PART I. Prove the following statements.

1. Prove that an integer \(a \) is even if and only if \(a^2 + 2a + 9 \) is odd.

 Proof. First we will show that if \(a \) is even, then \(a^2 + 2a + 9 \) is odd. We use direct proof.
 Suppose \(a \) is even. Then \(a = 2k \) for some integer \(k \), and
 \[
 a^2 + 2a + 9 = (2k)^2 + 2(2k) + 9 = 4k^2 + 4k + 8 + 1 = 2(2k^2 + 2k + 4) + 1.
 \]
 This shows that \(a^2 + 2a + 9 \) is twice an integer plus 1, so it is odd.

 Conversely, we will show that if \(a^2 + 2a + 9 \) is odd, then \(a \) is even.
 We use contrapositive proof; that is we will assume \(a \) is not even and show \(a^2 + 2a + 9 \) is not odd.
 Suppose \(a \) is not even, so it is odd, and thus \(a = 2k + 1 \) for some integer \(k \). Then
 \[
 a^2 + 2a + 9 = (2k + 1)^2 + 2(2k + 1) + 9 = 4k^2 + 4k + 1 + 4k + 2 + 9
 = 4k^2 + 8k + 12
 = 2(2k^2 + 4k + 6).
 \]
 This shows that \(a^2 + 2a + 9 \) is twice an integer, so it is even.

 The proof is now complete.

2. Suppose \(A, B \) and \(C \) are nonempty sets. Prove that if \(A \times B \subseteq B \times C \), then \(A \subseteq C \).

 Proof. We will use direct proof. Suppose \(A \times B \subseteq B \times C \).

 In what follows we show \(A \subseteq C \).
 Suppose \(a \in A \).
 Since \(B \) is not empty, there is an element \(b \in B \), so \((a, b) \in A \times B \). (By definition of \(\times \).)
 But since \(A \times B \subseteq B \times C \), it follows that \((a, b) \in B \times C \). (By definition of \(\subseteq \).)
 In particular, this gives us \(a \in B \), so it now follows that \((a, a) \in A \times B \). (By definition of \(\times \).)
 But again, since \(A \times B \subseteq B \times C \), it we get \((a, a) \in A \times C \). (By definition of \(\subseteq \).)
 In particular, this means \(a \in C \). (By definition of \(\times \).)
 We’ve now shown \(a \in A \) implies \(a \in C \), so \(A \subseteq C \).
3. Use induction to prove that \[1^3 + 2^3 + 3^3 + 4^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4} .\]

We will prove this with mathematical induction.

(1) When \(n = 1 \) the statement is \(1^3 = \frac{1^2(1+1)^2}{4} = \frac{4}{4} = 1 \), which is true.

(2) Now assume the statement is true for some integer \(n = k \geq 1 \), that is assume
\[1^3 + 2^3 + 3^3 + 4^3 + \ldots + k^3 = \frac{k^2(k + 1)^2}{4} . \]

Observe that this implies the statement is true for \(n = k + 1 \), as follows:
\[
\begin{align*}
1^3 + 2^3 + 3^3 + 4^3 + \ldots + k^3 + (k + 1)^3 &= \frac{k^2(k + 1)^2}{4} + (k + 1)^3 \\
&= \frac{k^2(k + 1)^2}{4} + \frac{4(k + 1)^3}{4} \\
&= \frac{k^2(k + 1)^2 + 4(k + 1)^3}{4} \\
&= \frac{(k + 1)^2(k^2 + 4(k + 1))}{4} \\
&= \frac{(k + 1)^2(k + 2)^2}{4} \\
&= \frac{(k + 1)^2((k + 1) + 1)^2}{4} \\
\end{align*}
\]

Therefore \(1^3 + 2^3 + 3^3 + 4^3 + \ldots + k^3 + (k + 1)^3 = \frac{(k + 1)^2((k + 1) + 1)^2}{4} \),

which means the statement is true for \(n = k + 1 \).

This completes the proof by mathematical induction.
4. There exists a set X for which $Z \in X$, $N \in \mathcal{P}(X)$ and $R \in \mathcal{P}(X)$.

Proof. Consider the set $X = \{Z\} \cup R$.
(That is, X contains every real number, and it also contains the set of all integers.)
We have $N \subseteq X$ and $R \subseteq X$, and this means $N \in \mathcal{P}(X)$ and $R \in \mathcal{P}(X)$.
Also, we have $Z \in \{Z\}$, so $Z \in \{Z\} \cup R = X$.

5. Use induction to prove that $24|(5^{2n} - 1)$ for every integer $n \geq 0$.

Proof. The proof is by mathematical induction.

(1) For $n = 0$, the statement is $24|(5^{2\cdot0} - 1)$. This simplifies to $24|0$, which is true.

(2) Now assume the statement is true for some integer $n = k \geq 1$, that is assume $24|(5^{2k} - 1)$.
This means $5^{2k} - 1 = 24a$ for some integer a, and from this we get $5^{2k} = 24a + 1$.
Now observe that

\[
\begin{align*}
5^{2(k+1)} - 1 &= \\
5^{2k+2} - 1 &= \\
5^25^{2k} - 1 &= \\
5^2(24a + 1) - 1 &= \\
25(24a + 1) - 1 &= \\
25 \cdot 24a + 25 - 1 &= 24(25a + 1)
\end{align*}
\]

This shows $5^{2(k+1)} - 1 = 24(25a + 1)$, which means $24|5^{2(k+1)} - 1$.

This completes the proof by mathematical induction.
PART II. Decide if the following statements are true or false. Prove the true statements; disprove the false ones.

7. If \(A, B \) and \(C \) are sets, then \(A \cup (B - C) = (A \cup B) - (A \cup C) \).

 This is FALSE. Here is a counterexample:

 Let \(A = B = C = \{1\} \).
 Then \(A \cup (B - C) = \{1\} \).
 Also \((A \cup B) - (A \cup C) = \emptyset \).
 This example shows that it is not always true that \(A \cup (B - C) = (A \cup B) - (A \cup C) \).

8. Suppose \(a \) and \(b \) are integres. If \(a|b \) and \(b|a \), then \(a = b \).

 This is FALSE. Here is a counterexample:

 Let \(a = 2 \) and \(b = -2 \).
 Then \(a|b \) and \(b|a \), but \(a \neq b \).

9. If \(A, B, C \) are sets and \(A \cap B \cap C = \emptyset \), then \(|A \cup B \cup C| = |A| + |B| + |C| \).

 This is FALSE. Here is a counterexample:

 Let \(A = \{1, 2\} \), \(B = \{2, 3\} \) and \(C = \{3, 1\} \).
 Then \(|A \cup B \cup C| = |\{1, 2, 3\}| = 3 \neq 6 = |A| + |B| + |C| \).