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Abstract

Every connected graph G with radius r(G) and independence num-
ber α(G) obeys α(G) ≥ r(G). Recently the graphs for which equality
holds have been classified. Here we investigate the members of this
class that are Cartesian products. We show that for non-trivial graphs
G and H , α(G2H) = r(G2H) if and only if one factor is a com-
plete graph on two vertices, and the other is a nontrivial complete
graph. We also prove a new (polynomial computable) lower bound
α(G2H) ≥ 2r(G)r(H) for the independence number and we classify
graphs for which equality holds.

The second part of the paper concerns independence irreducibility.
It is known that every graph G decomposes into a König-Egervary sub-
graph (where the independence number and the matching number sum
to the number of vertices) and an independence irreducible subgraph
(where every non-empty independent set I has more than |I| neigh-
bors). We examine how this decomposition relates to the Cartesian
product. In particular, we show that if one of G or H is independence
irreducible, then G2H is independence irreducible.
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1. Introduction

This paper explores relationships between Cartesian products of graphs and
recent results on independence. It consists of an introduction followed by two
independent sections. Research on the independence number of a Cartesian
product of graphs has been ongoing [1, 8, 9, 11, 12, 13, 18].

Section 2 concerns those graphs whose independence number and radius
are equal, a class that has recently been characterized [3]. Here we show a
nontrivial Cartesian product G2H belongs to this class if and only if both
G and H are complete and one is K2. We also prove a new polynomial
time computable lower bound α(G2H) ≥ 2r(G)r(H) for the independence
number, and we characterize those graphs for which equality holds.

Section 3 is concerned with the notion of independence irreducibility. A
graph is said to be independence irreducible if every non-empty independent
set I has more than |I| neighbors. It has been shown that any graph can be
decomposed into two unique subgraphs, one independence irreducible and
the other König-Egervary, and that the problem of finding the independence
number of any graph can be reduced in polynomial-time to the problem of
finding the independence number of this independence irreducible subgraph
[14, 15, 16]. The main result of Section 3 is that if one of G or H is in-
dependence irreducible, then so is G2H. Other questions regarding the
relationships between the independence decomposition structure of the fac-
tors and that of the product are discussed. We close with a set of conjectures
and open questions.

To set the stage for all of this, the remainder of this introduction recalls
some fundamental definitions and ideas.

All our graphs are finite and simple. The order of a graph G = (V (G),
E(G)) is n(G) = |V (G)|. The eccentricity of a vertex of a connected graph
is the maximum distance from the vertex to any other vertex. The radius of
G, denoted by r(G), is the minimum eccentricity of the vertices of the graph.
We denote by G〈S〉 the subgraph of G induced on S. The complete graph
on n vertices is denoted by Kn. Our notation is intended to be consistent
with [10].

A subset of V (G) is independent if no two vertices in the subset are
adjacent. A maximum independent set is an independent set of largest car-
dinality. The independence number α(G) is the cardinality of a maximum
independent set. Finding a maximum independent set (MIS) in a graph is
a well-known and widely-studied NP-hard problem [7].
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A matching in G is a set of pairwise non-incident edges, and the matching

number µ(G) is the cardinality of a maximum matching. A graph G is
called König-Egervary if α(G) + µ(G) = n(G). Every bipartite graph is a
König-Egervary graph, but not conversely.

The Cartesian product of graphs G and H is the graph G2H, whose
vertex set is the Cartesian product V (G) × V (H) and whose edges are the
pairs (g, h)(g′ , h′) for which one of the following holds:

1. g = g′ and hh′ ∈ E(H) or,

2. gg′ ∈ E(G) and h = h′.

The product G2H is connected if and only if both G and H connected
[10, Proposition 1.34], and it is bipartite if and only if both G and H are
bipartite. Moreover, if CG and CH are induced bipartite subgraphs of G
and H respectively, then CG2CH is an induced bipartite subgraph of G2H

with n(CG)n(CH) vertices. By [11, p. 102], the radius of G2H is r(G2H) =
r(G) + r(H).

We will have occasion to use a class of graphs called r-ciliates. For
positive integers q and r ≥ q, the r-ciliate C2q,r−q is the graph obtained by
appending to each vertex of the even cycle C2q a path on r − q vertices.
Figure 1 shows r-ciliates for various values of q and r. Notice that when
q = 1 the cycle is degenerate and identical to K2, so the r-ciliate is a path on
2r vertices. In the case where r = q, the r-ciliate is a cycle on 2r vertices. It
is easy to see that each r-ciliate has radius r, is bipartite, has independence
number α(C2q,r−q) =

1
2n(C2q,r−q), and has a perfect matching.

C2,0 C2,1 C2,2

C4,0 C4,1 C4,2 C6,1

Figure 1. Examples of r-ciliates.

A connected graph G is radius-critical if r(G− v) < r(G) for each v ∈ V (G)
that is not a cut vertex. Fajtlowicz classified radius-critical graphs as follows.
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Theorem 1.1 (Fajtlowicz, [5]). A connected graph of radius r is radius-

critical if and only if it is an r-ciliate.

This implies every connected graph of radius r contains an induced r-ciliate,
for we can obtain this subgraph by successively deleting vertices that do not
decrease the radius, until this is no longer possible.

The bipartite number α2(G) of a graph G is the order of the largest
induced bipartite subgraph of G. As an r-ciliate of G has at least 2r(G)
vertices, it follows that α2(G) ≥ 2r(G). We will need the following result
concerning bipartite numbers of graphs.

Theorem 1.2 ([11, Proposition 7.3]). If G and H are graphs and G is

bipartite, then α(G2H) ≥ 1
2n(G)α2(H), and equality holds if G has a perfect

matching.

2. Radius, Independence and the Cartesian Product

Siemion Fajtlowicz’s computer program Graffiti [6] conjectured that α(G) ≥
r(G) for any connected graph G. This conjecture follows immediately from
the Induced Path Theorem, which was proved by Erdös, Saks and Sós, [4,
Theorem 2.1], using an approach credited to Fan Chung. Fajtlowicz [5]
mentions four different proofs of this conjecture as of 1988.

Graphs for which the equality α(G) = r(G) is attained are worthy of
special attention. In this section we characterize the situations under which
α(G2H) = r(G2H). The following lemma will be needed for our main
result.

Lemma 2.1. If G and H are connected graphs, then α(G2H) ≥ 2r(G)r(H).

Proof. Let CG be an induced r(G)-ciliate of G and CH be an induced
r(H)-ciliate of H. Then CG and CH are bipartite, they each have per-
fect matchings and their independence numbers are α(CG) =

1
2n(CG) and

α(CH) = 1
2n(CH) respectively. Moreover, as CG2CH is bipartite, we have

α(CG2CH) ≥ 1
2n(CG2CH) = 1

2n(CG)n(CH). Thus

α(G2H) ≥ α(CG2CH) ≥
1

2
n(CG)n(CH) ≥

1

2
2r(G)2r(H) = 2r(G)r(H).

The last inequality follows from the fact that r-ciliates have at least 2r
vertices.



Notes on the Independence Number in ... 29

Lemma 2.1 is interesting by itself, as it gives a new efficiently computable
lower bound for α(G2H) (this is due to the fact that the radius of a con-
nected graph can be efficiently computed). For now, we use it to prove the
following result.

Theorem 2.2. If G and H are connected graphs, then α(G2H) = r(G2H)
if and only if one of the following conditions holds.

1. G = K1 and α(H) = r(H) (or symmetrically, H = K1 and α(G) =
r(G)).

2. G = K2 and H = Kn (or symmetrically, H = K2 and G = Kn).

Proof. Suppose α(G2H) = r(G2H). If G or H (say G) is K1, then
G2H ∼= H and α(H) = α(G2H) = r(G2H) = r(G) + r(H) = r(H), so
Condition (1) holds.

Now assume that neither G nor H is K1. Then both G and H have
radius greater than zero. Lemma 2.1 now yields

r(G) + r(H) = r(G2H) = α(G2H) ≥ 2r(G)r(H).

Since r(G) and r(H) are integers greater than zero, and r(G) + r(H) ≥
2r(G)r(H), it follows that r(G) = r(H) = 1. So r(G2H) = α(G2H) = 2.
Let V (G) = {v1, v2, . . . , vg} and V (H) = {w1, w2, . . . , wh}. If g ≥ h then
the pairs (v1, w1), (v2, w2), . . . , (vh, wh) are well-defined, and independent
(since none of their coordinates are the same pair-wise, they cannot be
adjacent, by the definition of the Cartesian graph product). This shows
that α(G2H) ≥ min{n(G), n(H)}. (Much stronger results are known. See
[13].) Thus 2 ≥ min{n(G), n(H)}, so either n(G) = 2 or n(H) = 2. We may
assume the former and, since G is connected, we have G = K2.

Now let BH be a maximum induced bipartite subgraph ofH, so α2(H) =
n(BH). SinceK2 has a perfect matching, Theorem 1.2 produces α(K22H) =
1
2n(K2)α2(H) = α2(H), so α2(H) = 2. This means n(H) ≥ 2 and any set
of three vertices of H induces a triangle, so H = Kn for some n ≥ 2.

Conversely, suppose either (1) G = K1 and α(H) = r(H), or (2) G = K2

and H = Kn for n ≥ 2. In the first case

α(G2H) = α(K12H) = α(H) = r(H)

= r(K1) + r(H) = r(K12H) = r(G2H).
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For the second case, an application of Theorem 1.2 gives

α(G2H) = α(K22Kn) =
1

2
n(K2)α2(Kn) = 2 = r(K2) + r(Kn)

= r(K22Kn) = r(G2H).

Figure 2 shows an instance of Theorem 2.2. Note α(K22K3) =
r(K22K3) = 2.

K2

K3

K22K3

Figure 2. An illustration of Theorem 2.2.

Lemma 2.1 states that α(G2H) ≥ 2r(G)r(H) for connected graphs G and
H. Except in the case where G or H is the trivial graph, this lower bound is
at least as good as r(G2H) (as can easily be checked). This raises the natu-
ral question of characterizing those graphs for which α(G2H) = 2r(G)r(H),
and we now turn our attention to that task.

Theorem 2.3. Let G and H be connected graphs. Then α(G2H) =
2r(G)r(H) if and only if at least one of the following holds:

1. G is a path or cycle on 2r(G) vertices, and α2(H) = 2r(H), or

2. H is a path or cycle on 2r(H) vertices, and α2(G) = 2r(G).

Proof. SupposeG is a path or cycle on 2r(G) vertices and α2(H) = 2r(H).
Then G is bipartite with a perfect matching. Theorem 1.2 yields α(G2H) =
1
2n(G)α2(H) = 2r(G)r(H).

Conversely suppose that α(G2H) = 2r(G)r(H). Let GB and HB be
maximum induced bipartite subgraphs of G and H, respectively, so α2(G) =
n(GB) and α2(H) = n(HB). Observe α2(G) ≥ 2r(G), because any ciliate of
G is an induced bipartite subgraph and has at least 2r(G) vertices. Using
this and Theorem 1.2, we get

α(G2H) ≥ α(GB2H) ≥
1

2
n(GB)α2(H) ≥

1

2
α2(G)α2(H) ≥ 2r(G)r(H).
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The assumption implies that all of these terms are equal, so α2(G)α2(H) =
4r(G)r(H). Since α2(G) ≥ 2r(G) and α2(H) ≥ 2r(H), we have α2(G) =
2r(G) and α2(H) = 2r(H). If n(G) = α2(G) = 2r(G) then G is a 2r-path
or cycle, and we have Condition 1. Similarly, if If n(H) = α2(H) = 2r(H),
then H is a 2r-path or cycle and we have Condition 2.

We complete the proof by showing that it is not possible to have both
n(G) > 2r(G) and n(H) > 2r(H). Suppose to the contrary that both of
these hold. Put G′ = G〈V (G) − V (GB)〉 and H ′ = H〈V (H) − V (HB)〉,
so both G′ and H ′ are non-empty. Note that, by definition, no vertex of
GB2HB is adjacent to any vertex of G′

2H ′. Then

α(G2H) ≥ α(GB2HB) + α(G′
2H ′) ≥

1

2
n(GB)n(HB) + α(G′

2H ′)

>
1

2
n(GB)n(HB) =

1

2
α2(G)α2(H) = 2r(G)r(H)

contradicting the assumption that the first and last terms are equal.

P4

K3

P42K3

Figure 3. An illustration of Theorem 2.3. Here α(K32P4) = 2r(K3)r(P4) = 4,

and P4 is a 2r-path, and α2(K3) = 2r(K3) = 2.

3. Independence Irreducibility and the Cartesian Product

For any S ⊆ V (G), let NG(S) be the the set of neighbors of S. An indepen-
dent set of vertices I is a critical independent set if |I|−|N(I)| is maximized.
A maximum critical independent set is a critical independent set of maxi-
mum cardinality. The critical independence number of a graph G, denoted
α′(G), is the cardinality of a maximum critical independent set. If I is a max-
imum critical independent set, so α′(G) = |I|, then clearly α′(G) ≤ α(G).
The critical independence number can be computed in polynomial-time [14].
This immediately yields a new polynomial-time computable lower bound for
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the Cartesian product: α(G2H) ≥ α(G)α(H) ≥ α′(G)α′(H). Research on
critical independent sets was initiated by Zhang [19] and most recently ad-
vanced by Butenko and Trukhanov [2].

A graph is independence irreducible if every non-empty independent
set I has more than |I| neighbors. (Fullerene graphs, for instance, are in-
dependence irreducible [14].) For these graphs, α′(G) = 0. A graph is
independence reducible if α′(G) > 0. A graph is totally independence re-

ducible if α′(G) = α(G). (K2 is an example.) This class of graphs was
shown in [15, 16] to be equivalent to the class of König-Egervary graphs.
Deciding whether a graph is totally independence reducible can be done in
polynomial-time [15, 16]. The following structural theorem states that any
graph can be decomposed into two induced subgraphs, one König-Egervary
and the other independence irreducible.

Theorem 3.1 (Larson, [15, 16]). For any graph G, there is a unique set

X ⊆ V (G) such that

1. α(G) = α(G〈X〉) + α(G〈V (G)−X〉),

2. G〈X〉 is Kon̈ig-Egervary (or totally independence reducible),

3. G〈V (G) −X〉 is independence irreducible, and

4. for every maximum critical independent set Jc of G, X = Jc ∪N(Jc).

It seems reasonable to ask if this result in any way respects the factors of a
Cartesian product. We conclude with some results and conjectures in this
direction.

Theorem 3.2. If G or H is independence irreducible, then G2H is inde-

pendence irreducible.

Proof. Suppose that G is independence irreducible. Let I be an inde-
pendent set in G2H. Let pH(I) be the projection of I onto H, that is
pH(I) = {y ∈ H|(x, y) ∈ I}. For every y ∈ H let Gy = {(x, y)|x ∈ G}. For
every y ∈ pH(I), let Iy = Gy ∩ I. Thus Iy is a subset of I, and is therefore
independent, and, moreover, pG(Iy), is independent in G. Furthermore, the
sets Iy form a partition of I. Note that, since G is independence irreducible,
for every y ∈ pH(I) we have |NG(pG(Iy))| > |pG(Iy)|.

Now, for every y ∈ pH(I), let Ny = NG(pG(Iy)) × {y} ⊆ Gy. The sets
Ny are, by construction, disjoint subsets of NG2H(I), so

∑
y∈pH(I) |Ny| ≤
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|NG2H(I)|. Thus

|I| =
∑

y∈pH (I)

|Iy| =
∑

y∈pH(I)

|pG(Iy)| <
∑

y∈pH(I)

|NG(pG(Iy))|

=
∑

y∈pH (I)

|Ny| ≤ |NG2H(I)|,

which was to be proved.

For an illustration of this theorem, note that K3 is independence irreducible,
and it is easy to check that the graph K22K3 in Figure 2 is independence
irreducible.

The converse of Theorem 3.2 is false, and Figure 4 shows a counterex-
ample. Both factors are totally independence reducible but the product is
independence irreducible (as can be checked by hand).

G

G

G2G

Figure 4. An example of a König-Egervary graphG for which the product G2G

is not König-Egervary. Note α(G) + µ(G) = 2 + 2 = n(G), and

α(G2G) + µ(G2G) = 6 + 8 6= n(G2G) = 16.

We close with several questions. First, what conditions on a Cartesian
product guarantee that one factor must be independence irreducible?

The Cartesian product of bipartite graphs is bipartite, and all bipartite
graphs are König-Egervary. (In this sense König-Egervary graphs are gen-
eralizations of bipartite graphs.) It is reasonable then to conjecture that the
Cartesian product of König-Egervary graphs is König-Egervary. But this is
not the case, as Figure 4 demonstrates. We ask what conditions on G and
H imply G2H is König-Egervary.
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Finally the statement of Theorem 2.3 involves graphs for which α2(G) =
2r(G). It would be interesting to characterize this class of graphs.
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