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Abstract

For d ≡ 1 or 3 (mod 6), the 2-skeleton of the d-dimensional hypercube is decomposed
into the union of pairwise face-disjoint isomorphic 2-complexes, each a topological sphere.
If d = 5n, then such a decomposition can be achieved, but with non-isomorphic spheres.
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By Euler’s theorem [9, Prop. 1.2.27], any graph (1-complex) with all vertices of even
degrees is an edge-disjoint union of cycles. We say a 2-complex is even if every edge lies
in a positive even number of (2-dimensional) faces. Is every even 2-complex a face-disjoint
union of “2-dimensional cycles”? (A 2-complexX is a face-disjoint union of 2-complexes
X1, . . . , Xn if X =

⋃n
i=1Xi and each face of X is a face of exactly one Xi.)

There are (at least) two natural choices for a 2-dimensional interpretation of cycle –
sphere or manifold. As even complexes include surfaces like the torus, one cannot always
decompose them into face-disjoint spheres. But we show below that sphere decompositions
do exist in more than two-thirds of the odd-dimensional hypercubes. For d ≡ 1 or 3
(mod 6), we can decompose the 2-skeleton Q2

d of the d-dimensional hypercube Qd into
face-disjoint copies of ∂Q3, the boundary of a 3-cube. That is, Q2

d is factored by ∂Q3.
In [6], when d is odd (so the 2-skeleton is even), Q2

d is decomposed into a face-disjoint
union of tori and 3-cube boundaries. In [4] we showed that the 2-skeleton of any d-
dimensional Platonic polytope is a face-disjoint union of surfaces if the 2-skeleton is even.
Except for the hypercubes, all such decompositions were decompositions into spheres. (A
polytope is Platonic if it is maximally symmetric. In dimension greater than four, the
Platonic polytopes are just the cubes, simplexes, and hyperoctahedra.)

For which odd d is the 2-skeleton of the d-cube decomposable into spheres? For which d
can the decomposition be a factorization? We address these questions below.
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Throughout this paper I denotes the interval [0, 1] and O its boundary O = {0, 1}.
(We use the non-standard notation O for ∂I because it will be convenient to think of an
interval as being “active” (I) or “inactive” (O) in the manner indicated below.) We regard
the d-cube as Qd = Id ⊆ Rd. Thus the 2d vertices of Qd are the elements of Od, which
we identify with the binary strings of length d. An edge ofQd is a line segment joining two
vertices that differ in exactly one position (i.e., coordinate). Selecting a coordinate i from 1
to d, there are 2d−1 edges among the connected components of O×O×· · ·× I×· · ·×O,
where the sole (“active”) factor I occurs in the ith position. ThusQd has d2d−1 edges. The
faces of Qd are the squares that are the connected components of

O × · · · × I × · · · × I × · · · ×O,

where exactly two of the factors are I’s and the rest are O’s. Thus Qd has
(
d
2

)
2d−2 faces,

and the boundary of each face consists of four edges. Likewise Qd has
(
d
3

)
2d−3 3-facets

O × · · · × I × · · · × I × · · · × I × · · · ×O,

formed by selecting three positions for the I’s. Each 3-facet is a 3-cube whose boundary
consists of six faces. Similarly, Qd has

(
d
k

)
2d−k k-facets for each 0 ≤ k ≤ d, and each

k-facet is a k-cube. The 2-skeleton, Q2
d, of Qd is the union of all of its faces.

Notice that each edge ofQd belongs to d−1 faces, so the 2-skeleton is even if and only
if d is odd. Hence Q2

d has no sphere decomposition if d is even.

1 Sphere decompositions in dimensions 1 and 3 (mod 6)
Here we show that if d = 3, 7, 9, 13, 15, 19, 21, . . ., that is, if d ≡ 1 or 3 (mod 6), then the
2-skeleton of Qd can be decomposed into a face-disjoint union of boundaries of 3-cubes.

We use combinatorial designs [1], [8, pp. 96–100]. Let [d] := {1, . . . , d}. A k-design
S(k, d) on [d] is a family of k-subsets of [d] (called blocks) such that each 2-subset of [d]
is contained in a unique block. Though 3-designs are called Steiner triple systems, it was
Kirkman [7] who proved that they exist if and only if d ≡ 1 or 3 (mod 6). Conditions that
are algebraically necessary turned out to be combinatorially sufficient.

Before describing our general construction we illustrate it for Q7. We will decompose
the 2-skeleton of Q7 into 112 pairwise face-disjoint 3-cube boundaries. The first step is
to realize a Steiner triple system S(3, 7). Label the vertices of a 7-gon with the integers 1
through 7, as in in Figure 1. The shaded triangle on the left has vertices 1, 2 and 4, and
any two of them are a distance of 1, 2 or 3 apart along the 7-gon. Rotating the triangle
in multiples of 2π/7 yields seven triangles, whose respective vertex sets are tallied below
them. These are the blocks of S(3, 7) because any two vertices on the 7-gon are at distance
1, 2, or 3, and therefore they are vertices of exactly one of the triangles.
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124 235 346 457 561 672 713

Figure 1: Construction of a Steiner triple system S(3, 7).
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Each block of S(3, 7) corresponds to one of seven classes of 3-cubes in Q7 indicated
in Table 1, where an integer i belongs to the block if and only if the product is active in the
ith factor. Notice that permuting the factors in a class cyclicly yields the subsequent class.

124 I × I ×O× I ×O×O×O
235 O× I × I ×O× I ×O×O
346 O×O× I × I ×O× I ×O
457 O×O×O× I × I ×O× I
561 I ×O×O×O× I × I ×O
672 O× I ×O×O×O× I × I
713 I ×O× I ×O×O×O× I

Table 1: The seven classes of 3-cubes in Q7.

As O = {0, 1}, each of the seven classes contains 16 disjoint 3-cubes, for a total
of 112 3-cubes. Notice that any two cubes from the same class have empty intersection.
Further, two 3-cubes from different classes are either disjoint or they intersect at an edge
because by construction they have exactly one I as a common factor. We have accounted
for 6 · 112 = 672 faces of Q7, which has indeed

(
7
2

)
25 = 672 faces. We therefore have a

decomposition of its 2-skeleton into pairwise face-disjoint boundaries of 3-cubes.
To visualize this, let P : R7 → R2 be the projection sending the standard basis elements

e1, e2, . . . , e7 to the vertices of a regular 7-gon, cyclically, as in Figure 1. Figure 2 (left)
shows the projection P of the 16 disjoint 3-cubes in the class I × I ×O× I ×O×O×O
(shown bold in the figure, with other edges of Q7 gray). There is much overlap in this
figure. The right of Figure 2 shows the same projection, but with the vectors P (e1), P (e2)
and P (e4) scaled by a factor of about 0.2 in order to separate the 3-cubes. Observe that
rotating Figure 2 (left) by 2π/7 brings the cubes I × I ×O× I ×O×O×O to the cubes
O × I × I ×O × I ×O ×O, etc.

1

Figure 2: Two views of the sixteen 3-cubes I × I ×O× I ×O×O×O (bold lines) in Q7.
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Now that we have illustrated our construction, we can prove the general result.

Theorem 1.1. The 2-skeleton ofQd can be decomposed into a pairwise face-disjoint union
of 3-cube boundaries if and only if d ≡ 1 or 3 (mod 6).

Proof. Let d ≡ 1 or 3 (mod 6) and let S(3, d) be a 3-design. As [d] has
(
d
2

)
pairs and each

block of S(3, d) contains
(
3
2

)
= 3 pairs, the number of blocks is 1

3

(
d
2

)
= d(d−1)

6 . For each
block {i, j, k} of S(3, d), construct a class of 3-cubes

O × · · · × I × · · · × I × · · · × I × · · · ×O,

where there is an I precisely in the ith, jth and kth factors. Such a class consists of 2d−3

disjoint 3-cubes. By construction, the intersection of any two 3-cubes from different classes
corresponding to blocks {i, j, k} and {i′, j′, k′} is either empty, or a vertex, or an edge.
Indeed, the intersection cannot be a face in anyO×· · ·×I×· · ·×I×· · ·×O because this
would mean that some pair belongs to both {i, j, k} and {i′, j′, k′}. Thus these 3-cubes are
pairwise face-disjoint. The cubes in the d(d−1)

6 classes thus account for 6d(d−1)
6 2d−3 =(

d
2

)
2d−2 faces of Qd, which is all of the faces of Qd. We have thus decomposed the 2-

skeleton of Qd into a pairwise face-disjoint union of boundaries of 3-cubes.
Conversely suppose that d 6≡ 1 or 3 (mod 6). If d is even, then Q2

d is not even, so it
does not have a sphere decomposition. Thus assume d is odd, in which case d ≡ 5 (mod 6).
An easy computation shows that, in this case, the number of faces in Q2

d is not a multiple
of 6. Hence Q2

d cannot be decomposed as a pairwise face-disjoint union of 3-cubes.

Theorem 1.1 does not cover the cases d = 5, 11, 17, 23, . . ., where d ≡ 5 (mod 6). We
do not know if all such such Q2

d have sphere decompositions. In the next section we find
sphere decompositions when d = 5n. However, these decompositions are not factorizations
as they involve non-isomorphic complexes.

2 A sphere decomposition of the 5-cube
We now show that there is a sphere decomposition for Q2

5, which is the smallest case not
covered by a Steiner triple system. In fact, we will get somewhat more. Theorem 2.1 below
guarantees sphere decompositions of Q2

d exist for arbitrarily large d ≡ 5 (mod 6).

0011 0010

0111 0110

0001
0101

0100

1101
1100

1110

1001 1000

1011 1010

Figure 3: The 2-skeleton of the 4-cube, minus the vertices 0000 and 1111, is a sphere S.
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S

11110000

1

Figure 4: The rhombic dodecahedron obtained by deleting opposite vertices of Q2
4. The

watercolor (right) by David W. Brisson (1977) is a hypersterogram [2] showing two views
differing in two degrees of parallax. Used with permission of Harriet and Erik Brisson.

Theorem 2.1. If d = 5n, then the 2-skeleton of Qd is a face-disjoint union of spheres.

Proof. We first treat the case d = 5. The case d = 5n will follow from design theory.
Our plan is to realize the 2-skeleton of Q4 as a face-disjoint union of a sphere S and six

disks D1, . . . , D6 with edge-disjoint boundaries, then show that the 2-skeleton of Q5 is the
face-disjoint union of the eight spheres S×{0}, S×{1}, ∂(D1×[0, 1]), · · · , ∂(D6×[0, 1]).

Let S = Q2
4−{0000, 1111} be Q2

4 with the antipodal vertices 0000 and 1111 removed
(and with them all the edges and faces incident with them). We thus have removed two
vertices, eight edges and 12 faces. What remains is a sphere S with 12 square faces. It
is shown in Figure 3 embedded in the punctured sphere (plane). We note in passing that
sphere S is a rhombic dodecahedron, which can be embedded in R3 with 12 congruent
rhombic faces. (See Figure 4.)

The sphere S accounts for 12 of the 4-cube’s 24 faces. The 12 missing squares are
all incident with one or the other of the removed vertices 0000 and 1111. Figure 5 shows
eight of these missing squares. Four of them form a disk D1 centered at 0000 and the other
four make a disk D2 centered at 1111. These disks are pairwise face-disjoint, and their
boundaries are pairwise edge-disjoint. And none of their faces are faces of S, because each
face of D1 and D2 contains either the vertex 0000 or 1111, and neither of these vertices is
in S.

0000

1000

0010

0100 0001

D1

0110 0011

1100 1001

1111

0111

1101

1011 1110

D2

1001 1100

0011 0110

Figure 5: The disks D1 and D2 centered at 0000 and 1111, respectively.
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So far we have accounted for 20 squares of Q2
4, 12 of them in S, four in D1, and four

in D2. There are just four squares in Q2
4 that are unaccounted for. They are not hard to

find, because 0000 and 1111 are each contained in six squares of Q2
4 and Figure 5 shows

only four squares at 0000 and 1111. Thus the four missing squares are incident with 0000
or 1111. They are shown in Figure 6, superimposed on the drawings from Figure 5. Call
these four squares disks D3, D4, D5 and D6.

0000

1000

0010

0100 0001

D3

D4
1010

0101

1111

0111

1101

1011 1110

D5

D6
0101

1010

Figure 6: The disks D3, D4, D5 and D6.

Note that the sphere S and disks D1, D2, . . . D6 are pairwise face-disjoint and account
for all squares of Q2

4. Further the boundaries of the disks are pairwise edge-disjoint. We
now have eight spheres in Q2

5: S × {0}, S × {1}, ∂(D1 × [0, 1]), · · · , ∂(D6 × [0, 1]). By
construction they are face-disjoint. (See Figure 7.) Moreover the total number of squares
used is 12 + 12 + 16 + 16 + 6 + 6 + 6 + 6 = 80, so we have used all the squares in Q2

5.
We have now decomposed the 2-skeleton of Q5 into a pairwise face-disjoint union of

spheres, two of which are rhombic dodecahedrons, two of which have the structure shown
in Figure 7 (left), and four of which are the boundaries of a 3-cube, as in Figure 7 (right).
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0110
0

1100
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1100
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1
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00100

01001

01000 00010
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01010

01011

1

Figure 7: The spheres ∂(D1 × I) (left) and ∂(D3 × I) (right) intersect at the hexagon
00000–00010–00011–00001–01001–01000–00000. Our decomposition of of Q5 uses two
spheres of the type on the left, four of the type on the right, and two rhombic dodecahedra.

Having obtained a sphere decomposition of Q2
5, we get a generalization. Consider the

finite field F5 consisting of the integers modulo 5. The vector space Fn
5 then consists of 5n

elements, or points, and each 1-dimensional subspace V = {λv | λ ∈ F5} consists of five
points. A line L is a translate L = {w + λv | λ ∈ F5} of a 1-dimensional subspace. We
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can realize S(5, 5n) by letting the blocks be the lines in Fn
5 . (Each line consists of 5 of the

5n points in Fn
5 , and any two points in Fn

5 lie on a unique line.) From each block we can
extract 10 pairs of points, so the total number of blocks is 1

10

(
5n

2

)
= 5n−1(5n−1)

4 . Using
the development from Section 1, it follows that the 2-skeleton of Q5n is the face-disjoint
union of 5n−1(5n−1)

4 25
n−5 5-cubes, each of which is decomposable into a pairwise face-

disjoint union of spheres. We can thus decompose the 2-skeleton of Q5n into a pairwise
face-disjoint union of spheres. Indeed, the total number of faces used in this decomposition
is 80 5n−1(5n−1)

4 25
n−5 = 5n(5n−1)

2 25
n−2 =

(
5n

2

)
25

n−2, the number of faces of Q2
5n .

Notice that 5n ≡ 5 (mod 6) if and only if n is odd, so Theorem 2.1 yields a new class
of hypercubes with sphere decompositions that is not covered by Theorem 1.1.

3 Discussion
Design theory applies to additional cases where d ≡ 5 (mod 6) by using the technique of
the previous section. Suppose one has a sphere decomposition of some Q2

k and there is a
k-design on [d]. Then there is a sphere decomposition for Q2

d. We illustrate this for k = 5.
In [5, Thm. 2], Hanani showed that a 5-design exists if and only if d ≡ 1 or 5 (mod 20).

So for d = 41, 65, etc., any S(5, d) and any sphere decomposition of Q2
5 can be combined

to construct a sphere decomposition of Q2
d for some d 6= 5n.

We conjecture that sphere decompositions exist for Q2
d for all odd d, but that spherical

factorizations exist if and only if d ≡ 1 or 3 (mod 6).
Note that cyclical configurations of points and lines were constructed by Grünbaum

through a similar use of Steiner triple systems. See [3, pp. 253 and 325].
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