**Chapter 8** 

§8.3 The Cartesian Skeleton

Chapter 8

§8.3 The Cartesian Skeleton

**Goal** Operator 
$$S : \Gamma_0 \to \Gamma$$
 for which  $S(G \times H) = S(G) \Box S(H)$ 

Chapter 8

§8.3 The Cartesian Skeleton

# **Goal** Operator $S : \Gamma_0 \to \Gamma$ for which $S(G \times H) = S(G) \Box S(H)$

(For R-thin graphs.)

Chapter 8

§8.3 The Cartesian Skeleton

$$\begin{array}{ll} \textbf{Goal} & \text{Operator } S: \Gamma_0 \to \Gamma \ \text{for which} \\ & S(G \times H) = S(G) \Box S(H) \end{array} \tag{For $R$-thin graphs.}$$

Given a graph G, graph S(G) will be called its **Cartesian skeleton**.

## **Def.** The **Boolean square** of $G \in \Gamma_0$ is a graph $G^s$ , where

**Def.** The **Boolean square** of  $G \in \Gamma_0$  is a graph  $G^s$ , where  $V(G^s) = V(G)$ 





















**Def.** The **Boolean square** of  $G \in \Gamma_0$  is a graph  $G^s$ , where  $V(G^s) = V(G)$  $E(G^s) = \{xy \mid N_G(x) \cap N_G(y) \neq \emptyset\}$ 



**Lemma 8.8**  $(G_1 \times \cdots \times G_k)^s = G_1^s \times \cdots \times G_k^s$ .

## **Goal:** Operator S on graphs satisfying $S(H \times K) = S(H) \Box S(K)$ .

**Goal:** Operator S on graphs satisfying  $S(H \times K) = S(H) \Box S(K)$ .

**Motivation:** Suppose a wall (graph) is made of bricks (vertices). N(x) denotes mortar around brick x. How can you tell when adjacent bricks x & y are at a diagonal?



**Goal:** Operator S on graphs satisfying  $S(H \times K) = S(H) \Box S(K)$ .

**Motivation:** Suppose a wall (graph) is made of bricks (vertices). N(x) denotes mortar around brick x. How can you tell when adjacent bricks x & y are at a diagonal?



**Goal:** Operator S on graphs satisfying  $S(H \times K) = S(H) \Box S(K)$ .

**Motivation:** Suppose a wall (graph) is made of bricks (vertices). N(x) denotes mortar around brick x. How can you tell when adjacent bricks x & y are at a diagonal?



 $\exists z \text{ such that} \\ N(x) \cap N(y) \subset N(x) \cap N(z) \\ N(x) \cap N(y) \subset N(y) \cap N(z)$ 

**Goal:** Operator S on graphs satisfying  $S(H \times K) = S(H) \Box S(K)$ .

**Motivation:** Suppose a wall (graph) is made of bricks (vertices). N(x) denotes mortar around brick x. How can you tell when adjacent bricks x & y are at a diagonal?



 $\exists z \text{ such that} \\ N(x) \cap N(y) \subset N(x) \cap N(z) \\ N(x) \cap N(y) \subset N(y) \cap N(z) \end{cases}$ 

 $\exists z \text{ such that}$  $N(x) \subset N(z) \subset N(y)$ 

**Goal:** Operator S on graphs satisfying  $S(H \times K) = S(H) \Box S(K)$ .

**Motivation:** Suppose a wall (graph) is made of bricks (vertices). N(x) denotes mortar around brick x. How can you tell when adjacent bricks x & y are at a diagonal?



 $\exists z \text{ such that} \\ N(x) \cap N(y) \subset N(x) \cap N(z) \\ N(x) \cap N(y) \subset N(y) \cap N(z) \end{cases}$ 

 $\exists z \text{ such that} \ N(x) \subset N(z) \subset N(y)$ 

This is equivalent to **both** of the following holding.

1.  $N(x) \cap N(y) \subset N(x) \cap N(z)$  or  $N(x) \subset N(z) \subset N(y)$ 2.  $N(y) \cap N(x) \subset N(y) \cap N(z)$  or  $N(y) \subset N(z) \subset N(x)$ .

Edge xy of  $G^s$  is **dispensable** if x = y or  $\exists z \in V(G)$  for which both:

1.  $N_G(x) \cap N_G(y) \subset N_G(x) \cap N_G(z)$  or  $N_G(x) \subset N_G(z) \subset N_G(y)$ 

2.  $N_G(y) \cap N_G(x) \subset N_G(y) \cap N_G(z)$  or  $N_G(y) \subset N_G(z) \subset N_G(x)$ .

Edge xy of  $G^s$  is **dispensable** if x = y or  $\exists z \in V(G)$  for which both: 1.  $N_G(x) \cap N_G(y) \subset N_G(x) \cap N_G(z)$  or  $N_G(x) \subset N_G(z) \subset N_G(y)$ 

2.  $N_G(y) \cap N_G(x) \subset N_G(y) \cap N_G(z)$  or  $N_G(y) \subset N_G(z) \subset N_G(x)$ .



Edge *xy* of  $G^s$  is **dispensable** if x = y or  $\exists z \in V(G)$  for which both: 1.  $N_G(x) \cap N_G(y) \subset N_G(x) \cap N_G(z)$  or  $N_G(x) \subset N_G(z) \subset N_G(y)$ 2.  $N_G(y) \cap N_G(x) \subset N_G(y) \cap N_G(z)$  or  $N_G(y) \subset N_G(z) \subset N_G(x)$ .



**Examples:** Loops dispensable; xy dispensable; x'y' dispensable.

## **Cartesian Skeleton** of G is graph S(G) with:

$$V(S(G)) = V(G)$$
  
 $E(S(G)) = \{ xy \in G^s \mid xy \text{ is NOT dispensable} \}$ 

## **Cartesian Skeleton** of G is graph S(G) with:

$$V(S(G)) = V(G)$$
  
$$E(S(G)) = \{ xy \in G^s \mid xy \text{ is NOT dispensable} \}$$



## **Cartesian Skeleton** of G is graph S(G) with:

$$V(S(G)) = V(G)$$
  
$$E(S(G)) = \{ xy \in G^s \mid xy \text{ is NOT dispensable} \}$$



**Proposition 8.13:** Suppose *G* is connected. Then:

• If G has odd cycle, S(G) is connected.

**Proposition 8.13:** Suppose *G* is connected. Then:

- If G has odd cycle, S(G) is connected.
- If G bipartite, S(G) has exactly two components; their respective vertex sets are the two partite sets of G.



**Proposition 8.13:** Suppose *G* is connected. Then:

- If G has odd cycle, S(G) is connected.
- If G bipartite, S(G) has exactly two components; their respective vertex sets are the two partite sets of G.



**Proposition 8.11:** Any isomorphism  $\varphi : G \to H$  is also an isomorphism  $\varphi : S(G) \to S(H)$ .

## Our Plan

- §8.4 Factoring Connected Nonbipartite *R*-thin Graphs. Use S(G<sub>1</sub> × ··· × G<sub>k</sub>) = S(G<sub>1</sub>)□ ··· □S(G<sub>k</sub>) to get: Theorem. Connected nonbipartite *R*-thin graphs in Γ<sub>0</sub> factor uniquely into primes (w.r.t. ×)
- ► §8.5 Factoring Connected Nonbipartite Graphs. Remove restriction to *R*-thin

**Theorem.** Connected nonbipartite graphs in  $\Gamma_0$  factor uniquely into primes (w.r.t.  $\times$ )