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Abstract
For strongly connected, pure n-dimensional regular CW-complexes, we show that
evenness (each (n−1)-cell is contained in an even number of n-cells) is equivalent to
generalizations of both cycle decomposition and traversability.
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1 Introduction

Euler’s theorem for connected multigraphs asserts the equivalence of even-degree ver-
tices, decomposition into edge-disjoint cycles, and existence of a closed trail using all
edges. This basic theorem [32, p 64] arose from a problem in recreational mathematics
[32, pp 1–2 ], [7], and has applications to routing [18], [42, pp 231–232].

Recently, Glock, Joos, Kühn, and Osthus [23] obtained a higher-dimensional, com-
binatorial version of Euler’s theorem that applies to regular hypergraphs of a special
type, including complete hypergraphs, subject to a finite set of exceptions.

Here we follow a path pioneered by Grünbaum [25]; we give higher-dimensional
topological analogues of cycle decomposition and closed Eulerian trail. This paper is
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a sequel to [26] (the 2-dimensional case), which introduced our concepts of circlet and
Euler cover (full definitions below). To extend the argument in [26] from 2 dimensions
to n, we use pseudomanifolds and the proof requires a key property (sphericity of
codimension-2 intervals in the face poset [8], [43, p 244]) of regular CW-complexes.

Regular CW-complexes are the spaces obtained by successively attaching closed
balls by homeomorphisms from their boundary (full definitions below). The setting of
regular CW-complexes is natural since Euler’s theorem applies to (and was originally
developed for [20]) multigraphs [32, p 10], where multiple 1-cells can be attached to
the same pair of vertices but the two boundary vertices of an edge must be distinct.
Detailed treatments of regular CW-complexes, including suitability as a framework
for pseudomanifolds, are in [43, Chap. IX] and [8].

In Sect. 2, we review regular CW-complexes, describe the concepts, and state our
main result (Theorem 1). Section 3 derives some properties of our two gadgets, Sect. 4
proves Theorem 1, and Sect. 5 surveys the vast literature. The last section discusses
earlier simplicial versions of our gadgets, as well as applications.

2 Definitions andMain Result

A k-cell is a closed ball in Rk . A 0-complex is a finite set of points. In this paper, for
n ≥ 1, we write n-complex to denote a finite regular CW-complex [44, p 94] (regular
means that the k-cells, for 1 ≤ k ≤ n, are attached by homeomorphisms on their
boundaries). In an n-complex K , we call the n-cells facets, the (n−1)-cells sides, and
the (n−2)-cells corners. The degree degK (s) of a side s is the number of facets that
contain it. An n-complex is even if each side has even degree and is pure if each cell
is contained in a facet. Write K (r) for the set of r -cells; the r-skeleton Kr denotes
the union of all cells of dimension at most r . The boundary ∂(c) of an r -cell c is
an (r−1)-sphere and c \ ∂(c) is the interior of c. The interior of a 0-cell is the point
itself. A complex is the disjoint union of the interiors of its cells. The cells are also
called faces and the faces define a poset under inclusion. The topology of a regular
CW-complex is determined by its face poset [8].

If S is any non-empty set of n-cells of K , letK(S), the subcomplex induced by S, be
the intersection of all n-subcomplexes L for which S ⊆ L ⊆ K . Induced complexes
are pure. The dual K∗ is the multigraph whose vertices are the facets of K ; an edge
joins two vertices once for each side contained in the corresponding two facets.We say
K is strongly connected (s-connected) if K ∗ is connected; K is a pseudomanifold
if it is pure, s-connected, and each side has degree 2 ( [8, 43, 51]). A pseudomanifold
is amanifold if each point has a neighborhood homeomorphic to Rn .

A continuous function ϕ : K → L between n-complexes is a cellular map if
ϕ(Kr ) ⊆ Lr for 0 ≤ r ≤ n [43, p 232].

A union of subcomplexes is facet-disjoint if each facet is in a unique subcomplex.
Write K = J �L if K is the facet-disjoint union of J and L.

One can generalize the concept of cycle by noticing that cycles are 1-manifolds
(more specifically, 1-spheres). In higher dimensions, one can try to decompose regular
CW-complexes into manifolds or spheres. See [27, 29–31, 34] and Sect. 5.
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Fig. 1 A family of circlets C(k,m). Let k ≥ 3 and let m ≥ 4 be even. To construct the 2-circlet C(k,m),
begin with the 2-complex illustrated here, whose 1-skeleton is the graph Cartesian product K1,m�Pk+1.
Identify the left K1,m with the right K1,m by a twist of 2π/m, as indicated. The result is a finned 2-complex
with aCkm boundary. Cap this boundary by a polygon with km sides. The result is a 2-circlet, as the km-gon
shares an edge of degree 2 with any square, so any even n-subcompex that contains the km-gon necessarily
contains all the squares too

A cycle is aminimal even graph: (i) its vertices have positive even degree and (ii)
there is no proper subgraph whose vertices all have positive even degree. We will call
the n-dimensional analogue an “n-circlet.”

An n-circlet [26] is a pure even n-complex which is not the facet-disjoint union of
two pure even n-complexes (equivalently, its set of facets cannot be partitioned into
two non-empty sets, each inducing an even n-complex); cf. Fogelsanger [22].

Lemma 1 For K an even pure n-complex, K is a circlet ⇐⇒ K is minimal even.

Proof We show the contrapositives. If K is a facet-disjoint union of two pure even n-
complexes K = J � L , then J is a proper subcomplex of K and J is even. Conversely,
if J is a proper even subcomplex of K , then put L := K \ J := K (K (n) \ J (n)) so
that K = J � L . To see that L is even, consider side s ∈ L(n−1). If s /∈ J (n−1),
then degL(s) = degK (s). If s ∈ J (n−1), then degK (s) = degJ (s) + degL(s), where
degK (s) > degJ (s) and both are positive even, so degL(s) is positive even. ��

Every n-pseudomanifold is an n-circlet. For n = 1 every circlet is a pseudomanifold
(in fact, a sphere), but for n > 1 that is no longer the case, see Fig. 1.

A continuous map ϕ : M → K is an Euler cover if for n ≥ 1, K is a pure even
n-complex, M is an n-pseudomanifold, Mn−2 = Kn−2, ϕ|Mn−2 = id, and ϕ induces
a bijection from M (n) to K (n) mapping facets homeomorphically. Note ϕ is cellular.

The case n = 1 deserves special mention. As a 1-pseudomanifold is just a cycle,
M is a cycle, and Mn−2 = Kn−2 = ∅, so the condition ϕ|Mn−2 = id holds vacuously.
Figure 2 shows a 1-dimensional Euler cover, and illustrates that this coincides with the
notion of an Euler circuit. Figure 3 gives an example of a 2-dimensional Euler cover.
(In [26], we addressed the case n = 2 and required M to be a manifold.)

We can now formulate our result.

Theorem 1 Let K be a pure, s-connected n-complex. The following are equivalent:

(i) K is even,
(ii) K is a facet-disjoint union of circlets,
(iii) There exists an n-pseudomanifold M and an Euler cover ϕ : M → K.
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Fig. 2 An Euler cover of an even 1-complex K . A vertex labeled x in M maps to x in K . An edge labeled
xy in M maps to xy in K
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Fig. 3 An Euler cover ϕ : M → �2
5 of the 2-skeleton of the 5-dimensional simplex �5, which has six

vertices 1, 2, 3, 4, 5, 6, fifteen edges and twenty triangular faces. The pseudomanifold M has six vertices,
thirty edges and twenty triangular faces (including the unbounded face in this planar drawing). Vertices
with the same labels are identified, so M is a sphere with six pinchpoints. Note that the three shaded areas
of M map to three pairwise face-disjoint tetrahedron boundaries in K . The white triangles (including the
unbounded region) map to the boundary of an octahedron in K . This decomposes K as a face-disjoint union
of four spheres (circlets)

3 Some Properties of Circlets and Pseudomanifolds

We begin with some lemmas that will be needed in the proofs. The following is stated
in [43, p 244] (see [8] for the stronger property “interval sphericity”mentioned above).

Lemma 2 In an n-complex, for 2 ≤ r ≤ n, if an r-cell γ contains an (r−2)-cell α,
then there are exactly two (r−1)-cells β1, β2 with α ⊂ β j ⊂ γ , j = 1, 2.

Proof The interiors of the cells partition the complex, so α ⊂ ∂γ . But γ is an r -ball
so its boundary is an (r−1)-sphere, which is a manifold and hence a pseudomanifold.
Thus, α is in the boundary of exactly two (r−1)-cells, β1 and β2, which are both in
∂γ and so contained in γ . ��
Klee [39] proved that the dual graph M∗ of a simplicial n-manifold M is (n+1)-
connected, but this depends on the simplicial structure; the dual of a regular CW-
complex can have vertices of degree 2. In a connected multigraph, an edge is a bridge
if its removal disconnects the graph. The following analogue of Klee’s result uses
Lemma 2 and is applied to prove strong connectedness in Proposition 2 below.
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Lemma 3 Let M be any regular CW-complex that is an n-pseudomanifold. Then the
dual multigraph M∗ is bridgeless.

Proof We show that any edge e of M∗ lies on a cycle. Suppose e is determined by side
s. Since M is a pseudomanifold, s lies in exactly two facets f1, f2 ∈ M (n). Choose
a corner c of M that is contained in s and let F(c) be the set of all facets of M that
contain c. Observe that f1, f2 ∈ F(c). Now define a multigraph M∗(c) with vertex
set F(c), where facets f and f ′ are adjacent in M∗(c) once for every side s such that
c ⊂ s and s ⊆ ∂ f ∩ ∂ f ′. By Lemma 2, each vertex has degree 2. Hence, M∗(c) is a
vertex-disjoint union of cycles. But e is an edge of M∗(c) ⊆ M∗. ��

An interesting aspect of circlets (though not needed in the development below) is
that they form a matroid. Indeed, a circuit matroid [32, p 40] is a given finite set X
and a family C of non-empty subsets of X such that

(a) no proper subset of an element in C is in C, and
(b) if C1,C2 ∈ C, C1 �= C2, and x ∈ C1 ∩ C2, then there is an element C ∈ C such

that C ⊆ C1 ∪ C2 \ {x}.
Lemma 4 The circlets of an n-complex K form a circuit matroid on K (n).

Proof Let C be the collection of all subsets of K (n) which induce circlets. By our
Lemma 1, condition (a) holds for C. To get (b), note that for C1 �= C2 ∈ C and x any
facet in C1 ∩ C2, we have C1 �C2 ⊆ C1 ∪ C2\{x}, where

C1 �C2 := (C1 \ C2) ∪ (C2 \ C1) = (C1 ∪ C2) \ (C1 ∩ C2) ⊆ (C1 ∪ C2) \ {x}.

If s ∈ K (C1 �C2)
(n−1), then t := deg(s, K (C1 �C2)) > 0. If s ∈ K (C1\C2)

(n−1),
then t = deg(s,C1) − deg(s,C2) which is the difference of even numbers. Hence,
K (C1 �C2) is an even complex and contains some member of C by Lemma 1. ��

4 Machinery and proof of main theorem

Here we introduce notation, construct Euler covers, and prove Theorem 1.
Let K be a pure, even n-complex. For each s in K (n−1), let Fs ⊆ K (n) be the set of

facets of K that contain side s. Let Ps := (P1, . . . , Prs ) be a fixed ordered partition
of Fs into

rs := |Fs |/2 = degK (s)/2

unordered pairs Pj of distinct facets. When necessary, we show the complex from
which pairs or facets are taken by a superscript (e.g., if L is a subcomplex of K and s
is a side of L , one has F L

s ⊆ FK
s ). Given σ ∈ Fs , let gs(σ ) satisfy {σ, gs(σ )} = Pj ,

for some j , 1 ≤ j ≤ rs . Observe that gs is an involution on Fs for each side s of K .
Write g for the collection of involutions {gs : s ∈ K (n−1)} arising from a set of

partitions {Ps : s ∈ K (n−1)}. (Informally g is referred to as a “gluing,” because it
will be used to attach a facet σ to facet gs(σ ) in a manner described in the proof of
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Proposition 1). For each side s ∈ K (n−1) and facet σ ∈ Fs , let ν(s, σ ) be the unique
index 1 ≤ ν(s, σ ) ≤ rs for which

Ps = (P1, . . . , Prs ) �⇒ Pν(s,σ ) = {σ, gs(σ )}. (1)

Proposition 1 Every circlet K has an Euler cover.

Proof We first build an n-complex M from K and any “gluing” g as follows:

(1) Define Mn−2 := Kn−2 (there is no change in the (n−2)-skeleta!);
(2) Put M (n−1) := {s × { j} : s ∈ K (n−1), 1 ≤ j ≤ rs} where each s × { j} is a copy

of s attached to M (n−2) in the same way as s is attached to K (n−2). Thus, Mn−1 is
obtained from Kn−1 by removing the interior of each side s and replacing it with
rs identical copies (like parallel edges) all with boundaries attached identically to
the (n−2)-skeleton of M as s is attached to the corresponding skeleton of K .

(3) This is where the gluing g is used. Let M (n) := K (n) but we will attach these
n-cells differently and denote them {σ̂ : σ ∈ K (n)}. For each facet (σ, a) of K ,
with attaching map a : ∂σ → Kn−1, a

(
∂σ

)
is an (n−1)-sphere in Kn−1 and

a(∂σ ) = (a(∂σ ))n−2 ∪
⋃

s∈a(∂σ )n−1

int(s)

is the disjoint union of its (n−2)-skeleton and the interiors of its (n−1)-cells.
Using the same partition of ∂σ̂ , we define

â : ∂σ̂ → Mn−1

to be the identity on the (n−2)-skeleton but on the interior of the (n−1)-cell in
∂σ̂ corresponding to s, instead of attaching to s, one has

â|a−1(s) = a|a−1(s) × {ν(s, σ )}.

The map â is a homeomorphism as it is the identity on the (n−2)-skeleton, a
homeomorphism on the disjoint interiors of the sides, and all s ×{ j} have disjoint
interiors.

Define a continuous map ϕ : M → K which extends the identity on the (n−2)-skeleta
by mapping s × { j} to s by first-coordinate projection (x, j) �→ x for x ∈ s (for each
s, 1 ≤ j ≤ rs), and mapping σ̂ by the identity on the interior of the facet.

We now check that M is a pseudomanifold. Indeed, each side is of degree 2. Since
K is pure, so is M . To see that M is s-connected, let N be a strong component of
M ; that is, let N be the subcomplex of M corresponding to a connected component
of M∗. Let L := K

(
ϕ({σ : σ ∈ N (n)})) denote the subcomplex of K induced by the

ϕ-images of N (n). Any side s in L is the image of r(N , s) := |{ j ∈ [rs] : s × j ∈ N }|
sides in N so s is incident to the ϕ-images of the 2r(N , s) facets of N incident to the
sides in N mapping to s. Thus, L is even and by Lemma 1, L = K , so N = M ; hence,
M is a pseudomanifold, and ϕ : M → K is an Euler cover. ��
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Put K̂g := M and let ϕg : K̂g → K be as in the proof of Proposition 1. The map
κ : g �→ ϕg is an injection from the set of gluings of the circlet K to the set of its Euler
cover maps. But the pseudomanifolds themselves can be homeomorphic. (There are
very many gluings but in dimension 2, the feasible range of the Euler characteristic of
the resulting surface isn’t large [26]). The correspondence is also surjective. For any
Euler cover ϕ : V → K , the gluing gϕ of K , defined for s ∈ K (n−1) by (gϕ)s(σ ) = σ ′
if and only if {σ, σ ′} is the image under ϕ of two faces in V meeting in a side ŝ for
which ϕ(ŝ) = s, satisfies ϕ = ϕ(gϕ).

One also may deduce that for any Euler cover ϕ : V → K : for each ŝ ∈ V (n−1),
ϕ(ŝ) = s ∈ K (n−1); for each s ∈ K (n−1), ϕ−1(int(s)) = int(s) × {1, . . . , rs}, where
rs = degK (s)/2; and ϕ|s×{ j} is first-coordinate projection for 1 ≤ j ≤ rs . Hence, an
Euler cover must map each cell homeomorphically to a cell of the same dimension,
but the correspondence of sides in V to sides in K is a many-to-one surjection.

For σ, τ, μ, λ ∈ FK
s with {σ, τ } and {μ, λ} paired by a gluing, a recombination is

a pairing {σ,μ}, {τ, λ} or {σ, λ}, {τ, μ}. Recall “�” means facet-disjoint union.

Proposition 2 Let K = L � C be a strongly connected pure n-complex, let L have
an Euler cover, and let C be a circlet. Then K has an Euler cover.

Proof Since K = L � C is strongly connected, there exists some s in L(n−1)∩C (n−1).
Let ψ : N → L be an Euler cover. By Proposition 1 and its proof, there is an Euler
cover ξ : Y → C with N ∩ Y = N (n−2) ∩ Y (n−2) = L(n−2) ∩ C (n−2), so we may
choose a distinct pair of sides ŝi , s̃ j , with ŝi ∈ ψ−1(s) for some 1 ≤ i ≤ r Ls and
s̃ j ∈ ξ−1(s), for 1 ≤ j ≤ rCs . As L and C are face-disjoint, FK

s = F L
s ∪FC

s (disjoint
union).

We first sketch the remainder of the argument and then fill in the details. Apply
recombination to PL

i and PC
j , but keep all other facet-pairs, determined by ψ and

ξ , resp., unchanged. Let g be the resulting gluing and let M = K̂g . Then M is a
pseudomanifold and there is an Euler cover from M to K . The details now follow.

There are two unique facets σ ′, τ ′ in N containing ŝi and two unique facets μ′, λ′
in Y containing s̃ j . Let σ, τ, μ, λ be the cells in L and C , resp., to which σ ′, τ ′, μ′, λ′
project under ψ and ξ , resp. Then PL

i = {σ, τ } and PC
j = {μ, λ}.

Let PL
s ∗ PC

s be the concatenation of the two sequences of unordered facet-pairs
and let PK

s be the result of applying a recombination to it so that PL
i and PC

j are
deleted while {σ,μ} and {τ, λ} are added in their place.

For any side t , PK
t := PL

t ∗ PC
t ; one of the sequences is empty unless t is in both

L and C . This defines a family of pairwise-partitions {PK
s : s ∈ K (n−1)} and so a

gluing g. The regular CW-complex M := K̂g is obtained from N ∪ Y by changing
the attaching map of the n-cell τ ′ so it attaches to s̃ j instead of ŝi and of μ′ so it
attaches to ŝi (instead of s̃ j ). All other attaching maps for cells in M remain the
same. By construction, M is pure and every side has degree 2. Further, M is strongly
connected. Indeed, M∗ = (N∗ − σ ′τ ′) ∪ (Y ∗ − μ′λ′) + σ ′μ′ + τ ′λ′. The first and
second parenthesized terms are connected by Lemma 3 so adding the last two edges
σ ′μ′ and τ ′λ′, we obtain a connected multigraph. Thus, M is a pseudomanifold.

An Euler cover ϕ : M → K is now determined by the cellular maps ψ and ξ , and
the recombination. As N and Y are disjoint in dimensions n−1 and n, while being
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identical in lower dimensions, the functions ψ and ξ define a cellular map

ψ ∪ ξ : N ∪ Y → L � C, (2)

and ψ ∪ ξ is the identity on the (n−2)-skeleton. Indeed, the interiors of the n and
(n−1)-cells are pairwise-disjoint, so continuous functions defined on open cells in
N and open cells in Y define a continuous function on the union. Moreover, ψ and
ξ induce bijections ψn : N (n) → L(n) and ψn : Y (n) → C (n), so (ψ ∪ ξ)n :
(N ∪ Y )(n) → K (n) is a bijection. Let ϕ : M → K be the continuous map induced
by ψ ∪ ξ . Then ϕ is an Euler cover of K . ��

We can now prove Theorem 1. Let K be a pure, strongly connected n-complex.

Proof (i)⇒(ii) (even implies decomposable). Let K be even. If it cannot be decom-
posed, K is a circlet. If K = K1 � K2, where K1, K2 are even, then each of K1
and K2 is either a circlet or can be decomposed as a face-disjoint union of even
n-complexes. By finiteness, K = K1�· · ·�Kn is a facet-disjoint union of circlets.
(ii)⇒(iii) (decomposable implies coverable). Let K be a facet-disjoint union of r
circlets. If r = 1, use Proposition 1. For r ≥ 2, form a graph with vertices the
set of r circlets, where two facet-disjoint circlets are adjacent if they intersect in
a side of K . As K is strongly connected, this graph is connected. Any nontrivial
connected graph has at least two non-cutpoints, corresponding to vertices at dia-
metric distance. Hence, there exists a circlet C in K such that K = K ′ �C , where
K ′ is both strongly connected and the facet-disjoint union of r − 1 circlets. By
Proposition 2, truth for r follows from truth for r − 1, which holds inductively.
(iii)⇒(i) (coverable implies even). Let ϕ : M → K be an Euler cover. Each side
of M is in exactly two facets, so the degree of a side in K is twice the number of
sides in M which map to it.

��

5 Historical Context

Euler saw that the following are equivalent for a connected multigraph G [32, p 64]:

(i) (evenness) Each vertex of G has positive even degree,
(ii) (decomposability) G is an edge-disjoint union of cycles,
(iii) (traversability) G has an Eulerian tour (a closed trail covering each edge).

Though the theorem was implicit in Euler’s paper [20] from 1736, rigorous proof
of the equivalence of evenness and decomposability-into-cycles was only first given
by Veblen [53] in 1912, while proof that evenness is equivalent to the existence of a
closed Eulerian trail is due to Hierholzer (1873) [33]; see Biggs et al. [7, pp. 1–11] for
a translation of [20, 21] from the Latin.

We now review the literature. There are five distinct parts: (1) Our previous work
motivated by an attempt to extend the equivalence of (i) and (ii); (2) Earlier work in
similar directions also implicitly aimed at an Eulerian equivalence; (3) The general
program [25] of replacing graphs by complexes; (4) The work on hypergraphs which
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aimed at an Euler equivalence between (i) and (iii), replacing each by appropriate
notions for higher order hypergraphs; (5) Generalizations of (iii) to hypergraphs.

(1) In [28, p 533] we proposed to generalize Euler’s theorem by decomposing even
2-dimensional convex cell complexes into facet-disjoint unions of manifolds. As a
step toward this goal, we showed that the even 2-skeleta of the Platonic complexes
can be split into tori and spheres [29, 34] and managed with only spheres (for most
cases) in [27]. Further,weprovided facet-disjoint sphere decompositions in [30] for
even k-skeleta of n-dimensional Platonic polytopes for all k, both constructively
(in some special cases) and, in general, asymptotically and existentially (using
Keevash [38]). We also partitioned the 2-skeleton of the (odd-dimensional) d-
hypercube polytope (d ≥ 3 odd) in [31] into copies of the genus surface of the
hypercube graph Qd .

(2) The idea of finding surfaces within complexes and of decomposing skeleta of
complexes into face-disjoint unions of surfaces had appeared earlier (as we dis-
covered). In his 1974 thesis [49], Schulz defined r-Hamiltonian k-manifolds in
the k-skeleton of a complex K as subcomplexes of K which are closed manifolds
and contain the entire r -skeleton Kr ; see also [6, 40, 41]. In fact, the idea is already
present in [13].

Spreer [52] observes that one may want to write the skeleton of a triangulated man-
ifold as a facet-disjoint union of parts with given properties, e.g., compact manifolds
or compact manifolds with boundary. One could use the closed simplexes (or cells),
but might prefer a smaller number of parts. For the 2-skeleton of the d-cross-polytope,
he found [52] a set of facet-disjoint 0-Hamiltonian tori and Klein bottles while we
partitioned it into tetrahedral and octahedral boundary spheres [29].

A related issue isWhich surfaces are homeomorphic to subcomplexes of polytopes?
Altshuler [1] showed that the sphere and the torus are the only surfaces which are
subcomplexes of a cyclic 4-polytope, and the torus must 0-Hamiltonian. In contrast, a
stacked 4-polytope [2], has a much larger family of embeddable surfaces . Effenberger
and Kühnel [19] list the 1-Hamiltonian surfaces for the Platonic polytopes.

(3) Sos, Erdos, and Brown [50] solved a problem for 2-complexes, analogous to
Turan’s: “What is the maximum number of 2-simplexes a simplicial-2 complex may
contain without containing a subcomplex which is a triangulation of the 2-sphere?”
If the complex has n vertices, the answer is O(n3/2). The idea of spanning tree of a
graph has been generalized to complexes by Pippert and Beineke [46], Dewdney [15],
and Bolker [9], and studied as cellular trees (e.g., Duval, Klivans, & Martin [17]) and
hypertrees (e.g., Kalai [36], Mathew, Newman, Rabinovich, & Rajendraprasa [45]).

(4) The generalization of Glock-et-al [23] is based on the idea of “universal cycle”
by Chung, Diaconis, and Graham [11, 12]. A cyclic sequence of vertices in an r -
uniform hypergraph is a tight Eulerian tour [23] if each (moving) window of length
r is an r -set and each hyper-edge appears exactly once. Thus, “Eulerian tour” retains
the property of being a closed sequence of vertices in their hypergraph model.

It follows from existence of a tight Eulerian tour that r divides the vertex degrees;
conversely, [11, 12] conjectured that for large n, divisibility implies existence. This
was proved in [23] using a method of [24] which extends [38] (existence of designs)
from complete r -uniform hypergraphs to a larger set of r -uniform hypergraphs (with
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sufficiently many vertices) satisfying certain conditions. A tight r-uniform m-cycle
is a cyclic sequence of m vertices such that each r -term consecutive subsequence
appears exactly once. For m = 2r , Glock-et-al. [23] show that, again under certain
technical conditions in addition to divisibility, a decomposition into such tight cycles
always exists for m sufficiently large.

(5) The concepts of Eulerian and quasi-Eulerian hypergraph are considered in
Wagner’s 2019 thesis [54] and in Bahamian & Sajna [3] and Sajna & Steimle [48].
Bermond et al. [5] introduced Hamiltonian hypergraphs according to [37].

For an n-complex K , let H(K ) be the non-uniform hypergraph with V (H(K )) =
K (n), where the hyperedges are the Fs , s ∈ K (n−1). If K is Eulerian, we wonder if
the hypergraphH(K ) is Eulerian or Hamiltonian. Perhaps this is related to “Eulerian
families” in hypergraphs [3, 48, 54].

6 Discussion

The notions of evenness and of circlet have also appeared previously in the litera-
ture. Fogelsanger [22] defined a minimal simplicial homology cycle over an Abelian
group in his 1988 thesis. Our notion of circlet corresponds to the special case of Z2-
coefficients but is alsomore general since it applies to regular CW-complexes. See also
Cruickshank, Jackson & Tanigawa [14, p 3] who call simplicial circlets “simplicial
circuits.” In fact,Welsh [55, p 180] gives a different proof of Lemma 4 based on binary
matroid theory. We thank a referee for the references in this paragraph.

Our extension of an Eulerian trail into higher dimensions is the implementation
of a simple idea: Given a regular CW-complex K that obeys all pseudomanifold
conditions except that its sides have positive even degrees, K can be transformed
into a pseudomanifold by replacing each side (of degree r ) by r/2 sides of degree
2 and appropriately rearranging the attaching maps of the facets while leaving the
codimension-2 skeleton unchanged. When K is 2-dimensional, a relatively simple
argument suffices [26], but for dimensions 3 and above, we needed Lemma 3. While
it is nice to find such a pseudomanifold, with its natural map to K , the nature of
pseudomanifolds in higher dimensions [4] is mostly unknown.

Circletsmay provide useful bases for homology of complexes such as are calculated
in topological data analysis (e.g, [10, 16], cf. [35]). Every element in (n-dimensional)
Z2-homology is represented by an even (n-)subcomplex. If n = 1, then such even-
degree graphs are edge-disjoint unions of cycles and so are sums of cycles, and
furthermore, these cycles are contained within the graph. This property need not
hold in higher dimensions; e.g., the 2-d circlet C(k,m) in Fig. 1 has no pseudosurface
subcomplex. However, every pure even subcomplex is the facet-disjoint union of a set
of circlets it contains. Nonunique circlet-decompositions are given in [26].

Suppose we have a pure, even, s-connected n-complex K such that every facet has
an even number of sides and such that two facets share at most one common side. If
ϕ : M → K is an Euler cover, then M∗ is a simple Eulerian graph; thus, the line
graph of M∗ is Hamiltonian [32, p 83]. Hence, one can cyclically order all the sides of
M such that each consecutive pair of sides are in the boundary of a (unique) common
facet. For n ≥ 3, this tour of the sides could be prescribed by a simple closed curve in
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M obtained by splitting the vertex of M∗ representing a facet σ of M into k copies if
the facet has 2k sides with all k of these vertices in the interior of σ and joining them
into a simple closed non-self-intersecting curve as shown in Fig. 2. This closed curve
will pass exactly once through each side of M .

In the practical case of a 2-complex in 3-dimensions, something like an Euler cover
appears in robotics [47, Fig. 4],where this concept is implicitly used to studymovement
trajectories separated by obstacles, via a simplicial complex based on measurements.
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