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68.3 The Cartesian Skeleton

Goal Operator S: g — I for which
S(G X H) == S(G)DS(H) (For R-thin graphs.)

Given a graph G, graph S(G) will be called its Cartesian skeleton.
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Boolean Squares

Def. The Boolean square of G € 'y is a graph G*, where
V(G*) = V(6G)
E(G®) = {xy | No(x) N Ng(y) # 0}
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Lemma 8.8 (G x - - x G¢)* = Gf x --- x G}.
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The Cartesian Skeleton

Goal: Operator S on graphs satisfying S(H x K) = S(H)OS(K).

Motivation: Suppose a wall (graph) is made of bricks (vertices).
N(x) denotes mortar around brick x.
How can you tell when adjacent bricks x & y are at a diagonal?

z ||y | Fy

OR X
X N(x) N N(y) ki N(x) N N(y)
dz such that dz such that
N(x)N N(y) C N(x) N N(z) N(x) € N(z) C N(y)

N(x) Y N(y) < N(y) N N(2)

This is equivalent to both of the following holding.
1. N(x)NN(y) Cc N(x)NN(z) or N(x)C N(z)c N(y)
2. N(y)NN(x) C N(y)nN(z) or N(y)C N(z)C N(x).
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The Cartesian Skeleton

Edge xy of G* is dispensable if x = y or 3 z € V(G) for which both:
1. NG(X) n NG(y) C NG(X) n NG(Z) or NG(X) C NG(Z)C NG(y)
2. Ng(y) N Ng(x) C Ng(y) N Ng(z) or Ng(y) C Ng(z)C Ng(x).

Examples: Loops dispensable;  xy dispensable;  x’y’ dispensable.
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Cartesian Skeleton of G is graph S(G) with:

v(s(6)) = V(6)
E(S(G)) = {xye G | xyis NOT dispensable}
%

Note: S(H x K) = S(H)OS(K)
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Proposition 8.10: If H, K are R-thin, then S(H x K) = S(H)OS(K).

Proposition 8.13: Suppose G is connected. Then:
> If G has odd cycle, S(G) is connected.

> If G bipartite, S(G) has exactly two components;
their respective vertex sets are the two partite sets of G.

Proposition 8.11: Any isomorphism ¢ : G — H is also
an isomorphism ¢ : S(G) — S(H).



Our Plan
» £8.4 Factoring Connected Nonbipartite R-thin Graphs.
Use S(Gl X e X Gk) = S(Gl)D cee DS(Gk) to get:

Theorem. Connected nonbipartite R-thin graphs in g
factor uniquely into primes (w.r.t. x)

» $8.5 Factoring Connected Nonbipartite Graphs.
Remove restriction to R-thin
Theorem. Connected nonbipartite graphs in g
factor uniquely into primes (w.r.t. x)



