1. Suppose $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$. Prove that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.
(Suggestion: Try direct proof.)

Proof. (Direct) Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.

By definition of congruence modulo n, this means $n|(a - b)$ and $n|(c - d)$.

By definition of divisibility, $a - b = nk$ and $c - d = n\ell$ for some $k, \ell \in \mathbb{Z}$.

Therefore we have $a = b + nk$ and $c = d + n\ell$. Consequently,

\[
\begin{align*}
ac &= (b + nk)(d + n\ell) \\
ac &= bd + bnl + nkd + n^2k\ell \\
ac - bd &= bnl + nkd + n^2k\ell \\
ac - bd &= n(b\ell + kd + n\ell).
\end{align*}
\]

Since $b\ell + kd + n\ell \in \mathbb{Z}$, it follows from the above equation that $n|(ac - bd)$.

This means that $ac \equiv bd \pmod{n}$.

2. Suppose $a, b \in \mathbb{Z}$. If $a^2(b^2 - 2b)$ is odd, then both a and b are odd.
(Suggestion: Try contrapositive proof.)

Proof. (Contrapositive) Suppose it is not the case that a and b are odd.

Then, by DeMorgan’s Law, a is even or b is even. Let us look at these cases separately.

Case 1. Suppose a is even. Then $a = 2c$ for some integer c.

Thus $a^2(b^2 - 2b) = (2c)^2(b^2 - 2b) = 2(2c^2(b^2 - 2b))$, which is even.

Case 2. Suppose b is even. Then $b = 2c$ for some integer c.

Thus $a^2(b^2 - 2b) = a^2((2c)^2 - 2(2c)) = 2(a^2(2c^2 - 2c))$, which is even.

Thus in either case $a^2(b^2 - 2b)$ is even, so it is not odd.

(Note: A third case where both a and b are even is not necessary. In that case a is even, a scenario addressed in Case 1.)
3. Prove: If \(a, b \in \mathbb{Z}\), then \(a^2 - 4b - 2 \neq 0\).

(Suggestion: Contradiction may be easiest.)

Proof. Suppose for the sake of contradiction that \(a, b \in \mathbb{Z}\) but \(a^2 - 4b - 2 = 0\). Then we have \(a^2 = 4b + 2 = 2(2b + 1)\), which means \(a^2\) is even. Therefore \(a\) is even also, so \(a = 2c\) for some integer \(c\). Plugging this back into \(a^2 - 4b - 3 = 0\) gives us

\[
\begin{align*}
(2c)^2 - 4b - 2 &= 0 \\
4c^2 - 4b - 2 &= 0 \\
4c^2 - 4b &= 2 \\
2c^2 - 2b &= 1 \\
2(c^2 - b) &= 1
\end{align*}
\]

From this last equation, we conclude that 1 is an even number, a contradiction.

4. Suppose \(a, b, c \in \mathbb{Z}\), and \(a \neq 0\). Prove the following statement: If \(a \nmid bc\), then \(a \nmid b\) and \(a \nmid c\).

Proof. (Contrapositive) Assume that it is not true that \(a \nmid b\) and \(a \nmid c\). Then \(a \mid b\) or \(a \mid c\). Thus \(b = ak\) or \(c = ak\) for some \(k \in \mathbb{Z}\). Consider these cases separately.

Case 1. If \(b = ak\), then multiply both sides by \(c\) to get \(bc = a(kc)\), which means \(a \mid bc\).

Case 2. If \(c = ak\), then multiply both sides by \(b\) to get \(bc = a(kb)\), which means \(a \mid bc\).

Thus, in either case \(a \mid bc\), so it is not true that \(a \nmid b\).