## MATH 756 About graph exponentiation

#### **Richard Hammack**

RH & Cristy Mulligan, (2017) Neighborhood reconstruction & graph cancellation, Electronic Journal of Combinatorics, **24**(2).

RH, (2021) Graph exponentiation and neighborhood reconstruction, Discussiones Mathematicae Graph Theory, 41, 335–339.

$$G^{K} = \begin{cases} V(G^{K}) = \text{Set of all functions } f : V(K) \to V(G) \\ E(G^{K}) = \{ fg \mid f(x)g(y) \in E(G) \ \forall xy \in E(K) \} \end{cases}$$

$$G^{K} = \begin{cases} V(G^{K}) = \text{Set of all functions } f : V(K) \rightarrow V(G) \\ E(G^{K}) = \{fg \mid f(x)g(y) \in E(G) \forall xy \in E(K)\} \end{cases}$$
  
If  $V(K) = \{v_1, v_2, \dots, v_{|K|}\}$ , then  $f : V(K) \rightarrow V(G)$  is denoted  $f = (x_1, x_2, \dots, x_{|K|}) \in V(G)^{|K|}$ , where  $f(v_i) = x_i$ .

$$G^{K} = \begin{cases} V(G^{K}) = \text{Set of all functions } f : V(K) \rightarrow V(G) \\ E(G^{K}) = \{fg \mid f(x)g(y) \in E(G) \forall xy \in E(K)\} \end{cases}$$
  
If  $V(K) = \{v_1, v_2, \dots, v_{|K|}\}$ , then  $f : V(K) \rightarrow V(G)$  is denoted  
 $f = (x_1, x_2, \dots, x_{|K|}) \in V(G)^{|K|}$ , where  $f(v_i) = x_i$ .  
So  $|G^{K}| = |G|^{|K|}$ 

$$G^{K} = \begin{cases} V(G^{K}) = \text{Set of all functions } f : V(K) \rightarrow V(G) \\ E(G^{K}) = \{fg \mid f(x)g(y) \in E(G) \forall xy \in E(K)\} \end{cases}$$
  
If  $V(K) = \{v_1, v_2, \dots, v_{|K|}\}$ , then  $f : V(K) \rightarrow V(G)$  is denoted  
 $f = (x_1, x_2, \dots, x_{|K|}) \in V(G)^{|K|}$ , where  $f(v_i) = x_i$ .

So  $|G^{K}| = |G|^{|K|}$ 

Example





Notation: 
$$\mathbb{I} = (\{a\}, \{aa\}) = \bigvee_a \mathbb{O} = (\{\}, \{\})$$

Notation:  $\mathbb{I} = (\{a\}, \{aa\}) = \bigcirc_a \qquad \mathbb{O} = (\{\}, \{\})$ Encouraging:  $G^{\mathbb{I}} = G$ 

Notation:  $\mathbb{I} = (\{a\}, \{aa\}) = \bigotimes_{a} \mathbb{O} = (\{\}, \{\})$ Encouraging:  $G^{\mathbb{I}} = G$  $G^{n\mathbb{I}} = G \times G \times \cdots \times G = G^{n}$ 

Notation:  $\mathbb{I} = (\{a\}, \{aa\}) = \bigcirc_a \qquad \mathbb{O} = (\{\}, \{\})$ Encouraging:  $G^{\mathbb{I}} = G$  $G^{n\mathbb{I}} = G \times G \times \cdots \times G = G^n$  $G^{\mathbb{O}} = \mathbb{I}$ 

Notation:  $\mathbb{I} = (\{a\}, \{aa\}) = \bigcirc_a \quad \mathbb{O} = (\{\}, \{\})$ Encouraging:  $G^{\mathbb{I}} = G$  $G^{n\mathbb{I}} = G \times G \times \cdots \times G = G^n$  $G^{\mathbb{O}} = \mathbb{I}$  $G^{H} \times G^{K} \cong G^{H+K}$ 

Notation:  $\mathbb{I} = (\{a\}, \{aa\}) = \bigotimes_{a} \mathbb{O} = (\{\}, \{\})$ Encouraging:  $G^{\mathbb{I}} = G$   $G^{n\mathbb{I}} = G \times G \times \cdots \times G = G^{n}$   $G^{\mathbb{O}} = \mathbb{I}$   $G^{H} \times G^{K} \cong G^{H+K}$  $(G \times H)^{K} \cong G^{K} \times H^{K}$ 

Notation:  $\mathbb{I} = (\{a\}, \{aa\}) = \bigcirc_{a} \qquad \mathbb{O} = (\{\}, \{\})$ Encouraging:  $G^{\mathbb{I}} = G$   $G^{n\mathbb{I}} = G \times G \times \cdots \times G = G^{n}$   $G^{\mathbb{O}} = \mathbb{I}$   $G^{H} \times G^{K} \cong G^{H+K}$   $(G \times H)^{K} \cong G^{K} \times H^{K}$  $(G^{H})^{K} \cong G^{H \times K}$ 

Notation:  $\mathbb{I} = (\{a\}, \{aa\}) = \bigvee_{a} \mathbb{O} = (\{\}, \{\})$ Encouraging:  $G^{\mathbb{I}} = G$   $G^{n\mathbb{I}} = G \times G \times \cdots \times G = G^{n}$   $G^{\mathbb{O}} = \mathbb{I}$   $G^{H} \times G^{K} \cong G^{H+K}$   $(G \times H)^{K} \cong G^{K} \times H^{K}$   $(G^{H})^{K} \cong G^{H \times K}$ Disappointing :  $G^{K} \cong H^{K} \not\Rightarrow G \cong H$  (even if  $K \neq \mathbb{O}$ )

Notation:  $\mathbb{I} = (\{a\}, \{aa\}) = \bigvee_a \mathbb{O} = (\{\}, \{\})$ Encouraging:  $G^{\mathbb{I}} = G$  $G^{n\mathbb{I}} = G \times G \times \cdots \times G = G^{n}$  $\begin{array}{rcl} G^{\mathbb{O}} & = & \mathbb{I} \\ G^{H} \times G^{K} & \cong & G^{H+K} \\ (G \times H)^{K} & \cong & G^{K} \times H^{K} \end{array}$  $(G^{H})^{K} \cong G^{H \times K}$ **Disappointing** :  $G^K \cong H^K \Rightarrow G \cong H$  (even if  $K \neq \mathbb{O}$ )  $\begin{pmatrix} 1 \\ 0 \end{pmatrix}^{K_2} = \begin{array}{c} 0 \\ 0 \\ 0 \end{array}$  $\begin{pmatrix} 1 \\ 0 \\ 0 \\ R \end{pmatrix}^{\mathcal{K}_2} = \bigcirc^{\mathcal{U}_1} \bigcirc^{\mathcal{U}_2}$ 

Notation:  $\mathbb{I} = (\{a\}, \{aa\}) = \bigvee_a \mathbb{O} = (\{\}, \{\})$ **Encouraging:**  $G^{\mathbb{I}} = G$  $G^{n\mathbb{I}} = G \times G \times \cdots \times G = G^{n}$  $G^{\mathbb{O}} = \mathbb{I}$   $G^{H} \times G^{K} \cong G^{H+K}$   $(G \times H)^{K} \cong G^{K} \times H^{K}$   $(G^{H})^{K} \cong G^{H \times K}$ **Disappointing** :  $G^K \cong H^K \Rightarrow G \cong H$  (even if  $K \neq \mathbb{O}$ )  $\begin{pmatrix} 1 \\ 1 \end{pmatrix}^{K_2} = \begin{array}{c} \bigcup_{\sigma} & \bigcup_{\sigma} \\ 0 & O \end{array}$  $\begin{pmatrix} 1 \\ 0 \\ 0 \\ R \end{pmatrix}^{K_2} = O^{U}$ **Question:** For which G does  $G^K \cong H^K \Rightarrow G \cong H$ ?

#### For which G does $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$ ?

**Neighborhood multiset** of G is  $\mathcal{N}(G) = \{N_G(x) \mid x \in V(G)\}$ 

Neighborhood multiset of G is  $\mathcal{N}(G) = \{N_G(x) \mid x \in V(G)\}$ 

Example:



 $\mathscr{N}(G) = \{\{0,2\},\{2,4\},\{0,4\},\{1,3\},\{3,5\},\{1,5\}\}\}$ 

Neighborhood multiset of G is  $\mathcal{N}(G) = \{N_G(x) \mid x \in V(G)\}$ 

#### Example:





 $\mathscr{N}(G) = \{\{0,2\},\{2,4\},\{0,4\},\{1,3\},\{3,5\},\{1,5\}\} = \mathscr{N}(H)$ 

Neighborhood multiset of G is  $\mathcal{N}(G) = \{N_G(x) \mid x \in V(G)\}$ 

#### Example:



 $\mathcal{N}(G) = \{\{0,2\},\{2,4\},\{0,4\},\{1,3\},\{3,5\},\{1,5\}\} = \mathcal{N}(H)$ 

G neighborhood reconstructible if  $\mathscr{N}(G) = \mathscr{N}(H) \implies G \cong H$ 

#### Petersen graph NOT neighborhood reconstructible





| $N_G(0)$ | = | $\{1, 2, 8\}$ | = | $N_H(0)$ |
|----------|---|---------------|---|----------|
| $N_G(1)$ | = | $\{0, 5, 7\}$ | = | $N_H(1)$ |
| $N_G(2)$ | = | $\{0, 3, 4\}$ | = | $N_H(8)$ |
| $N_G(3)$ | = | $\{2, 7, 9\}$ | = | $N_H(6)$ |
| $N_G(4)$ | = | $\{2, 5, 6\}$ | = | $N_H(9)$ |
| $N_G(5)$ | = | $\{1, 4, 9\}$ | = | $N_H(5)$ |
| $N_G(6)$ | = | $\{4, 7, 8\}$ | = | $N_H(3)$ |
| $N_G(7)$ | = | $\{1, 3, 6\}$ | = | $N_H(7)$ |
| $N_G(8)$ | = | $\{0, 6, 9\}$ | = | $N_H(2)$ |
| $N_G(9)$ | = | {3,5,8}       | = | $N_H(4)$ |

**Theorem.** Graph G is neighborhood reconstructible if and only if  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.

**Theorem.** Graph G is neighborhood reconstructible if and only if  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.

 $\heartsuit$ 

Proof.  $\leftarrow$  (easy direction) Suppose  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.

**Theorem.** Graph G is neighborhood reconstructible if and only if  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.

Proof.  $\Leftarrow$  (easy direction) Suppose  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.  $\heartsuit$ Claim G is neighborhood reconstructible: Suppose  $\mathcal{N}(G) = \mathcal{N}(H)$ .....(must show  $G \cong H$ )

**Theorem.** Graph G is neighborhood reconstructible if and only if  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.

Proof.  $\Leftarrow$  (easy direction) Suppose  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.  $\heartsuit$ Claim G is neighborhood reconstructible: Suppose  $\mathscr{N}(G) = \mathscr{N}(H)$ .....(must show  $G \cong H$ )

Then  $\exists$  bijection  $\varphi \colon V(G) \to V(H)$  with  $N_G(x) = N_H(\varphi(x))$ .

**Theorem.** Graph G is neighborhood reconstructible if and only if  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.

Proof.  $\Leftarrow$  (easy direction) Suppose  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.  $\heartsuit$ Claim G is neighborhood reconstructible: Suppose  $\mathscr{N}(G) = \mathscr{N}(H)$ .....(must show  $G \cong H$ ) Then  $\exists$  bijection  $\varphi \colon V(G) \to V(H)$  with  $N_G(x) = N_H(\varphi(x))$ . Claim  $\lambda \colon G^{K_2} \to H^{K_2}$  where  $\lambda(x, y) = (\varphi(x), y)$  is isomorphism:

**Theorem.** Graph G is neighborhood reconstructible if and only if  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.

Proof.  $\Leftarrow$  (easy direction) Suppose  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.  $\heartsuit$ Claim G is neighborhood reconstructible: Suppose  $\mathscr{N}(G) = \mathscr{N}(H)$ .....(must show  $G \cong H$ ) Then  $\exists$  bijection  $\varphi \colon V(G) \to V(H)$  with  $N_G(x) = N_H(\varphi(x))$ . Claim  $\lambda \colon G^{K_2} \to H^{K_2}$  where  $\lambda(x, y) = (\varphi(x), y)$  is isomorphism:  $(x, y)(u, v) \in E(G^{K_2}) \iff v \in N_G(x)$  and  $y \in N_G(u)$ 

**Theorem.** Graph G is neighborhood reconstructible if and only if  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.

Proof.  $\Leftarrow$  (easy direction) Suppose  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.  $\heartsuit$ Claim G is neighborhood reconstructible: Suppose  $\mathscr{N}(G) = \mathscr{N}(H)$ .....(must show  $G \cong H$ ) Then  $\exists$  bijection  $\varphi \colon V(G) \to V(H)$  with  $N_G(x) = N_H(\varphi(x))$ . Claim  $\lambda \colon G^{K_2} \to H^{K_2}$  where  $\lambda(x, y) = (\varphi(x), y)$  is isomorphism:  $(x, y)(u, v) \in E(G^{K_2}) \iff v \in N_G(x)$  and  $y \in N_G(u)$  $\iff v \in N_H(\varphi(x))$  and  $y \in N_H(\varphi(u))$ 

**Theorem.** Graph G is neighborhood reconstructible if and only if  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.

Proof.  $\leftarrow$  (easy direction) Suppose  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.  $\heartsuit$ Claim G is neighborhood reconstructible: Suppose  $\mathcal{N}(G) = \mathcal{N}(H)$ .....(must show  $G \cong H$ ) Then  $\exists$  bijection  $\varphi \colon V(G) \to V(H)$  with  $N_G(x) = N_H(\varphi(x))$ . Claim  $\lambda: G^{K_2} \to H^{K_2}$  where  $\lambda(x, y) = (\varphi(x), y)$  is isomorphism:  $(x, y)(u, v) \in E(G^{K_2}) \iff v \in N_G(x) \text{ and } y \in N_G(u)$  $\iff$   $v \in N_H(\varphi(x))$  and  $y \in N_H(\varphi(u))$  $\iff$   $(\varphi(x), y) (\varphi(u), v) \in E(H^{K_2})$ 

**Theorem.** Graph G is neighborhood reconstructible if and only if  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.

Proof.  $\leftarrow$  (easy direction) Suppose  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.  $\heartsuit$ Claim G is neighborhood reconstructible: Suppose  $\mathcal{N}(G) = \mathcal{N}(H)$ .....(must show  $G \cong H$ ) Then  $\exists$  bijection  $\varphi \colon V(G) \to V(H)$  with  $N_G(x) = N_H(\varphi(x))$ . Claim  $\lambda: G^{K_2} \to H^{K_2}$  where  $\lambda(x, y) = (\varphi(x), y)$  is isomorphism:  $(x, y)(u, v) \in E(G^{K_2}) \iff v \in N_G(x) \text{ and } y \in N_G(u)$  $\iff$   $v \in N_H(\varphi(x))$  and  $y \in N_H(\varphi(u))$  $\iff (\varphi(x), y) (\varphi(u), v) \in E(H^{K_2})$  $\iff \lambda(x, y) \lambda(u, v) \in E(H^{K_2})$ 

**Theorem.** Graph G is neighborhood reconstructible if and only if  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.

Proof.  $\leftarrow$  (easy direction) Suppose  $G^{K_2} \cong H^{K_2} \Rightarrow G \cong H$  for all graphs H.  $\heartsuit$ Claim G is neighborhood reconstructible: Suppose  $\mathcal{N}(G) = \mathcal{N}(H)$ .....(must show  $G \cong H$ ) Then  $\exists$  bijection  $\varphi \colon V(G) \to V(H)$  with  $N_G(x) = N_H(\varphi(x))$ . Claim  $\lambda: G^{K_2} \to H^{K_2}$  where  $\lambda(x, y) = (\varphi(x), y)$  is isomorphism:  $(x, y)(u, v) \in E(G^{K_2}) \iff v \in N_G(x) \text{ and } y \in N_G(u)$  $\iff$   $v \in N_H(\varphi(x))$  and  $y \in N_H(\varphi(u))$  $\iff (\varphi(x), y) (\varphi(u), v) \in E(H^{K_2})$  $\iff \lambda(x, y) \lambda(u, v) \in E(H^{K_2})$ 

Therefore  $G^{K_2} \cong H^{K_2}$ , so  $G \cong H$  by  $\heartsuit$ .

$$\left( \begin{array}{c} G^{K_2} \cong H^{K_2} \Rightarrow G \cong H \end{array} \right) \iff \left( G ext{ is nbhd. reconstructible} 
ight)$$

### **Open questions** (some low hanging fruit?)

$$\left( \begin{array}{ccc} G^{K_2} \cong H^{K_2} \Rightarrow G \cong H \end{array} \right) \iff \left( \begin{array}{ccc} G \text{ is nbhd. reconstructible} \end{array} \right)$$
$$\left( \begin{array}{ccc} G^{K_3} \cong H^{K_3} \Rightarrow G \cong H \end{array} \right) \iff \left( \begin{array}{cccc} G \text{ is ?????} \end{array} \right)$$

$$\begin{pmatrix} G^{K_2} \cong H^{K_2} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is nbhd. reconstructible} \end{pmatrix}$$
$$\begin{pmatrix} G^{K_3} \cong H^{K_3} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is } ???? \end{pmatrix}$$
$$\begin{pmatrix} G^{K_n} \cong H^{K_n} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is } ???? \end{pmatrix}$$

$$\begin{pmatrix} G^{K_2} \cong H^{K_2} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is nbhd. reconstructible} \end{pmatrix}$$
$$\begin{pmatrix} G^{K_3} \cong H^{K_3} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is ?????} \end{pmatrix}$$
$$\begin{pmatrix} G^{K_n} \cong H^{K_n} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is ?????} \end{pmatrix}$$
$$\begin{pmatrix} G^{K_{m,n}} \cong H^{K_{m,n}} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is ?????} \end{pmatrix}$$

$$\begin{pmatrix} G^{K_2} \cong H^{K_2} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is nbhd. reconstructible} \end{pmatrix}$$
$$\begin{pmatrix} G^{K_3} \cong H^{K_3} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is } ???? \end{pmatrix}$$
$$\begin{pmatrix} G^{K_n} \cong H^{K_n} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is } ???? \end{pmatrix}$$
$$\begin{pmatrix} G^{K_{m,n}} \cong H^{K_{m,n}} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is } ???? \end{pmatrix}$$
$$\begin{pmatrix} G^{C_n} \cong H^{C_n} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is } ???? \end{pmatrix}$$

$$\begin{pmatrix} G^{K_2} \cong H^{K_2} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is nbhd. reconstructible} \end{pmatrix}$$
$$\begin{pmatrix} G^{K_3} \cong H^{K_3} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is } ???? \end{pmatrix}$$
$$\begin{pmatrix} G^{K_n} \cong H^{K_n} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is } ???? \end{pmatrix}$$
$$\begin{pmatrix} G^{K_{m,n}} \cong H^{K_{m,n}} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is } ???? \end{pmatrix}$$
$$\begin{pmatrix} G^{C_n} \cong H^{C_n} \Rightarrow G \cong H \end{pmatrix} \iff \begin{pmatrix} G \text{ is } ???? \end{pmatrix}$$

#### Thank You!