Note

GRAPH EXPONENTIATION AND NEIGHBORHOOD RECONSTRUCTION

RICHARD H. HAMMACK¹

Department of Mathematics and Applied Mathematics Virginia Commonwealth University Richmond, VA 23284-2014, USA

e-mail: rhammack@vcu.edu

Abstract

Any graph G admits a neighborhood multiset $\mathcal{N}(G) = \{N_G(x) \mid x \in V(G)\}$ whose elements are precisely the open neighborhoods of G. We say G is neighborhood reconstructible if it can be reconstructed from $\mathcal{N}(G)$, that is, if $G \cong H$ whenever $\mathcal{N}(G) = \mathcal{N}(H)$ for some other graph H. This note characterizes neighborhood reconstructible graphs as those graphs G that obey the exponential cancellation $G^{K_2} \cong H^{K_2} \Longrightarrow G \cong H$.

Keywords: neighborhood reconstructible graphs, graph exponentiation.

2010 Mathematics Subject Classification: 05C60, 05C76.

Our graphs are finite and may have loops, but not parallel edges. The open neighborhood of a vertex x of a graph G is $N_G(x) := \{y \in V(G) \mid xy \in E(G)\}$. Notice that $x \in N_G(x)$ if and only if $xx \in E(G)$, that is, there is a loop at x.

To any graph G there is an associated neighborhood multiset $\mathcal{N}(G) = \{N_G(x) \mid x \in V(G)\}$ whose elements are the open neighborhoods of G. It is possible that $\mathcal{N}(G) = \mathcal{N}(H)$ but $G \ncong H$. Figure 1 shows the simplest instance of this. Here $G \ncong H$ but $\mathcal{N}(G) = \{\{0\}, \{1\}\} = \mathcal{N}(H)$. Figure 2 shows a more complex and interesting example.

$$\begin{matrix} & & & & & N_G(0) = \{1\} = N_H(1) & & & & & \\ \hline 0 & & & & \\ & & & & N_G(1) = \{0\} = N_H(0) & & & 0 \\ & & & & & \end{matrix}$$

Figure 1. Two non-isomorphic graphs with the same neighborhood multiset.

¹Supported by Simons Collaboration Grant for Mathematicians 523748.

R. Hammack

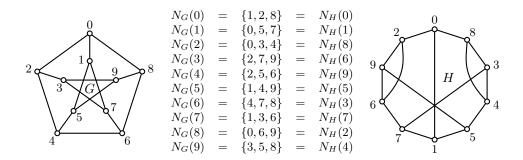


Figure 2. The Petersen graph is not neighborhood reconstructible. It is paired here with a different graph that has the same neighborhood multiset. Example from Mizzi [5, § 3.9].

A graph G is called neighborhood reconstructible if $\mathcal{N}(G) = \mathcal{N}(H)$ implies $G \cong H$ for any graph H with V(H) = V(G). Figure 2 shows that the Petersen graph is not neighborhood reconstructible. Aigner and Triesch [1] attribute the neighborhood reconstruction problem to Sós [9]. They note that deciding if a graph is neighborhood reconstructible is NP-complete.

Given graphs G and K, the graph exponential G^K is the graph whose vertex set is the set of all functions $V(K) \to V(G)$, where two functions f, g are adjacent precisely if $f(x)g(y) \in E(G)$ for all $xy \in E(K)$. (See [6, 8].) If $V(K) = \{v_1, \ldots, v_n\}$, then a function $f: V(K) \to V(G)$ can be identified with an n-tuple $f = (x_1, \ldots, x_n) \in V(G)^n$ signifying $f(v_i) = x_i$.

We are interested exclusively in G^{K_2} . Note $V(G^{K_2}) = V(G) \times V(G)$, and two functions (x_1, x_2) and (y_1, y_2) are adjacent if and only if $x_1y_2 \in E(G)$ and $x_2y_1 \in E(G)$. That is,

$$E(G^{K_2}) = \{(x_1, x_2)(y_1, y_2) \mid x_1 y_2 \in E(G) \text{ and } x_2 y_1 \in E(G)\}.$$

See Figure 3, which shows that $G^K \cong H^K$ does not necessarily imply $G \cong H$.

$$\binom{1}{0}\binom{1}{0}^{K_2} = \binom{(0,1)}{0}\binom{(1,1)}{0} \qquad \binom{1}{0}\binom{1}{0}^{K_2} = \binom{(0,1)}{0}\binom{(1,1)}{0}\binom{(1,1)}{0}$$

Figure 3. Two exponentials G^{K_2} and H^{K_2} . This shows $G^K \cong H^K$ may not imply $G \cong H$.

Actually, the conditions under which $G^K \cong H^K$ implies $G \cong K$ are not fully understood today. (The issue is further complicated by the fact that there are at least two definitions of graph exponentiation; compare [4].) This note links one instance of this *exponential cancellation* to neighborhood reconstruction. Our

main result is that G is neighborhood reconstructible if and only if $G^{K_2} \cong H^{K_2}$ implies $G \cong H$ for all graphs H. To understand why we might expect this, consider Proposition 1 below, whose proof is almost automatic. (Figures 1 and 3 illustrate Proposition 1.)

Proposition 1. If G and H are two graphs on the same vertex set and $\mathcal{N}(G) = \mathcal{N}(H)$, then $G^{K_2} \cong H^{K_2}$.

Proof. Say $\mathcal{N}(G) = \mathcal{N}(H)$. As G and H have the same neighborhood multiset, there is a bijection $\varphi: V(G) \to V(H)$ for which $N_G(x) = N_H(\varphi(x))$ for each $x \in V(G)$. (Such map φ is unique if no two vertices of G have the neighborhood; otherwise there is more than one φ .) The bijection $\lambda: V(G^{K_2}) \to V(H^{K_2})$ where $\lambda(x,y) = (\varphi(x),y)$ is an isomorphism. Indeed,

$$(x,y)(u,v) \in E\left(G^{K_2}\right) \iff v \in N_G(x) \text{ and } y \in N_G(u)$$

$$\iff v \in N_H(\varphi(x)) \text{ and } y \in N_H(\varphi(u))$$

$$\iff (\varphi(x),y) (\varphi(u),v) \in E(H^{K_2})$$

$$\iff \lambda(x,y) \lambda(u,v) \in E(H^{K_2}).$$

We will use this proposition in the proof of our main result. We will also need the *direct product* of graphs: $G \times H$ is the graph whose vertex set is the set Cartesian product $V(G \times H) = V(G) \times V(H)$, and whose edges are

$$E(G \times H) = \{(x, y)(x'y') \mid xx' \in E(G) \text{ and } yy' \in E(H)\}.$$

See Chapter 8 of [2] for a survey of the direct product.

For a positive integer k, the direct power G^k is $G \times \cdots \times G$ (k factors). Any square G^2 admits a mirror automorphism $\mu: G^2 \to G^2$ of order 2, where $\mu(x,y) = (y,x)$. From the definitions it is immediate that

- (1) $(x,y)(u,v) \in E(G^2)$ if and only if $(x,y)\mu(u,v) \in E(G^{K_2})$,
- (2) $(x,y)(u,v) \in E(G^{K_2})$ if and only if $\mu(x,y)(u,v) \in E(G^2)$.

Recall the following two results (by Lovász) concerning direct powers and products. (They are Theorems 2 and 5, respectively, in [7].)

Proposition 2. If $G^k \cong H^k$ for a positive integer k, then $G \cong H$.

Proposition 3. If $G \times K \cong H \times K$, then there is an isomorphism $G \times K \to H \times K$ of form $(x, y) \mapsto (\lambda(x, y), y)$ for some map $\lambda : G \times K \to H$.

Actually, we will only need a weaker instance of Proposition 3, one that is easy to prove from scratch. If $G \times K_2 \cong H \times K_2$, then there exists an isomorphism $G \times K_2 \to H \times K_2$ of form $(x,y) \mapsto (\lambda(x,y),y)$.

R. Hammack

We are ready for our main theorem.

Theorem 4. A graph G is neighborhood reconstructible if and only if the exponential cancellation law $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$ holds for any graph H.

Proof. Say the exponential cancellation law $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$ holds. Let $\mathcal{N}(G) = \mathcal{N}(H)$ for a graph H with V(H) = V(G). Proposition 1 yields $G^{K_2} \cong H^{K_2}$, whence $G \cong H$. Thus G is neighborhood reconstructible.

Conversely, suppose G is neighborhood reconstructible. Say $G^{K_2} \cong H^{K_2}$ for some graph H. We must show $G \cong H$.

Put $V(K_2) = \{0, 1\}$. Take an isomorphism $\varphi : G^{K_2} \to H^{K_2}$. Using (1) and (2), observe that

$$(x,y)(u,v) \in E(G^2) \iff (x,y)\,\mu(u,v) \in E(G^{K_2})$$

$$\iff \varphi(x,y)\,\varphi\mu(u,v) \in E(H^{K_2})$$

$$\iff \mu\varphi(x,y)\,\varphi\mu(u,v) \in E(H^2).$$

From this we get an isomorphism $\Theta: G^2 \times K_2 \to H^2 \times K_2$ defined as

$$\Theta((x,y),\varepsilon) = \begin{cases} (\varphi\mu(x,y),\varepsilon) & \text{if } \varepsilon = 0, \\ (\mu\varphi(x,y),\varepsilon) & \text{if } \varepsilon = 1. \end{cases}$$

From $G^2 \times K_2 \cong H^2 \times K_2$ we get $G^2 \times K_2 \times K_2 \cong H^2 \times K_2 \times K_3$, yielding $(G \times K_2)^2 \cong (H \times K_2)^2$. By Proposition 2 we have $G \times K_2 \cong H \times K_2$. Then Proposition 3 guarantees an isomorphism $\theta: G \times K_2 \to H \times K_2$ having form

$$\theta(x,\varepsilon) = \begin{cases} (\lambda_0(x),\varepsilon) & \text{if } \varepsilon = 0, \\ (\lambda_1(x),\varepsilon) & \text{if } \varepsilon = 1 \end{cases}$$

for two bijections $\lambda_0, \lambda_1 : V(G) \to V(H)$, which (by definition of the direct product) necessarily satisfy $xy \in E(G)$ if and only if $\lambda_0(x)\lambda_1(y) \in E(H)$.

Now form a graph H' on V(G) whose edges are precisely $\lambda_1^{-1}(u)\lambda_1^{-1}(v)$ for each $uv \in E(H)$. Thus $\lambda_1^{-1}: H \to H'$ is an isomorphism.

We claim that $N_G(x) = N_{H'}(\lambda_1^{-1}\lambda_0(x))$ for each $x \in V(G) = V(H')$. Note $y \in N_G(x)$ if and only if $xy \in E(G)$, if and only if $\lambda_0(x)\lambda_1(y) \in E(H)$, if and only if $\lambda_1^{-1}\lambda_0(x)\lambda_1^{-1}\lambda_1(y) \in E(H')$, if and only if $\lambda_1^{-1}\lambda_0(x)y \in E(H')$, if and only if $y \in N_{H'}(\lambda_1^{-1}\lambda_0(x))$. Thus indeed $N_G(x) = N_{H'}(\lambda_1^{-1}\lambda_0(x))$.

Consequently $\mathcal{N}(G) = \mathcal{N}(H')$, so $G \cong H'$ because G is neighborhood reconstructible. But $H' \cong H$, so $G \cong H$.

The present note is a sequel to [3], which characterizes neighborhood reconstructible graphs as those graphs G which obey the cancellation law $G \times K \cong H \times K \Rightarrow G \cong K$ for all graphs H and K.

Acknowledgment

The author thanks the referee for a prompt response.

References

- [1] M. Aigner and E. Triesch, Realizability and uniqueness in graphs, Discrete Math.
 136 (1994) 3–20.
 doi:10.1016/0012-365X(94)00104-Q
- [2] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition, Series: Discrete Mathematics and its Applications (CRC Press, 2011).
- [3] R. Hammack and C. Mullican, Neighborhood reconstruction and cancellation of graphs, Electron. J. Combin. 24 (2017) #P2.8
- [4] B. Jónsson, Arithmetic of ordered sets, in: I. Rival (Ed.), Ordered Sets (Banff Alta, 1981), Volume 83 of NATO Advanced Study Inst. Ser. C. Math. Phys. Sci. 3–43.
- [5] R. Mizzi, Two-Fold Isomorphisms, Ph.D. Dissertation (University of Malta, 2016).
- [6] L. Lovász, Operations with structures, Acta Math. Acad. Sci. Hungar. 18 (1967) 321–328.
 doi:10.1007/BF02280291
- [7] L. Lovász, On the cancellation law among finite relational structures, Period. Math. Hungar. 1 (1971) 145–156.
 doi:10.1007/BF02029172
- [8] N. Sauer, Hedetniemi's conjecture—a survey, Discrete Math. 229 (2001) 261–292. doi:10.1016/S0012-365X(00)00213-2
- [9] V.T. Sós, *Problem*, in: A. Hajnal and V.T. Sós, (Eds.), Combinatorics Coll. Math. Soc. J. Bolyai 18 (North-Holland, Amsterdam, 1978) 1214.

Received 3 September 2018 Accepted 27 October 2018