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Graph exponentiation G¥

K — { V(GK) Set of all functions f : V(K) — V(G)
E(GH) = {fg|f(x)aly) € E(G) Vxy € E(K) }
If V(K)={v1, va, ..., vk|}, then f : V(K) — V(G) is denoted
f=(x, x2, ..., Xk|) € V(G)IKI, where f(v;) = x;.

So |GK| =G|
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Properties of exponentiation

Notation: [ = ({a}.{a}) =& © = (1.0}

Encouraging;: G' = G
G" = GxGx---xG=G"
GO =1
GH % GK o~ GH+K
(Gx H)K = GK x HK
(GH)K ~  GHxK
Disappointing : GK=HK A G=H (even if K #£ Q)
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’ Question:  For which G does GK 2 HK = G~ H? ‘




Question (scaled down)

For which G does G2 =2 HK2 = G~ H?
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Neighborhood reconstruction problem.

Neighborhood multiset of G is A4 (G) = {Ng(x) | x € V(G)}
Example:
2 1 2 1
3 0 3 0
4 5 4 5

A (G) = {{0,2},{2,4},{0,4},{1,3},{3,5},{1,5} } = A (H)

G neighborhood reconstructible if 4 (G) = A4 (H) = G=H



Petersen graph NOT neighborhood reconstructible

Ne(0) = {1,2,8} = Ny(0)
NG(]-) = {0,57} = NH(]-)
Ne(2) = {0,3,4} = Ny(8)
NG(3) = {27 1B 9} = NH(6)
NG(4) = {27 5, 6} = NH(9)
NG(5) = {174’ 9} = NH(5)
Ne(6) — {4.7.8) = Nu(3)
Ne(7) = {1,3,6} = Nu(7)
NG(8) = {07 6, 9} = NH(2)
NG(g) = {37 5, 8} = NH(4)
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Theorem. Graph G is neighborhood reconstructible if and only if
GKe= HX> = G = H for all graphs H.

Proof. < (easy direction)

Suppose GK2 = HK2 = G = H for all graphs H. Y%
Claim G is neighborhood reconstructible:
Suppose N (G) = A (H)......coooiiiiiiiiit. (must show G = H)

Then 3 bijection ¢: V(G) — V(H) with Ng(x) = Ny(p(x)).

Claim X: GK2 — HKX2 where \(x,y) = (¢(x),y) is isomorphism:

(x,y)(u,v) € E(G") v € Ng(x) and y € Ng(u)

V€ Nulip(x)) and y € N((u)
(2(x),y) (o(u),v) € E(H")
A(x,y) A(u, v) € E(H®?)

1eee



Theorem. Graph G is neighborhood reconstructible if and only if
GKe= HX> = G = H for all graphs H.

Proof. < (easy direction)

Suppose GK2 = HK2 = G = H for all graphs H. Y%
Claim G is neighborhood reconstructible:
Suppose N (G) = A (H)......coooiiiiiiiiit. (must show G = H)

Then 3 bijection ¢: V(G) — V(H) with Ng(x) = Ny(p(x)).

Claim X: GK2 — HKX2 where \(x,y) = (¢(x),y) is isomorphism:

(x,¥)(u,v) € E(GR) <« v e Ng(x)andy e Ng(u)
< v e Ny(p(x)) and y € Ny(e(u))
— (cp(x),y) (cp(u), v) € E(HK2)

= Axy)A(u,v) € E(HX)
Therefore GK2 = HX2 50 G = H by Q. O]
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Thank You!



