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Boolean Squares

Def. The Boolean square of G ∈ Γ0 is a graph G s , where
V (G s) = V (G )
E (G s) =

{
xy | NG (x) ∩ NG (y) 6= ∅

}

G

G s

H

Hs G × H

(G × H)s = G s × Hs

Lemma 8.8 (G1 × · · · × Gk)s = G s
1 × · · · × G s
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The Cartesian Skeleton

Goal: Operator S on graphs satisfying S(H × K ) = S(H)2S(K ).

Motivation: Suppose a wall (graph) is made of bricks (vertices).
N(x) denotes mortar around brick x .
How can you tell when adjacent bricks x & y are at a diagonal?

x

y

N(x) ∩ N(y)

z

∃z such that
N(x) ∩ N(y) ⊂ N(x) ∩ N(z)
N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

OR x

z y

N(x) ∩ N(y)

∃z such that
N(x) ⊂ N(z) ⊂ N(y)

N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

This is equivalent to both of the following holding.

1. N(x) ∩ N(y) ⊂ N(x) ∩ N(z) or N(x) ⊂ N(z)⊂ N(y)
2. N(y) ∩ N(x) ⊂ N(y) ∩ N(z) or N(y) ⊂ N(z)⊂ N(x).



The Cartesian Skeleton

Goal: Operator S on graphs satisfying S(H × K ) = S(H)2S(K ).

Motivation: Suppose a wall (graph) is made of bricks (vertices).
N(x) denotes mortar around brick x .
How can you tell when adjacent bricks x & y are at a diagonal?

x

y

N(x) ∩ N(y)

z

∃z such that
N(x) ∩ N(y) ⊂ N(x) ∩ N(z)
N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

OR x

z y

N(x) ∩ N(y)

∃z such that
N(x) ⊂ N(z) ⊂ N(y)

N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

This is equivalent to both of the following holding.

1. N(x) ∩ N(y) ⊂ N(x) ∩ N(z) or N(x) ⊂ N(z)⊂ N(y)
2. N(y) ∩ N(x) ⊂ N(y) ∩ N(z) or N(y) ⊂ N(z)⊂ N(x).



The Cartesian Skeleton

Goal: Operator S on graphs satisfying S(H × K ) = S(H)2S(K ).

Motivation: Suppose a wall (graph) is made of bricks (vertices).
N(x) denotes mortar around brick x .
How can you tell when adjacent bricks x & y are at a diagonal?

x

y

N(x) ∩ N(y)

z

∃z such that
N(x) ∩ N(y) ⊂ N(x) ∩ N(z)
N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

OR x

z y

N(x) ∩ N(y)

∃z such that
N(x) ⊂ N(z) ⊂ N(y)

N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

This is equivalent to both of the following holding.

1. N(x) ∩ N(y) ⊂ N(x) ∩ N(z) or N(x) ⊂ N(z)⊂ N(y)
2. N(y) ∩ N(x) ⊂ N(y) ∩ N(z) or N(y) ⊂ N(z)⊂ N(x).



The Cartesian Skeleton

Goal: Operator S on graphs satisfying S(H × K ) = S(H)2S(K ).

Motivation: Suppose a wall (graph) is made of bricks (vertices).
N(x) denotes mortar around brick x .
How can you tell when adjacent bricks x & y are at a diagonal?

x

y

N(x) ∩ N(y)

z

∃z such that
N(x) ∩ N(y) ⊂ N(x) ∩ N(z)
N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

OR x

z y

N(x) ∩ N(y)

∃z such that
N(x) ⊂ N(z) ⊂ N(y)

N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

This is equivalent to both of the following holding.

1. N(x) ∩ N(y) ⊂ N(x) ∩ N(z) or N(x) ⊂ N(z)⊂ N(y)
2. N(y) ∩ N(x) ⊂ N(y) ∩ N(z) or N(y) ⊂ N(z)⊂ N(x).



The Cartesian Skeleton

Goal: Operator S on graphs satisfying S(H × K ) = S(H)2S(K ).

Motivation: Suppose a wall (graph) is made of bricks (vertices).
N(x) denotes mortar around brick x .
How can you tell when adjacent bricks x & y are at a diagonal?

x

y

N(x) ∩ N(y)

z

∃z such that
N(x) ∩ N(y) ⊂ N(x) ∩ N(z)
N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

OR x

z y

N(x) ∩ N(y)

∃z such that
N(x) ⊂ N(z) ⊂ N(y)

N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

This is equivalent to both of the following holding.

1. N(x) ∩ N(y) ⊂ N(x) ∩ N(z) or N(x) ⊂ N(z)⊂ N(y)
2. N(y) ∩ N(x) ⊂ N(y) ∩ N(z) or N(y) ⊂ N(z)⊂ N(x).



The Cartesian Skeleton

Goal: Operator S on graphs satisfying S(H × K ) = S(H)2S(K ).

Motivation: Suppose a wall (graph) is made of bricks (vertices).
N(x) denotes mortar around brick x .
How can you tell when adjacent bricks x & y are at a diagonal?

x

y

N(x) ∩ N(y)

z

∃z such that
N(x) ∩ N(y) ⊂ N(x) ∩ N(z)
N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

OR x

z y

N(x) ∩ N(y)

∃z such that
N(x) ⊂ N(z) ⊂ N(y)

N(x) ∩ N(y) ⊂ N(y) ∩ N(z)

This is equivalent to both of the following holding.

1. N(x) ∩ N(y) ⊂ N(x) ∩ N(z) or N(x) ⊂ N(z)⊂ N(y)
2. N(y) ∩ N(x) ⊂ N(y) ∩ N(z) or N(y) ⊂ N(z)⊂ N(x).



The Cartesian Skeleton

Edge xy of G s is dispensable if x = y or ∃ z ∈ V (G ) for which both:

1. NG (x) ∩ NG (y) ⊂ NG (x) ∩ NG (z) or NG (x) ⊂ NG (z)⊂ NG (y)

2. NG (y) ∩ NG (x) ⊂ NG (y) ∩ NG (z) or NG (y) ⊂ NG (z)⊂ NG (x).

K

H

G = H × K

x ′ x

z ′ z y ′ y

Examples: Loops dispensable; xy dispensable; x ′y ′ dispensable.
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Cartesian Skeleton of G is graph S(G ) with:

V ( S(G ) ) = V (G )

E ( S(G ) ) = { xy ∈ G s | xy is NOT dispensable}
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Proposition 8.10: If H,K are R-thin, then S(H × K ) = S(H)2S(K ).

Proposition 8.13: Suppose G is connected. Then:

I If G has odd cycle, S(G ) is connected.

I If G bipartite, S(G ) has exactly two components;
their respective vertex sets are the two partite sets of G .

G

S(G )
S(G )

ϕ

H

S(H)S(H)

Proposition 8.11: Any isomorphism ϕ : G → H is also

an isomorphism ϕ : S(G )→ S(H).



Proposition 8.10: If H,K are R-thin, then S(H × K ) = S(H)2S(K ).

Proposition 8.13: Suppose G is connected. Then:

I If G has odd cycle, S(G ) is connected.

I If G bipartite, S(G ) has exactly two components;
their respective vertex sets are the two partite sets of G .

G

S(G )
S(G )

ϕ

H

S(H)S(H)

Proposition 8.11: Any isomorphism ϕ : G → H is also

an isomorphism ϕ : S(G )→ S(H).



Proposition 8.10: If H,K are R-thin, then S(H × K ) = S(H)2S(K ).

Proposition 8.13: Suppose G is connected. Then:

I If G has odd cycle, S(G ) is connected.

I If G bipartite, S(G ) has exactly two components;
their respective vertex sets are the two partite sets of G .

G

S(G )
S(G )

ϕ

H

S(H)S(H)

Proposition 8.11: Any isomorphism ϕ : G → H is also

an isomorphism ϕ : S(G )→ S(H).



Proposition 8.10: If H,K are R-thin, then S(H × K ) = S(H)2S(K ).

Proposition 8.13: Suppose G is connected. Then:

I If G has odd cycle, S(G ) is connected.

I If G bipartite, S(G ) has exactly two components;
their respective vertex sets are the two partite sets of G .

G

S(G )
S(G )

ϕ

H

S(H)S(H)

Proposition 8.11: Any isomorphism ϕ : G → H is also

an isomorphism ϕ : S(G )→ S(H).



Our Plan

I §8.4 Factoring Connected Nonbipartite R-thin Graphs.
Use S(G1 × · · · × Gk) = S(G1)2 · · ·2S(Gk) to get:

Theorem. Connected nonbipartite R-thin graphs in Γ0

factor uniquely into primes (w.r.t. ×)

I §8.5 Factoring Connected Nonbipartite Graphs.
Remove restriction to R-thin

Theorem. Connected nonbipartite graphs in Γ0

factor uniquely into primes (w.r.t. ×)


