Chapter 8

§8.3 The Cartesian Skeleton

Chapter 8

§8.3 The Cartesian Skeleton

Goal Operator
$$S : \Gamma_0 \to \Gamma$$
 for which $S(G \times H) = S(G) \Box S(H)$

Chapter 8

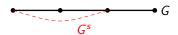
§8.3 The Cartesian Skeleton

Goal Operator $S : \Gamma_0 \to \Gamma$ for which $S(G \times H) = S(G) \Box S(H)$

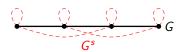
(For R-thin graphs.)

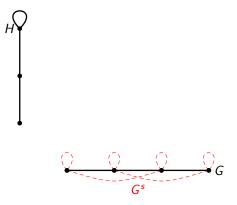
Chapter 8

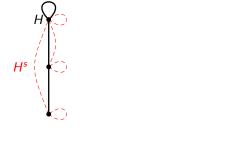
§8.3 The Cartesian Skeleton

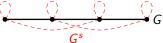

$$\begin{array}{ll} \textbf{Goal} & \text{Operator } S: \Gamma_0 \to \Gamma \ \text{for which} \\ & S(G \times H) = S(G) \Box S(H) \end{array} \tag{For R-thin graphs.}$$

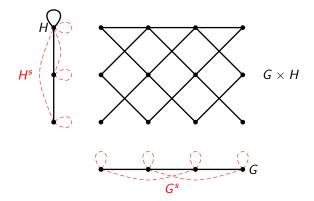
Given a graph G, graph S(G) will be called its **Cartesian skeleton**.

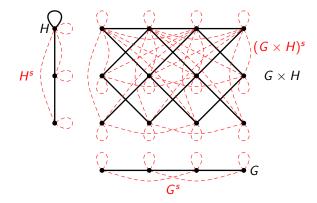

Def. The **Boolean square** of $G \in \Gamma_0$ is a graph G^s , where

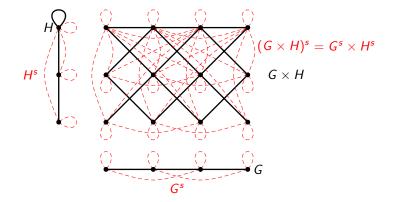

Def. The **Boolean square** of $G \in \Gamma_0$ is a graph G^s , where $V(G^s) = V(G)$

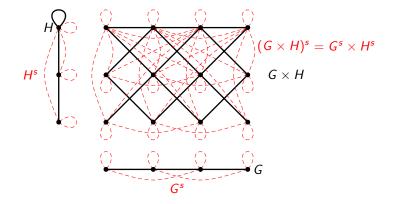




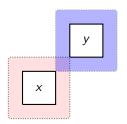








Def. The **Boolean square** of $G \in \Gamma_0$ is a graph G^s , where $V(G^s) = V(G)$ $E(G^s) = \{xy \mid N_G(x) \cap N_G(y) \neq \emptyset\}$

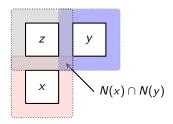


Lemma 8.8 $(G_1 \times \cdots \times G_k)^s = G_1^s \times \cdots \times G_k^s$.

Goal: Operator S on graphs satisfying $S(H \times K) = S(H) \Box S(K)$.

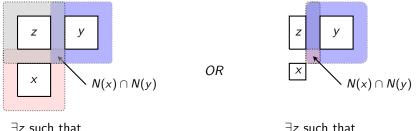
Goal: Operator S on graphs satisfying $S(H \times K) = S(H) \Box S(K)$.

Motivation: Suppose a wall (graph) is made of bricks (vertices). N(x) denotes mortar around brick x. How can you tell when adjacent bricks x & y are at a diagonal?


Goal: Operator S on graphs satisfying $S(H \times K) = S(H) \Box S(K)$.

Motivation: Suppose a wall (graph) is made of bricks (vertices). N(x) denotes mortar around brick x. How can you tell when adjacent bricks x & y are at a diagonal?

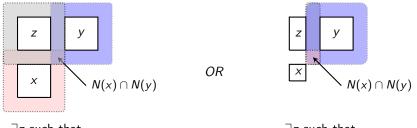
Goal: Operator S on graphs satisfying $S(H \times K) = S(H) \Box S(K)$.


Motivation: Suppose a wall (graph) is made of bricks (vertices). N(x) denotes mortar around brick x. How can you tell when adjacent bricks x & y are at a diagonal?

 $\exists z \text{ such that} \\ N(x) \cap N(y) \subset N(x) \cap N(z) \\ N(x) \cap N(y) \subset N(y) \cap N(z)$

Goal: Operator S on graphs satisfying $S(H \times K) = S(H) \Box S(K)$.

Motivation: Suppose a wall (graph) is made of bricks (vertices). N(x) denotes mortar around brick x. How can you tell when adjacent bricks x & y are at a diagonal?



 $\exists z \text{ such that} \\ N(x) \cap N(y) \subset N(x) \cap N(z) \\ N(x) \cap N(y) \subset N(y) \cap N(z) \end{cases}$

 $\exists z \text{ such that}$ $N(x) \subset N(z) \subset N(y)$

Goal: Operator S on graphs satisfying $S(H \times K) = S(H) \Box S(K)$.

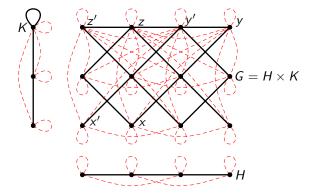
Motivation: Suppose a wall (graph) is made of bricks (vertices). N(x) denotes mortar around brick x. How can you tell when adjacent bricks x & y are at a diagonal?

 $\exists z \text{ such that} \\ N(x) \cap N(y) \subset N(x) \cap N(z) \\ N(x) \cap N(y) \subset N(y) \cap N(z) \end{cases}$

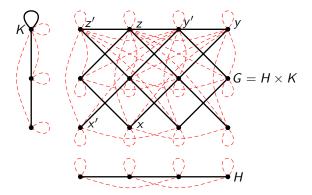
 $\exists z \text{ such that} \ N(x) \subset N(z) \subset N(y)$

This is equivalent to **both** of the following holding.

1. $N(x) \cap N(y) \subset N(x) \cap N(z)$ or $N(x) \subset N(z) \subset N(y)$ 2. $N(y) \cap N(x) \subset N(y) \cap N(z)$ or $N(y) \subset N(z) \subset N(x)$.


Edge xy of G^s is **dispensable** if x = y or $\exists z \in V(G)$ for which both:

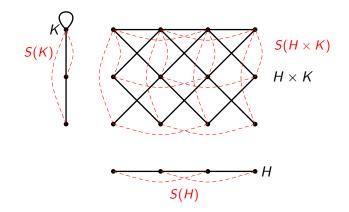
1. $N_G(x) \cap N_G(y) \subset N_G(x) \cap N_G(z)$ or $N_G(x) \subset N_G(z) \subset N_G(y)$


2. $N_G(y) \cap N_G(x) \subset N_G(y) \cap N_G(z)$ or $N_G(y) \subset N_G(z) \subset N_G(x)$.

Edge xy of G^s is **dispensable** if x = y or $\exists z \in V(G)$ for which both: 1. $N_G(x) \cap N_G(y) \subset N_G(x) \cap N_G(z)$ or $N_G(x) \subset N_G(z) \subset N_G(y)$

2. $N_G(y) \cap N_G(x) \subset N_G(y) \cap N_G(z)$ or $N_G(y) \subset N_G(z) \subset N_G(x)$.

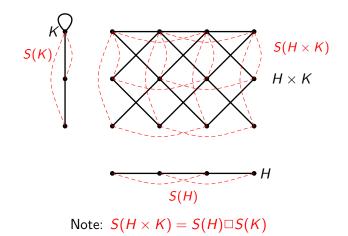
Edge *xy* of G^s is **dispensable** if x = y or $\exists z \in V(G)$ for which both: 1. $N_G(x) \cap N_G(y) \subset N_G(x) \cap N_G(z)$ or $N_G(x) \subset N_G(z) \subset N_G(y)$ 2. $N_G(y) \cap N_G(x) \subset N_G(y) \cap N_G(z)$ or $N_G(y) \subset N_G(z) \subset N_G(x)$.


Examples: Loops dispensable; xy dispensable; x'y' dispensable.

Cartesian Skeleton of G is graph S(G) with:

$$V(S(G)) = V(G)$$

 $E(S(G)) = \{ xy \in G^s \mid xy \text{ is NOT dispensable} \}$


Cartesian Skeleton of G is graph S(G) with:

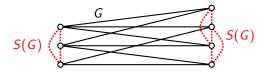
$$V(S(G)) = V(G)$$

$$E(S(G)) = \{ xy \in G^s \mid xy \text{ is NOT dispensable} \}$$

Cartesian Skeleton of G is graph S(G) with:

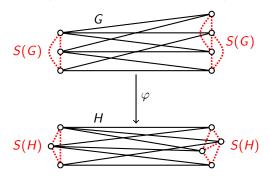
$$V(S(G)) = V(G)$$

$$E(S(G)) = \{ xy \in G^s \mid xy \text{ is NOT dispensable} \}$$



Proposition 8.13: Suppose *G* is connected. Then:

• If G has odd cycle, S(G) is connected.


Proposition 8.13: Suppose *G* is connected. Then:

- If G has odd cycle, S(G) is connected.
- If G bipartite, S(G) has exactly two components; their respective vertex sets are the two partite sets of G.

Proposition 8.13: Suppose *G* is connected. Then:

- If G has odd cycle, S(G) is connected.
- If G bipartite, S(G) has exactly two components; their respective vertex sets are the two partite sets of G.

Proposition 8.11: Any isomorphism $\varphi : G \to H$ is also an isomorphism $\varphi : S(G) \to S(H)$.

Our Plan

- §8.4 Factoring Connected Nonbipartite *R*-thin Graphs. Use S(G₁ × ··· × G_k) = S(G₁)□ ··· □S(G_k) to get: Theorem. Connected nonbipartite *R*-thin graphs in Γ₀ factor uniquely into primes (w.r.t. ×)
- ► §8.5 Factoring Connected Nonbipartite Graphs. Remove restriction to *R*-thin

Theorem. Connected nonbipartite graphs in Γ_0 factor uniquely into primes (w.r.t. \times)