S_{2} \cup \cdots \cup S_{m-1}$. The fact that $C \in \operatorname{Span}\left(\mathscr{B}_{m}\right)$ means $C \subseteq S_{m}$. Thus C is in the acyclic subgraph $\left(S_{1} \cup S_{2} \cup \cdots \cup S_{m-1}\right) \cap S_{m}$, so $C=0$.

Finally, to show $\mathscr{B}=\mathscr{B}_{1} \cup \mathscr{B}_{2} \cup \cdots \cup \mathscr{B}_{q}$ is a basis, we confirm $|\mathscr{B}|=v\left(K_{p} \times K_{q}\right)$. Using Eqs. (1)-(4), as well as the substitutions $r=p-1$ and $s=q-1$ (to streamline the calculation), note

$$
\left.\left.\begin{array}{rl}
|\mathscr{B}|= & \sum_{m=1}^{q}\left|\mathscr{B}_{m}\right| \\
= & \sum_{m=1}^{q}\left|S_{m}\right|=\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{3}\right|+\sum_{m=4}^{q}\left|S_{m}\right| \\
= & 2\binom{r}{2}\binom{s}{2}+[r s-1+r(r-1)(s-1)-r] \\
& +\left[\begin{array}{l}
r s-1+r(r-1)]+(s-2)(r s-1) \\
=
\end{array}\right. \\
& 2\binom{r}{2}\binom{s}{2}+r(r-1) s+r s(s-1) \\
= & 2\binom{r}{2}\binom{s}{2}+2\binom{r}{2} s+2 r\binom{s}{2} \\
& +2 r s-(r+1)(s+1)+1 \\
= & 2\left[\binom{r}{2}+r\right]\left[\binom{s}{2}+s\right] \\
& -(r+1)(s+1)+1 \\
= & 2\left[\binom{r}{2}+\binom{r}{1}\right]\left[\binom{s}{2}+\binom{s}{1}\right] \\
& -(r+1)(s+1)+1 \\
= & 2\binom{r+1}{2}\binom{s+1}{2}-(r+1)(s+1)+1 \\
2
\end{array}\right)\binom{q}{2}-p q+1\right)
$$

It follows that $\mathscr{B}=\mathscr{B}_{1} \cup \mathscr{B}_{2} \cup \cdots \cup \mathscr{B}_{q}$ is a basis of triangles for $\mathcal{C}\left(K_{p} \times K_{q}\right)$, and is therefore an MCB. This completes the construction, and proves the following proposition.

Proposition 2. If $p, q \geqslant 4$, or if $p=3$ and $q \geqslant 5$, then any $M C B$ of $K_{p} \times K_{q}$ consists of $2\binom{p}{2}\binom{q}{2}-p q+1$ triangles.

We do not address the problem of finding an MCB for $K_{2} \times K_{q}$. Indeed, to the author's knowledge, this problem still open, though it probably would not be difficult to resolve. However, since such products are bipartite, the approach would likely differ from the one used here. Moreover, it may be more fruitful to examine the more general problem of graphs of form $G \times H$ where G is bipartite, for, as [4] suggests, bipartiteness of a factor tends to simplify the cycle structure of the product.

Acknowledgements

The author thanks the referees for their helpful suggestions and comments.

References

[1] F. Berger, Minimum cycle bases of graphs, Dissertation, Technische Universität München, 2004.
[2] G. Downs, V. Gillet, J. Holliday, M. Lynch, Review of ring perception algorithms for chemical graphs, J. Chem. Inf. Comput. Sci. 29 (1989) 172-187.
[3] R. Diestel, Graph Theory, Springer-Verlag, Berlin, 1997.
[4] R. Hammack, Minimum cycle bases of direct products of bipartite graphs, Australasian J. Comb. 36 (2006) 213-221.
[5] J.D. Horton, A polynomial-time algorithm to find the shortest cycle basis of a graph, SIAM J. Comput. 16 (1987) 359-366.
[6] W. Imrich, S. Klavžar, Product Graphs; Structure and Recognition, Wiley Interscience Series in Discrete Mathematics and Optimization, Wiley, 2000.
[7] W. Imrich, P. Stadler, Minimum cycle bases of product graphs, Australasian J. Comb. 26 (2002) 233-244.
[8] M. Jaradat, On the basis number and the minimum cycle bases of the wreath product of some graphs, Discuss. Math. Graph Theory 26 (1) (2006) 113-134.
[9] A. Kaveh, Structural Mechanics: Graph and Matrix Methods, Research Studies Press, Exeter, UK, 1992.
[10] G. Kirchhoff, Uber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme gefürt wird, Annalen der Physik und Chemie 72 (12) (1847) 497-508.
[11] J. Leydold, P. Stadler, Minimal cycle bases of outerplanar graphs, Electron. J. Combin. 5 (1998) 209-222.
[12] P. Stadler, Minimum cycle bases of Halin graphs, J. Graph Theory 43 (2) (2003) 150-155.

[^0]: E-mail address: rhammack@vcu.edu.

