Name:
R. Hammack

Score: $\qquad$
Directions: All spaces are finite dimensional. Each question (including parts) is 10 points.

1. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$.
(a) Find the characteristic polynomial $\chi_{A}$ of $A$. (Show your work.)
(b) Find the minimum polynomial $m_{A}$ of $A$. (Explain your ressoning.)
(c) Is $A$ diagonalizable? (Explain.)
2. Give an example of an operator $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ for which $\mathbb{R}^{2}=\operatorname{Range}(T) \oplus \operatorname{Null}(T)$ but $T$ is not a projection.
3. Find the matrix (relative to the standard basis) for the projection that projects $\mathbb{R}^{2}$ to $\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ along $\operatorname{Span}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$.
4. Suppose $V=W_{1} \oplus W_{2}$. Let $E_{1}$ be a projection to $W_{1}$. Let $E_{2}$ be a projection to $W_{2}$.
(a) Is it necessarily true that $E_{1} E_{2}=O$ ? Explain.
(b) Is it necessarily true that $E_{1}+E_{2}$ is a projection? Explain.
5. Suppose $E, T \in L(V, V)$ and $E$ is a projection onto the subspace $W \subseteq V$.

Prove that $W$ is $T$-invariant if and only if $E T E=T E$.
6. Suppose $T \in L(V, V)$ and every subspace of $V$ is $T$-invariant. Prove that $T$ is a scalar multiple of the identity.
7. Let $V$ be the vector space of $n \times n$ matrices over a field $\mathbb{F}$ and let $A \in V$ be a fixed matrix. Define a linear operator $T: V \rightarrow V$ as $T(X)=A X$.
Show that the minimum polynomial of $T$ equals the minimum polynomial of $A$.

