Richard Hammack's MATH 756

Chapter 8

§8.3 The Cartesian Skeleton

Richard Hammack's MATH 756

Chapter 8

§8.3 The Cartesian Skeleton

Goal Operator $S: \Gamma_{0} \rightarrow \Gamma$ for which

$$
S(G \times H)=S(G) \square S(H)
$$

Richard Hammack's MATH 756

Chapter 8

§8.3 The Cartesian Skeleton

Goal Operator $S: \Gamma_{0} \rightarrow \Gamma$ for which

$$
S(G \times H)=S(G) \square S(H)
$$

Richard Hammack's MATH 756

Chapter 8

§8.3 The Cartesian Skeleton

Goal Operator $S: \Gamma_{0} \rightarrow \Gamma$ for which

$$
S(G \times H)=S(G) \square S(H)
$$

Given a graph G, graph $S(G)$ will be called its Cartesian skeleton.

Boolean Squares

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where $V\left(G^{s}\right)=V(G)$

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where
$V\left(G^{s}\right)=V(G)$
$E\left(G^{s}\right)=\left\{x y \mid N_{G}(x) \cap N_{G}(y) \neq \emptyset\right\}$

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where $V\left(G^{s}\right)=V(G)$
$E\left(G^{s}\right)=\left\{x y \mid N_{G}(x) \cap N_{G}(y) \neq \emptyset\right\}$

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where $V\left(G^{s}\right)=V(G)$
$E\left(G^{s}\right)=\left\{x y \mid N_{G}(x) \cap N_{G}(y) \neq \emptyset\right\}$

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where $V\left(G^{s}\right)=V(G)$
$E\left(G^{s}\right)=\left\{x y \mid N_{G}(x) \cap N_{G}(y) \neq \emptyset\right\}$

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where $V\left(G^{s}\right)=V(G)$
$E\left(G^{s}\right)=\left\{x y \mid N_{G}(x) \cap N_{G}(y) \neq \emptyset\right\}$

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where $V\left(G^{s}\right)=V(G)$
$E\left(G^{s}\right)=\left\{x y \mid N_{G}(x) \cap N_{G}(y) \neq \emptyset\right\}$

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where $V\left(G^{s}\right)=V(G)$
$E\left(G^{s}\right)=\left\{x y \mid N_{G}(x) \cap N_{G}(y) \neq \emptyset\right\}$

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where $V\left(G^{s}\right)=V(G)$ $E\left(G^{s}\right)=\left\{x y \mid N_{G}(x) \cap N_{G}(y) \neq \emptyset\right\}$

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where $V\left(G^{s}\right)=V(G)$
$E\left(G^{s}\right)=\left\{x y \mid N_{G}(x) \cap N_{G}(y) \neq \emptyset\right\}$

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where $V\left(G^{s}\right)=V(G)$
$E\left(G^{s}\right)=\left\{x y \mid N_{G}(x) \cap N_{G}(y) \neq \emptyset\right\}$

Boolean Squares

Def. The Boolean square of $G \in \Gamma_{0}$ is a graph G^{s}, where $V\left(G^{s}\right)=V(G)$
$E\left(G^{s}\right)=\left\{x y \mid N_{G}(x) \cap N_{G}(y) \neq \emptyset\right\}$

Lemma $8.8\left(G_{1} \times \cdots \times G_{k}\right)^{s}=G_{1}^{s} \times \cdots \times G_{k}^{s}$.

The Cartesian Skeleton

Goal: Operator S on graphs satisfying $S(H \times K)=S(H) \square S(K)$.

The Cartesian Skeleton

Goal: Operator S on graphs satisfying $S(H \times K)=S(H) \square S(K)$.
Motivation: Suppose a wall (graph) is made of bricks (vertices). $N(x)$ denotes mortar around brick x.
How can you tell when adjacent bricks $x \& y$ are at a diagonal?

The Cartesian Skeleton

Goal: Operator S on graphs satisfying $S(H \times K)=S(H) \square S(K)$.
Motivation: Suppose a wall (graph) is made of bricks (vertices). $N(x)$ denotes mortar around brick x.
How can you tell when adjacent bricks $x \& y$ are at a diagonal?

The Cartesian Skeleton

Goal: Operator S on graphs satisfying $S(H \times K)=S(H) \square S(K)$.
Motivation: Suppose a wall (graph) is made of bricks (vertices). $N(x)$ denotes mortar around brick x.
How can you tell when adjacent bricks $x \& y$ are at a diagonal?

$\exists z$ such that

$$
\begin{aligned}
& N(x) \cap N(y) \subset N(x) \cap N(z) \\
& N(x) \cap N(y) \subset N(y) \cap N(z)
\end{aligned}
$$

The Cartesian Skeleton

Goal: Operator S on graphs satisfying $S(H \times K)=S(H) \square S(K)$.
Motivation: Suppose a wall (graph) is made of bricks (vertices). $N(x)$ denotes mortar around brick x.
How can you tell when adjacent bricks x \& y are at a diagonal?

$\exists z$ such that

$$
\begin{aligned}
& N(x) \cap N(y) \subset N(x) \cap N(z) \\
& N(x) \cap N(y) \subset N(y) \cap N(z)
\end{aligned}
$$

$\exists z$ such that
$N(x) \subset N(z) \subset N(y)$

The Cartesian Skeleton

Goal: Operator S on graphs satisfying $S(H \times K)=S(H) \square S(K)$.
Motivation: Suppose a wall (graph) is made of bricks (vertices). $N(x)$ denotes mortar around brick x.
How can you tell when adjacent bricks x \& y are at a diagonal?

OR

$\exists z$ such that
$N(x) \subset N(z) \subset N(y)$

$$
\begin{aligned}
& N(x) \cap N(y) \subset N(x) \cap N(z) \\
& N(x) \cap N(y) \subset N(y) \cap N(z)
\end{aligned}
$$

This is equivalent to both of the following holding.

$$
\begin{aligned}
& \text { 1. } N(x) \cap N(y) \subset N(x) \cap N(z) \text { or } N(x) \subset N(z) \subset N(y) \\
& \text { 2. } N(y) \cap N(x) \subset N(y) \cap N(z) \text { or } N(y) \subset N(z) \subset N(x) \text {. }
\end{aligned}
$$

The Cartesian Skeleton

Edge $x y$ of G^{s} is dispensable if $x=y$ or $\exists z \in V(G)$ for which both: 1. $N_{G}(x) \cap N_{G}(y) \subset N_{G}(x) \cap N_{G}(z)$ or $N_{G}(x) \subset N_{G}(z) \subset N_{G}(y)$
2. $N_{G}(y) \cap N_{G}(x) \subset N_{G}(y) \cap N_{G}(z)$ or $N_{G}(y) \subset N_{G}(z) \subset N_{G}(x)$.

The Cartesian Skeleton

Edge $x y$ of G^{s} is dispensable if $x=y$ or $\exists z \in V(G)$ for which both: 1. $N_{G}(x) \cap N_{G}(y) \subset N_{G}(x) \cap N_{G}(z)$ or $N_{G}(x) \subset N_{G}(z) \subset N_{G}(y)$
2. $N_{G}(y) \cap N_{G}(x) \subset N_{G}(y) \cap N_{G}(z)$ or $N_{G}(y) \subset N_{G}(z) \subset N_{G}(x)$.

The Cartesian Skeleton

Edge $x y$ of G^{s} is dispensable if $x=y$ or $\exists z \in V(G)$ for which both:

$$
\begin{aligned}
& \text { 1. } N_{G}(x) \cap N_{G}(y) \subset N_{G}(x) \cap N_{G}(z) \text { or } N_{G}(x) \subset N_{G}(z) \subset N_{G}(y) \\
& \text { 2. } N_{G}(y) \cap N_{G}(x) \subset N_{G}(y) \cap N_{G}(z) \text { or } N_{G}(y) \subset N_{G}(z) \subset N_{G}(x) \text {. }
\end{aligned}
$$

Examples: Loops dispensable; $x y$ dispensable; $\quad x^{\prime} y^{\prime}$ dispensable.

The Cartesian Skeleton

Cartesian Skeleton of G is graph $S(G)$ with:

$$
\begin{aligned}
& V(S(G))=V(G) \\
& E(S(G))=\left\{x y \in G^{s} \mid x y \text { is NOT dispensable }\right\}
\end{aligned}
$$

The Cartesian Skeleton

Cartesian Skeleton of G is graph $S(G)$ with:

$$
\begin{aligned}
& V(S(G))=V(G) \\
& E(S(G))=\left\{x y \in G^{s} \mid x y \text { is NOT dispensable }\right\}
\end{aligned}
$$

The Cartesian Skeleton

Cartesian Skeleton of G is graph $S(G)$ with:

$$
\begin{aligned}
& V(S(G))=V(G) \\
& E(S(G))=\left\{x y \in G^{s} \mid x y \text { is NOT dispensable }\right\}
\end{aligned}
$$

Note: $S(H \times K)=S(H) \square S(K)$

Proposition 8.10: If H, K are R-thin, then $S(H \times K)=S(H) \square S(K)$.

Proposition 8.10: If H, K are R-thin, then $S(H \times K)=S(H) \square S(K)$.
Proposition 8.13: Suppose G is connected. Then:

- If G has odd cycle, $S(G)$ is connected.

Proposition 8.10: If H, K are R-thin, then $S(H \times K)=S(H) \square S(K)$.
Proposition 8.13: Suppose G is connected. Then:

- If G has odd cycle, $S(G)$ is connected.
- If G bipartite, $S(G)$ has exactly two components; their respective vertex sets are the two partite sets of G.

Proposition 8.10: If H, K are R-thin, then $S(H \times K)=S(H) \square S(K)$.
Proposition 8.13: Suppose G is connected. Then:

- If G has odd cycle, $S(G)$ is connected.
- If G bipartite, $S(G)$ has exactly two components; their respective vertex sets are the two partite sets of G.

Proposition 8.11: Any isomorphism $\varphi: G \rightarrow H$ is also an isomorphism $\varphi: S(G) \rightarrow S(H)$.

Our Plan

- §8.4 Factoring Connected Nonbipartite R-thin Graphs.

Use $S\left(G_{1} \times \cdots \times G_{k}\right)=S\left(G_{1}\right) \square \cdots \square S\left(G_{k}\right)$ to get:
Theorem. Connected nonbipartite R-thin graphs in Γ_{0} factor uniquely into primes (w.r.t. \times)

- §8.5 Factoring Connected Nonbipartite Graphs.

Remove restriction to R-thin
Theorem. Connected nonbipartite graphs in Γ_{0} factor uniquely into primes (w.r.t. \times)

